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Abstract 
Robust stability is an important aspect in control of real world systems, since uncertainties 

have to be considered in dynamic system model. This paper studies the robust decentralized 
controller design for case study: quadruple tank process, [3,4]. Several important aspects of system 
analysis are shown to choose appropriate pairing and assess stabilizability via decentralized control 
structure; the main contribution is in decentralized discrete-time controller design. Simulation results 
illustrate the obtained results and their qualities.  

Abstrakt 
Robustná stabilita je dôležitou stránkou pri návrhu riadenia reálnych systémov. Tento 

príspevok sa zaoberá návrhom robustného decentralizovaného regulátora pre prípadovú štúdiu: 
systém štyroch nádrží, [3,4]. Príspevok ilustruje niektoré dôležité aspekty analýzy systému potrebné 
na správny výber párovania vstupov a výstupov umožňujúci stabilizáciu systému decentralizovaným 
riadením; hlavným prínosom je návrh decentralizovaného diskrétneho algoritmu riadenia. Výsledky 
simulácie ilustrujú vlastnosti získaných regulátorov. 

 1 INTRODUCTION 
The basic required quality of the system is its stability in the whole uncertainty domain – this 

quality is called robust stability. Both in time and frequency domains, various approaches to robust 
stability have been developed. In this paper we use results based on small gain theorem to controller 
design in frequency domain and polytopic description of uncertain system which is appropriate for 
using LMI approach to robust control design. 

The quadruple-tank process presented recently in [3,4] provides possibility to study the 
multivariable dynamics (two inputs and two outputs) both for minimum and nonminimum-phase 
configurations. In this paper the decentralized controller is designed for a model of a quadruple-tank 
process in frequency domain and in time domain. Results of both approaches are compared and 
simulation results are presented to illustrate system qualities obtained via adopted approaches. 

The paper is organized as follows. In section 2, the quadruple tank process model is given and 
pairing and structural stabilizability are studied to provide for decentralized control design scheme. In 
section 3 approaches used in frequency and time domain to design robust discrete-time PID controller 
(denoted sometimes as PSD) are presented. The obtained results are shown in section 4 together with 
simulation results to verify the controller design. The proposed controllers based on linearized model 
has been applied to nonlinear model to check the robust stability. Section 5 is devoted to conclusions.   
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 2 PRELIMINARIES AND PROBLEM FORMULATION 
In this section the quadruple tank process is presented and several aspects concerning its 

decentralized control design, such as pairing and structural stabilizability are studied. Robust 
decentralized control design problem is formulated.    

2.1 Model of quadruple-tank process 
The quadruple-tank process shown in Fig.1 has been introduced in [3,4] to provide a case 

study to analyse qualities of both minimum and nonminimum phase system on the same plant. The 
aim is to control the level in the lower two tanks with two pumps. The inputs 1ν  and 21ν  are pump 1 
and 2 flows, the controlled outputs y1 and y2 are levels in lower tanks 1 and 2 respectively. The plant 
can be shifted from minimum to nonminimum phase configuration and vice versa simply by changing 
a valve controlling the flow ratios 1γ  and 2γ between lower and upper tanks. The minimum-phase 
configuration corresponds to 21 21 <+< γγ  and a nonminimum-phase one to 10 21 <+< γγ . 

     (1) 

Fig. 1 Quadruple tank process scheme and nonlinear model (1) 

where Ai is cross-section and ai is cross-section of the outlet hole of tank i, hi is water level in tank i, 
g is acceleration of gravity, the flow corresponding to pump i is kivi . Parameter 1γ  denotes position 
of the valve dividing the pump 1 flow into the tanks 1 and 4, analogically 2γ serves for pump 2 and 
tanks 2, 3. The flow to tank 1 is 111 vkγ  and to tank 4 it is 111)1( vkγ− , similarly for tanks 2 and 3. 

The nonlinear model can be linearized around the working point given by the water levels in 
tanks 40302010 ,,, hhhh  using Taylor series. To obtain state space equations, state variables are defined 
as differences 0iii hhx −= , the respective control variables are  0iii vvu −= . The linearized model is 
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.The argument t has been omitted; the state variables corresponding to levels in tanks 2 and 3 
has been interchanged in state vector so that subsystems respective to input u1 from pump 1 (tanks 1 
and 3) and  u2 from pump 2 (tanks 2 and 4) are more apparent. This decomposition into two 
subsystems is used later in decentralized control design. 

the nonlinear model: 
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The respective transfer function matrix having inputs v1 and v2 and outputs y1 and y2 is 
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Plant zeros for (3) can be obtained from det(G(s))=0:  
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using denotation ( )( )
21

21 11
γγ

γγη −−
= , we have nonminimum phase system (with zero in right half 

plane) for 1>η , i.e. for 10 21 <+< γγ and minimum phase for 1<η , i.e. for 21 21 <+< γγ .  

2.2  Decentralized control of quadruple tank 
The control aim for quadruple tank is to reach the given level in the lower two tanks, i.e. 

prescribed values of y1 and y2 by controlling input flow v1 and v2 delivered by two pumps. To achieve 
this aim, the decentralized control structure should be employed, with two control loops respective to 
output values y1 and y2; therefore the appropriate input-output pairing has to be chosen for both 
configurations. Using steady-state RGA index, for 1< 1γ + 2γ <2 (minimum phase system) the 
indicated pairing is 2211 yv,yv −− ; for  0<γ1+γ2<1 (nonminimum phase system), the opposite 
pairing 1221 yv,yv −− is indicated. This result is approved by Niederlinski index:  

Our control design aim is to find robust decentralized PID controller for respective pairing for 
both minimum and nonminimum phase configurations appropriate for specified uncertainty region.  

 3 ROBUST DECENTRALIZED DISCRETE-TIME PID CONTROLLER 
DESIGN 
The robust decentralized PID controller is designed in this section for quadruple tank process 

linearized model both in frequency and time domains. In frequency domain, small gain theorem 
based approach is adopted to formulate the test for stability robustness. In time domain, the LMI 
approach is used to incorporate the uncertainties into controller design procedure. In this case, 
polytopic uncertainty domain is considered, which yields from considered different working points.  

3.1  Model of control system 
In state space, the uncertain closed-loop polytopic system is considered in general form 

 )()()1( kxAkx C α=+                                (5) 
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with decentralized feedback control law )()( kFCxku =                (7) 

where F is a block diagonal matrix conforming to the structure of B and C. 

A discrete-time PID (PSD) controller is  
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where u(k) is control variable, y(k) is controlled (output) variable,  e(k) is control error )()( kywke −= , 
w is reference value; DIP kkk ,,  are controller parameters to be designed.  

The respective description in state space is 
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Combining (5) and (9) the augmented closed loop system is received as 
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where [ ]DIDDIP kkkKkkkK −=++= 12 ),( . 

When decentralized controller is considered, the state space model has block structure 
respective to individual inputs and outputs with diagonal blocks structured according to (10).  

3.2  Robust control design in frequency domain   
In frequency domain, the robust PID controller is designed via common approach, based on 

small gain theorem applied on uncertain system, the robust stability condition is 

M
D Gl

WG 11 <−          (11) 

where nominal system matrix has been divided into its diagonal and off-diagonal part: 
MD GGG +=0 ; ( )kMk

GGl −= 0maxσ , Gk is system matrix in working point k. 

The approach described above is based on Nyquist stability criterion which has analogous 
formulation for discrete-time systems, formally same formulas can be derived for robust discrete-time 
controller. The inverse dynamics approach is used to design controllers in individual loops, [8]. 

3.3  Robust control design in state space 
We consider the state space system model with polytopic uncertainties (5), (6). In the 

development of robust discrete time controller in state space the Lyapunov stability condition (12) for 
closed loop system (5) is employed using parameter dependent Lyapunov function (13). 
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The proposed PSD controller design scheme is based on results of [1] and [2]. The static 
output feedback controller (SOF) is obtained solving LMI (14)-(16) for unknown matrices F, M, G 
and Pi of appropriate dimensions, the Pi being symmetric, M, G are block diagonal with block 
dimensions conforming to subsystem dimensions (for quadruple tank system model has 4 states, two 
subsystems are 2x2). 
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Compute the corresponding output feedback gain matrix 

 1−= KMF         where ]})({[ DiIiIiPi kkkkblockdiagF −+−=  (16) 

The algorithm above is quite simple and often provides reasonable results. Another possibility 
for SOF design has been employed: the iterative solution of robust stability condition (17) 
alternatively for unknown Pi , G and F, G (see [6]). 
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 4 DECENTRALIZED DISCRETE-TIME PID CONTROLLER FOR 
QUADRUPLE TANK 
The robust decentralized PID controller for quadruple tank process linearized model  has been 

designed in this section using robust conrol approaches described in sections 3.2 and 3.3, the results 
have been verified by simulation on nonlinear model. The relevant part is after water levels reach the 
nominal steady state values. The following changes around the working point test the closed loop 
performance qualities (in dashed circles). 
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Fig. 2 Comparison of step responses for nonlinear model with designed controllers (inverse dynamics 

design, robust state-space design); minimum-phase case 
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Fig. 3 Comparison of step responses for nonlinear model with designed controllers (inverse dynamics 

design, robust state-space design); nonminimum-phase case 

As shown in Fig.2 and 3, state space design provides quicker response, however with 
overshoot. Inverse dynamics yields significantly slower response. 
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The situation changes rapidly for nonminimum-phase configuration, which is much more 
difficult for controller design. In this case, inverse dynamics is superior to state space approach, as far 
as maximal overshoot and settling time are considered.    

 5 CONCLUSION 
The robust decentralized PS controller has been designed both in frequency and time domain 

for quadruple-tank process model. The LMI based design of static output feedback controller 
provides good results for minimum-phase configuration, verified on nonlinear process. The 
nonminimum-phase case prefers inverse dynamics approach, state space design yields in this case too 
big integration constant, therefore oscillating response. The question of appropriate SOF design 
procedure for this case remains open. The provided results in frequency domain will be used also in 
teaching complex systems control in degree course.     
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