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We revealed that the phase function of a thin-film structure measured by a white-light spectral interferometric technique de-

pends on the path length difference adjusted in a Michelson interferometer. This phenomenon is due to a dispersion error of

a beam splitter cube, the effective thickness of which varies with the adjusted path length difference. A technique for elimi-

nating the effect in measurement of the phase function is described. In a first step, the Michelson interferometer with same

metallic mirrors is used to measure the effective thickness of the beam splitter cube as a function of the path length differ-

ence. In a second step, one of the mirrors of the interferometer is replaced by a thin-film structure and its phase function is

measured for the same path length differences as those adjusted in the first step. In both steps, the phase is retrieved from the

recorded spectral interferograms by using a windowed Fourier transform applied in the wavelength domain.

Keywords: spectral interferometry, white-light source, Michelson interferometer, beam splitter cube, dispersion, BK7

glass, phase retrieval, effective thickness.

�� ������������

White-light spectral interferometry based on channelled

spectrum detection and utilizing a broadband source in

combination with a standard Michelson interferometer has

been widely used for distance and displacement measure-

ments [1–3], in optical profilometry [4–7] and for material

characterization [8–13].

Michelson interferometers that split light into two

beams and recombine them to produce the interference

pattern comprise beam splitters that are typically con-

structed of dispersive materials such as optical glasses.

Beam splitter cubes are widely used to ensure matching of

geometrical path lengths of light rays in the two arms of

the interferometer. However, commercially available

beam splitters have a dispersion error [14–16] due to dif-

ferent geometrical path lengths of the light rays in dis-

persive glass in the two interferometer arms. To reduce

the dispersion error as much as possible, two degrees of

freedom must be controlled during the fabrication process

[16]. They include the lateral position and relative rota-

tion of the two prisms that comprise the beam splitter

cube. Recently, the effective thickness of the beam splitter

was introduced [17] to quantify the dispersion error as

a result of the asymmetry in the interferometer. Most re-

cently, knowledge of the effective thickness was used in

employment of a new method for measuring a phase func-

tion of a thin-film structure [11].

The aim of the paper is to describe a white-light spec-

tral interferometric technique that can be used to eliminate

the dependence of the phase function of a thin-film struc-

ture on the path length difference adjusted in a Michelson

interferometer. This dependence is due to a dispersion error

of a beam splitter cube, the effective thickness of which

varies with the adjusted path length difference. First, the

Michelson interferometer with same metallic mirrors is

used to measure the effective thickness of the beam splitter

as a function of the path length difference. The effective

thickness is given by the slope of the dependence of the

phase on the refractive index of BK7 glass [13] from which

the beam splitter cube is made. Second, one of the mirrors

of the Michelson interferometer is replaced by a thin-film

structure and its phase function is measured for the same

path length differences as those adjusted in the first step. In

both steps, the phase is retrieved from the recorded spectral

interferograms by using a windowed Fourier transform

(WFT) applied in the wavelength domain [13].
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Let us consider the mutual interference of two beams from

a broadband source at the output of a Michelson interfer-

ometer with two identical metallic mirrors and a beam

splitter cube of the effective thickness teff [17]. We assume

that the geometrical path lengths of the light rays in dis-

persive glass of the beam splitter are not the same for both
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interferometer arms so that the beam splitter can be repre-

sented by an ideal beam splitter and a plate of the same dis-

persion and of the thickness teff (see Fig. 1).

We are interesting in the spectral interference signal

SM(�) defined as [11]

S I IM M M( ) ( ) ( )� � �� �
0 1, (1)

where IM(�) is the spectral intensity (channelled spectrum)

and IM
0 ( )� is the reference (unmodulated) spectrum. If both

spectra are recorded at the output of the interferometer by a

fibre-optic spectrometer of a Gaussian response function,

the spectral interference signal can be expressed as [3]
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where VI is the visibility term, ��R denotes the width of the

spectrometer response function, and �M(ë) is the wave-

length-dependent optical path difference (OPD) between two

beams in the Michelson interferometer, which is given by

�M effL n t( ) ( )� �� �2 2 , (3)

where 2L is the difference of path lengths between the in-

terfering beams in the air whose dispersion is neglected and

n(�) is the refractive index of the beam splitter material.

The corresponding group OPD �M
g

( )� is given by

�
�

g
effL N t( ) ( )� �� �2 2 , (4)

where N(ë) is the group refractive index.
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Next, let us consider that one of the mirrors of the interfer-

ometer is replaced by a thin-film structure on a substrate,

which is characterized by a complex reflection coefficient

r R i r( ) ( ) exp[ ( )]� � � �� , (5)

where R(�) is the reflectivity and är	�) is the phase change

on reflection. The spectral signal S(�) corresponding to the

spectra recorded at the output of the interferometer by the

fibre-optic spectrometer can be expressed as

S V g
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where V(�) is a visibility term, which is given by
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and �(�) is the OPD given by

�( ) ( ) ( ) ( )� � �� � �� � �2 2 2L n teff r . (8)

Moreover, we can construct, for the chosen mirror posi-

tion L = L0, the phase function ä	�), which is referred to as

the nonlinear-like phase [11] and which satisfies the rela-

tion


 �
� � � � � �( ) ( ) ( ) ( )� � �2 2 20L n teff � . (9)
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The experimental set-up used in the application of white-

light spectral interferometry to measure the effective thick-

ness of a beam splitter cube or the phase function of

a thin-film structure is shown in Fig. 1. It consists of

a white-light source, a halogen lamp HL-2000 (Ocean Op-

tics, Inc.) with launching optics, an optical fibre and

a collimating lens, a bulk-optic Michelson interferometer

with a beam splitter cube made of BK7 optical glass

(BS013, Thorlabs), metallic mirror 1 or a thin-film struc-

ture on a substrate, metallic mirror 2 connected to a micro-

positioner, a microscope objective, micropositioners, a read

Dispersion error of a beam splitter cube in white-light spectral interferometry
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Fig. 1. Experimental set-up of a Michelson interferometer with a beam splitter cube of given effective thickness.

Brought to you by | Technicka Univerzita Ostrava
Authenticated

Download Date | 4/10/18 1:40 PM



optical fibre, a miniature fibre-optic spectrometer S2000

(Ocean optics, Inc.), an A/D converter and a personal com-

puter. The collimated beam of the white light has a diame-

ter of approximately 3 mm. The spectral interferograms are

recorded at room temperature when the position of mirror 2

in the interferometer is adjusted with a precision of 1 µm.

The thin-film structure is represented by a uniform SiO2

thin film on a silicon wafer. The SiO2 thin film on the sili-

con wafer is prepared using a dry oxidation process de-

scribed by the so-called Deal-Grove model [18]. Single-

crystal silicon wafer from ON Semiconductor, Czech Re-

public, is characterized by subsequent parameters, the di-

ameter (100 ±0.5) mm, orientation (111), B doped type P,

thickness (381 ±25) µm and resistivity (0.008–0.009) Ùcm.

Before the oxidation, the wafer is cut into 40×40 mm

squares, cleaned by standard methods and then annealed in

a furnace at 1200�C. According to the model, the annealing

time is selected in order to prepare SiO2 thin film with a

thickness of approximately 340 nm.
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Prior to measurements, an efficient and accurate alignment

of the beam splitter cube in the interferometer is achieved

by observing the interference fringes when a laser diode in-

stead of the white-light source is used. The effective thick-

ness teff of the beam splitter cube is measured by a tech-

nique based on the phase retrieval from the recorded spec-

tral interferograms [13]. From the channelled spectrum

IM(�) and the reference spectrum I(0)
M(�), the spectral in-

terference signal SM(�) defined by Eq. (1) is determined.

By processing the spectral signal using a WFT, the abso-

lute OPD �M(ë) between interfering beams is retrieved and

then from its dependence on the refractive index n(�) of

BK7 glass at room temperature the beam splitter effective

thickness teff is determined [13]. As an example, the beam

splitter effective thickness teff = –47.35 µm with a standard

deviation of 0.01 µm is determined for the adjusted dis-

placement 
L = L – L' = 20 µm of mirror 2 from the refer-

ence position L' corresponding to zero group OPD. In the

thickness, the contribution of the UV adhesive layer be-

tween the two prisms that comprise the beam splitter is in-

cluded. We assume that the refractive index of the layer is

the same as that of the prisms. The negative effective thick-

ness of the beam splitter cube means that the corresponding

dispersive plate is in the other arm of the interferometer

than is depicted in Fig. 1.

The nonlinear-like phase function ä	�) of the thin-film

structure is measured by a technique presented in a previ-

ous paper [11]. From the channelled and reference spectra,

the spectral interference signal S(�) is determined. By pro-

cessing the spectral signal using a WFT, the absolute OPD

�(ë) between interfering beams is retrieved and the param-

eter 2L0 is determined by a procedure based on the fact that

the dependence of the OPD �(ë) on the refractive index

n(�) of BK7 glass at room temperature deviates minimally

from linear dependence with the slope 2teff = –94.70 µm.

The nonlinear-like phase function ä	�) is then simply deter-

mined by using Eq. (9). Figure 2 shows the nonlinear-like

phase functions ä	�) corresponding to six adjusted dis-

placements �L = –40, –30, –20, 20, 30, and 40 µm of mir-

ror 2 from the reference position L', which are the same as

in the previous measurements and which are adjusted by

another micropositioner connected to the thin-film struc-

ture. In other words, the mirrors of the interferometer have

the same positions with respect to the beam splitter cube as

in the previous measurements.

Figure 2 clearly demonstrates apparent discrimination

between nonlinear-like phase functions with the upper ones

for the positive displacements and shorter wavelengths

whereas the lower functions at longer wavelengths are for

the same displacements (right part of the figure is accord-

ing to the legend). The discrimination can be attributed to

the variable dispersion error as a result of the asymmetry in

the interferometer or equivalently to the variable effective

thickness of the beam splitter. To confirm this explanation,

we measured the beam splitter effective thickness teff for

the all adjusted displacements of mirror 2. Figure 3 actually

illustrates different thicknesses for different mirror posi-

tions that increase in the absolute value with increasing dis-

placement. This effect is probably due to the alignment er-

rors caused by relative rotation of the two prisms that com-

prise the beam splitter cube [16]. Finally, Fig. 4 shows the

nonlinear-like phase functions measured for the all ad-

justed displacements of mirror 2 when the actual effective

thickness of the beam splitter is taken into account. Figure

4 illustrates substantially better agreement between the

nonlinear-like phase functions. However, it is clearly seen

from Fig. 4 that the phase functions for the negative dis-

placements (upper curves) have larger amplitude than those

for the positive displacements.
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Fig. 2. Nonlinear-like phase as a function of wavelength for six

different mirror displacements �L (the effective thickness

teff = –47.35 µm).
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We described a white-light spectral interferometric tech-

nique used to eliminate the dependence of the phase func-

tion of a thin-film structure on the path length difference

adjusted in a Michelson interferometer. This phenomenon

is due to a dispersion error of a commercially available

beam splitter cube, the effective thickness of which varies

with the adjusted path length difference (mirror position).

The elimination of the dependence consisted of two steps.

First, the Michelson interferometer with same metallic mir-

rors was used to measure the effective thickness of the

beam splitter cube as a function of the path length differ-

ence. The effective thickness was obtained from the slope

of the dependence of the phase on the refractive index of

the beam splitter material (BK7 glass). Second, one of the

mirrors of the Michelson interferometer was replaced by a

thin-film structure and its nonlinear-like phase function

was measured for the same path length differences as those

adjusted in the first step.

We showed that the effective thickness of a beam

splitter cube is an important parameter for an accurate

interferometric measurement of the nonlinear-like phase

function of a thin-film structure. The measurement, which

can be extended to smaller diameters of convergent light

beams and which has the primary advantage over a tech-

nique such as ellipsometry in its normal incidence config-

uration, is possible without the need of the microscope in-

terferometer.
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