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2 VŠB–Technical University Ostrava,
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Abstract

The logical foundations of processes handling uncertainty in information use some
classes of algebras as algebraic semantics. The sets of provable formulas in corre-
sponding inference systems from the point of view of uncertain information can be
described by fuzzy filters of those algebraic semantics. Bounded residuated lattice
ordered monoids (R`-monoids) are a common generalization of pseudo BL-algebras
(and consequently of pseudo MV -algebras) and Heyting algebras, i.e., algebras be-
hind fuzzy and intuitionistic reasoning. In the paper we introduce and investigate
fuzzy filters of bounded R`-monoids and fuzzy prime filters of pseudo BL-algebras.

Keywords: R`-monoid, pseudo BL-algebra, pseudo MV -algebra, filter, fuzzy filter,
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1 Introduction

As it is known, an important task of the artificial intelligence is to make the computers
simulate human being in dealing with certainty and uncertainty in information. Logic
gives a technique for laying the foundations of this task. While information processing
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dealing with certain information is based on the classical two-valued logic, non-classical
logics including logics behind fuzzy reasoning handle information with various facets of
uncertainty such as fuzziness, randomness, vagueness, etc. (For a generalized theory of
uncertainty see [28].) So, non-classical logics have become as a formal and useful tool
for computer science to deal with fuzzy and uncertain information. Furthermore, one can
observe that human reasoning need not be strictly commutative and often can depend,
e.g., on circumstances and on consecutive information in time. On the other side, there
are logic concurrent programming languages based on non-commutative logics.

The classical two-valued logic has Boolean algebras as an algebraic semantics. Similarly,
for important non-classical logics there are algebraic semantics in the form of classes of
algebras. Using these classes, one can obtain an algebraization of inference systems that
handle various kinds of uncertainty. The sets of provable formulas in inference systems are
described by filters, and from the point of view of uncertain information, by fuzzy filters
of corresponding algebras.

Bounded residuated lattice ordered monoids (R`-monoids) form a large class of alge-
bras which contains, among others, certain classes of algebras behind fuzzy reasoning.
Namely, pseudo BL-algebras [5], [6] and pseudo MV -algebras [9] (=GMV -algebras [23]),
and consequently BL-algebras [10] and MV -algebras [3], [4], can be considered as bounded
R`-monoids. Recall that BL-algebras and pseudo BL-algebras are algebraic semantics
of Hájek’s BL-logic [11] and pseudo BL-logic [12], respectively, as well as MV -algebras
and pseudo MV -algebras are algebras of the  Lukasiewicz infinite valued logic [3] and the
non-commutative  Lukasiewicz logic [20], respectively. Moreover, the class of bounded R`-
monoids also contains the class of Heyting algebras [1], i.e. algebras of the intuitionistic
logic.

Fuzzy ideals (or in the dual form, fuzzy filters) of MV -algebras were introduced and
developed by Hoo in [13], [14] and their generalizations for pseudo MV -algebras by Jun and
Walendziak in [16] and by Dymek in [8]. Certain classes of fuzzy filters or ideals were also
studied in lattice implication algebras [17], in R0-algebras [21] and in BCK/BCI-algebras
[26], and further kinds of filters or ideals in [22] and in integral residuated `-monoids [27].

In the paper we define and study fuzzy filters of bounded R`-monoids. For this general
case we describe connections between filters and fuzzy filters and characterize fuzzy filters
generated by fuzzy sets. Further, for the case of pseudo BL-algebras we introduce and
study fuzzy prime filters and show their connections to prime filters. We characterize,
by means of fuzzy filters, linearly ordered pseudo BL-algebras and give conditions under
which a fuzzy filter is contained in a fuzzy prime filter.

2 Bounded R`-monoids

A bounded R`-monoid is an algebra M = (M ; �,∨,∧,→, , 0, 1) of type 〈2, 2, 2, 2, 2, 0, 0, 〉
satisfying the following conditions:
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(i) (M ; �, 1) is a monoid (need not be commutative).

(ii) (M ; ∨,∧, 0, 1) is a bounded lattice.

(iii) x� y ≤ z iff x ≤ y → z iff y ≤ x z for any x, y ∈ M .

(iv) (x → y)� x = x ∧ y = y � (y  x).

Recall that the lattice (M ; ∨,∧) is distributive and that bounded R`-monoids form
a variety of algebras of the indicated type. Moreover, the bounded R`-monoids can be
recognized as bounded integral generalized BL-algebras in the sense of [2] and hence it is
possible to prove that the operation ”�” distributes over the lattice operations ”∨” and
”∧”.

In what follows, by an R`-monoid we will mean a bounded R`-monoid.
For any R`-monoid M we define two unary operations (negations) ”−” and ”∼” on M

such that x− := x → 0 and x∼ := x 0 for every x ∈ M .
Now we can characterize algebras of the above mentioned propositional logics in the

class of R`-monoids.
An R`-monoid M is

a) a pseudo BL-algebra ([18]) if and only if M satisfies the identities of pre-linearity
(x → y) ∨ (y → x) = 1 = (x y) ∨ (y  x);

b) a pseudo MV -algebra (GMV -algebra) ([23]) if and only if M fulfils the identities
x−∼ = x = x∼−;

c) a Heyting algebra ([25]) if and only if the operations ”�” and ”∧” coincide on M .

If the operation ”�” is commutative then an R`-monoid is called commutative. Recall
that in such a case the implications ”→” and ” ”, as well as the negations ”−” and ”∼”,
respectively coincide. Then commutative pseudo BL-algebras are precisely BL-algebras
and commutative pseudo MV -algebras coincide with MV -algebras.

Lemma 2.1 [24, 7]
In any bounded R`-monoid M we have for any x, y ∈ M :

(1) x ≤ y ⇐⇒ x → y = 1 ⇐⇒ x y = 1.

(2) x ≤ y =⇒ z → x ≤ z → y, z  x ≤ z  y.

(3) x ≤ y =⇒ y → z ≤ x → z, y  z ≤ x z.

(4) x → x = 1 = x x, 1 → x = x = 1 x, x → 1 = 1 = x 1.

(5) (x → y)� x ≤ x ≤ y → (x� y), x� (x y) ≤ y ≤ x (x� y).

(6) 1−∼ = 1 = 1∼−, 0−∼ = 0 = 0∼−.

(7) x ≤ x−∼, x ≤ x∼−.

(8) x−∼− = x−, x∼−∼ = x∼.

(9) x− � x = 0 = x� x∼.

(10) x → (y → z) = (x� y) → z, x (y  z) = (y � x) z.

3

Information sciences. 2008, vol. 178, issue 17, p. 3474-3481. http://dx.doi.org/10.1016/j.ins.2008.05.005

DSpace VŠB-TUO http://hdl.handle.net/10084/67055 22/09/2011



Let M = (M ; �,∨,∧,→, , 0, 1) be an R`-monoid and ∅ 6= F ⊆ M . Then F is called
a filter of M if

(i) x, y ∈ F =⇒ x� y ∈ F ;

(ii) x ∈ F, y ∈ M, x ≤ y =⇒ y ∈ F .

Further properties of filters follow from [2] and [15].

If M is an R`-monoid and D ⊆ M then D is called a deductive system of M if for each
x, y ∈ M

(1) 1 ∈ D;

(2) x ∈ D, x → y ∈ D =⇒ y ∈ D.

It is possible to show that H ⊆ M is a filter of M iff H is a deductive system of M iff
H satisfies (1) and for each x, y ∈ M

(2’) x ∈ D, x y ∈ D =⇒ y ∈ D.

Denote by F(M) the complete lattice (with respect to the order by set inclusion) of
filters of M . Note that infima in F(M) coincide with intersections. It is known ([19])

that F(M) is a complete Heyting algebra and hence G ∩
∨
i∈I

Fi =
∨
i∈I

(G ∩ Fi), for any

G, Fi ∈ F(M), i ∈ I.
If X ⊆ M , denote by Fil(X) the filter of M generated by X. For X = ∅, we have

Fil(∅) = {1}. If X 6= ∅ then

Fil(X) = {y ∈ M : y ≥ x1 � · · · � xn for some x1, . . . , xn ∈ X, n ≥ 1}.

3 Fuzzy filters of R`-monoids

Let [0, 1] be the closed unit interval of reals and M 6= ∅ be a set. Recall that a fuzzy set in
M is any function ν : M −→ [0, 1].

If ν and λ are fuzzy sets in M , define ν ≤ λ iff ν(x) ≤ λ(x) for all x ∈ M.
If Γ ⊆ [0, 1], put

∧
Γ := inf Γ in [0, 1] and

∨
Γ := sup Γ in [0, 1]. In particular,

if α, β ∈ [0, 1], then α ∧ β = min{α, β} and α ∨ β = max{α, β}. Recall that [0, 1] is
a complete Heyting algebra.

A fuzzy set ν in an R`-monoid M is called a fuzzy filter of M if for any x, y ∈ M it is
satisfied:

(f1) ν(x� y) ≥ ν(x) ∧ ν(y),

(f2) x ≤ y =⇒ ν(x) ≤ ν(y).

By (f2), it follows immediately that
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(f3) ν(1) ≥ ν(x) for every x ∈ M .

Lemma 3.1 Let ν be a fuzzy filter of an R`-monoid M . Then it holds for any x, y ∈ M :

(i) ν(x ∨ y) ≥ ν(x) ∧ ν(y),

(ii) ν(x ∧ y) = ν(x) ∧ ν(y),

(iii) ν(x� y) = ν(x) ∧ ν(y).

Proof. For any x, y ∈ M we have x � y ≤ x ∧ y ≤ x ∨ y. Then by (f2) and (f1),
ν(x ∨ y) ≥ ν(x� y) ≥ ν(x) ∧ ν(y). Since x� y ≤ x ∧ y ≤ x, y, by (f1) and (f2), it follows
that ν(x) ∧ ν(y) ≤ ν(x� y) ≤ ν(x ∧ y) ≤ ν(x) ∧ ν(y). �

Theorem 3.2 A fuzzy set ν in an R`-monoid M is a fuzzy filter of M if and only if it
satisfies (f1) and

(f4) ν(x ∨ y) ≥ ν(x) for any x, y ∈ M .

Proof. If ν is a fuzzy filter of an R`-monoid M then x ≤ x ∨ y implies ν(x) ≤ ν(x ∨ y).
Conversely, if ν satisfies (f1) and (f4), and x ≤ y, then ν(y) = ν(x ∨ y) ≥ ν(x). Hence

ν is a fuzzy filter of M . �

Theorem 3.3 Let ν be a fuzzy set in an R`-monoid M . Then the following conditions
are equivalent.

(1) ν is a fuzzy filter of M .

(2) ν satisfies (f3) and for all x, y ∈ M ,

ν(y) ≥ ν(x) ∧ ν(x → y). (∗)

(3) ν satisfies (f3) and for all x, y ∈ M ,

ν(y) ≥ ν(x) ∧ ν(x y). (∗∗)

Proof. (1)⇒ (2): Let ν be a fuzzy filter of M and x, y ∈ M . Then, by Lemma 3.1(iii),
ν(y) ≥ ν(x ∧ y) = ν((x → y)� x) = ν(x → y) ∧ ν(x).

Hence ν satisfies the condition (2).
(2) ⇒ (1): Let ν be a fuzzy set in M satisfying (f3) and (∗). Let x, y ∈ M, x ≤ y.

Then x → y = 1. Thus ν(y) ≥ ν(x) ∧ ν(1) = ν(x), hence (f2) holds.
Further, since x ≤ y → (x � y), by (∗) and (f2) we get ν(x � y) ≥ ν(y) ∧ ν(y →

(x� y)) ≥ ν(y) ∧ ν(x). Therefore (f1) is also satisfied and hence ν is a fuzzy filter of M .
(1)⇔ (3): Analogously. �
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Let F be a subset of M and α, β ∈ [0, 1] such that α > β. Define a fuzzy subset
νF (α, β) in M by

νF (α, β)(x) :=

{
α, if x ∈ F,

β, otherwise.

In particular, νF (1, 0) is the characteristic function χF of F . We will use the denotation
νF instead of νF (α, β), for every α, β ∈ [0, 1], α > β.

Theorem 3.4 Let F be a non-empty subset of an R`-monoid M . Then the fuzzy set νF

is a fuzzy filter of M if and only if F is a filter of M .

Proof. Let M be an R`-monoid and ∅ 6= F ⊆ M .
a) Let F be a filter of M and x, y ∈ M . If x, y ∈ F , then x � y ∈ F , hence

νF (x � y) = α = νF (x) ∧ νF (y). If x /∈ F or y /∈ F , then νF (x) = β or νF (y) = β, thus
νF (x�y) ≥ β = νF (x)∧νF (y). Therefore νF satisfies (f1). Further, let x, y ∈ M, x ≤ y. If
y ∈ F , then νF (y) = α ≥ νF (x). If y /∈ F , then also x /∈ F , and hence νF (x) = β = νF (y).
Therefore νF satisfies (f2).

That means, νF is a fuzzy filter of M .
b) Let νF be a fuzzy filter of M . If x, y ∈ F , then νF (x) = α = νF (y), hence

νF (x � y) ≥ νF (x) ∧ νF (y) = α, thus x � y ∈ F . If x ∈ F, y ∈ M and x ≤ y, then
α = νF (x) ≤ νF (y), hence νF (y) = α, and so y ∈ F . Therefore F is a filter of M . �

Let ν be a fuzzy set in an R`-monoid M . Denote by Mν the set

Mν := {x ∈ M : ν(x) = ν(1)}.

Theorem 3.5 If ν is a fuzzy filter of an R`-monoid M , then Mν is a filter of M .

Proof. Let ν be a fuzzy filter of M . Let x, y ∈ Mν , i.e. ν(x) = ν(1) = ν(y). Then
ν(x� y) ≥ ν(x) ∧ ν(y) = ν(1), hence ν(x� y) = ν(1), thus x� y ∈ Mν .

Further, let x ∈ Mν , y ∈ M and x ≤ y. Then ν(1) = ν(x) ≤ ν(y), hence ν(y) = ν(1),
and therefore y ∈ Mν .

That means Mν is a filter of M . �

The converse implication to that from Theorem 3.5 is not true in general, even for
pseudo MV -algebras, as it was shown in [8, Example 3.9].

Let ν be a fuzzy set in M and α ∈ [0, 1]. The set

U(ν; α) := {x ∈ M : ν(x) ≥ α}

is called the level subset of ν determined by α.
Note that from this point of view, Mν = U(ν; ν(1)), hence Mν is a special case of a

level subset of M .
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Theorem 3.6 Let ν be a fuzzy set in an R`-monoid M . Then ν is a fuzzy filter of M if
and only if its level subset U(ν; α) is a filter of M or U(ν; α) = ∅ for each α ∈ [0, 1].

Proof. Let ν be a fuzzy filter and α ∈ [0, 1] such that U(ν; α) 6= ∅. Assume x, y ∈ U(ν; α),
then ν(x), ν(y) ≥ α, thus ν(x�y) ≥ ν(x)∧ν(y) ≥ α. Hence x�y ∈ U(ν; α). Consider x ∈
U(ν; α), y ∈ M and x ≤ y. Then α ≤ ν(x) ≤ ν(y), therefore y ∈ U(ν; α). Consequently,
U(ν; α) is a filter of M .

Conversely, let us suppose that for every α ∈ [0, 1] such that U(ν; α) 6= ∅, it is satisfied
that U(ν; α) is a filter of M . Let x, y ∈ M and ν(x � y) < ν(x) ∧ ν(y). Writing β =
1
2
(ν(x � y) + (ν(x) ∧ ν(y))) yields ν(x � y) < β < ν(x) ∧ ν(y), thus x, y ∈ U(ν; β) and

x � y /∈ U(ν; β). That means U(ν; β) is not a filter of M , a contradiction. Therefore (f1)
holds.

Finally, let x, y ∈ M and x ≤ y. Let us assume that ν(x) > ν(y). Taking γ =
1
2
(ν(x) + ν(y)) we obtain ν(x) > γ > ν(y), therefore x ∈ U(ν; γ) and y /∈ U(ν; γ),

a contradiction. Hence (f2) is fulfilled. From the above it follows that ν is a fuzzy filter of
M . �

Theorem 3.7 Let ν be a fuzzy subset in an R`-monoid M . Then the following conditions
are equivalent.

(1) ν is a fuzzy filter of M .

(2) ∀x, y, z ∈ M ; x → (y → z) = 1 =⇒ ν(z) ≥ ν(x) ∧ ν(y).

(3) ∀x, y, z ∈ M ; x (y  z) = 1 =⇒ ν(z) ≥ ν(x) ∧ ν(y).

Proof. (1) ⇒ (2): Let ν be a fuzzy filter of M . Let x, y, z ∈ M and x → (y → z) = 1.
Then by Theorem 3.3, ν(y → z) ≥ ν(x) ∧ ν(x → (y → z)) = ν(x) ∧ ν(1) = ν(x).

Moreover, also by Theorem 3.3, ν(z) ≥ ν(y) ∧ ν(y → z), hence we obtain ν(z) ≥
ν(y) ∧ ν(x).

(2) ⇒ (1): Let a fuzzy set ν in M satisfy the condition (2). Let x, y ∈ M . Since
x → (x → 1) = 1, we have ν(1) ≥ ν(x) ∧ ν(x) = ν(x), hence (f3) is satisfied.

Further, since (x → y) → (x → y) = 1 we get ν(y) ≥ ν(x → y) ∧ ν(x), thus ν satisfies
(∗), that means, by Theorem 3.3, ν is a fuzzy filter of M .

(1)⇔ (3): Analogously. �

Corollary 3.8 A fuzzy set ν in an R`-monoid M is a fuzzy filter of M if and only if for
all x, y, z ∈ M, x� y ≤ z implies ν(z) ≥ ν(x) ∧ ν(y).

Corollary 3.9 A fuzzy set ν in an R`-monoid M is a fuzzy filter of M if and only if for
any x, a1, . . . , an ∈ M, a1 � · · · � an ≤ x implies ν(x) ≥ ν(a1) ∧ · · · ∧ ν(an).

For any fuzzy sets νi (i ∈ I) in M we define the fuzzy set
⋂
i∈I

νi in M as follows:

(⋂
i∈I

νi

)
(x) =

∧
i∈I

νi(x).
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Theorem 3.10 Let νi (i ∈ I) be fuzzy filters of an R`-monoid M . Then
⋂
i∈I

νi is also

a fuzzy filter of M .

Proof. Let M be an R`-monoid, νi be a fuzzy filter of M for any i ∈ I and ν =
⋂
i∈I

νi.

Suppose that x, y, z ∈ M are such that x → (y → z) = 1. Then by Theorem 3.7,
νi(z) ≥ νi(x) ∧ νi(y), for every i ∈ I, hence

ν(z) =

(⋂
i∈I

νi

)
(z) = inf(νi(z); i ∈ I) ≥ inf(νi(x) ∧ νi(y); i ∈ I)

= inf(νi(x); i ∈ I) ∧ inf(νi(y); i ∈ I) =

(⋂
i∈I

νi

)
(x) ∧

(⋂
i∈I

νi

)
(y) = ν(x) ∧ ν(y),

therefore by Theorem 3.7, ν is a fuzzy filter of M . �

Corollary 3.11 The set FF(M) of fuzzy filters of an R`-monoid M is a complete lattice
in which infima coincide with intersections of fuzzy filters.

Let ν be a fuzzy set in an R`-monoid M . Then the intersection of all fuzzy filters of
M containing ν is called the fuzzy filter of M generated by ν, denoted by FFil(ν).

In two next theorems we give two descriptions of FFil(ν) which generalize analogous
results from [16] and [8] concerning fuzzy ideals of pseudo MV -algebras.

Theorem 3.12 Let ν be a fuzzy subset in an R`-monoid M . Put

ν∗(x) :=
∨
{α ∈ [0, 1] : x ∈ Fil(U(ν; α))} for any x ∈ M.

Then ν∗ = FFil(ν).

Proof. If β ∈ [0, 1], put βn = β− 1
n

for every n ∈ N. Let β ∈ [0, 1] be such that U(ν∗; β) 6= ∅
and let x ∈ U(ν∗; β). Then

ν∗(x) =
∨
{α ∈ [0, 1] : x ∈ Fil(U(ν; α))} ≥ β > βn,

for each n ∈ N. Thus for every n ∈ N there is γn ∈ {α ∈ [0, 1] : x ∈ Fil(U(ν; α))} such

that γn > βn. Hence x ∈ Fil(U(ν; γn)) for every n ∈ N. That means x ∈
⋂
n∈N

Fil(U(ν; γn)).

Moreover, let x ∈
⋂
n∈N

Fil(U(ν; γn)), i.e. γn ∈ {α ∈ [0, 1] : x ∈ Fil(U(ν; α))} for each

n ∈ N. Then βn < γn ≤
∨
{α ∈ [0, 1] : x ∈ Fil(U(ν; α))} = ν∗(x), for every n ∈ N. Thus

β ≤ ν∗(x), and hence x ∈ U(ν∗; β). Therefore we get U(ν∗; β) =
⋂
n∈N

(Fil(U(ν; γn)) ∈

F(M), and hence, by Theorem 3.6, ν∗ is a fuzzy filter of M .
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Let x ∈ M and let β ∈ {α ∈ [0, 1] : x ∈ U(ν; α)}. Then x ∈ U(ν; β), and thus
x ∈ Fil(U(ν; β)). Hence β ∈ {α ∈ [0, 1] : x ∈ Fil(U(ν; α))}, therefore {α ∈ [0, 1] : x ∈
U(ν; α)} ⊆ {α ∈ [0, 1] : x ∈ Fil(U(ν; α))}. From this we get

ν(x) ≤
∨
{α ∈ [0, 1] : x ∈ U(ν; α)} ≤

∨
{α ∈ [0, 1] : x ∈ Fil(U(ν; α))} = ν∗(x),

thus ν ≤ ν∗.
Now, let τ be a fuzzy filter of M containing ν. Let x ∈ M and ν∗(x) = β. Then

x ∈ U(ν∗; β) =
⋂
n∈N

Fil(U(ν; γn)), thus x ∈ Fil(U(ν; γn)) for every n ∈ N. Hence x ≥ y1 �

· · ·�yk for some y1, . . . yk ∈ U(ν; γn), and so by Lemma 3.1, ν(x) ≥ ν(y1)∧· · ·∧ν(yk) ≥ γn.
Therefore τ(x) ≥ ν(x) ≥ γn > βn = β − 1

n
for every n ∈ N, and since n ∈ N is arbitrary,

we get τ(x) ≥ β = ν∗(x), that means ν∗ ≤ τ . �

Theorem 3.13 Let ν be a fuzzy set in an R`-monoid M . Put

ν̄(x) :=
∨
{ν(a1) ∧ · · · ∧ ν(an) : a1, . . . , an ∈ M, x ≥ a1 � · · · � an},

for any x ∈ M . Then ν̄ = FFil(ν).

Proof. Obviously ν̄(1) ≥ ν̄(x) for any x ∈ M , hence ν̄ satisfies (f3).
Let x, y ∈ M and let there exist b1, . . . , bn, c1, . . . , cm ∈ M such that x ≥ b1 � · · · �

bn, x y ≥ c1 � · · · � cm. Then y ≥ x ∧ y = x� (x y) ≥ b1 � · · · � bn � c1 � · · · � cm.
Hence ν̄(y) ≥ ν(b1)∧· · ·∧ν(bn)∧ν(c1)∧· · ·∧ν(cm). Since [0, 1] is a Heyting algebra, we get
ν̄(x)∧ν̄(x y) =

∨
{ν(d1)∧· · ·∧ν(ds) : d1, . . . , ds ∈ M, x ≥ d1�· · ·�ds}∧

∨
{ν(e1)∧· · ·∧

ν(et) : x y ≥ e1�· · ·�et} =
∨
{ν(d1)∧· · ·∧ν(ds)∧ν(e1)∧· · ·∧ν(et) : x ≥ d1�· · ·�ds, x 

y ≥ e1 � · · · � et}. Hence we have ν̄(y) ≥ ν̄(x) ∧ ν̄(x  y), therefore by Theorem 3.3, ν̄
is a fuzzy filter of M . Furthermore, x ≥ x � x, thus ν̄(x) ≥ ν(x) ∧ ν(x) = ν(x) for every
x ∈ M , hence ν ≤ ν̄.

Now, let τ be a fuzzy filter of M such that ν ≤ τ . Then

ν̄(x) =
∨
{ν(a1) ∧ · · · ∧ ν(an) : a1, . . . , an ∈ M, x ≥ a1 � · · · � an}

≤ {τ(a1) ∧ · · · ∧ τ(an) : a1, . . . , an ∈ M, x ≥ a1 � · · · � an} ≤ τ(x),

by Corollary 3.9.
Therefore ν̄ ≤ τ , that means ν̄ = FFil(ν). �

4 Fuzzy prime filters of pseudo BL-algebras

Let ν be a non-constant fuzzy filter of an R`-monoid M . Then ν is called a fuzzy prime
filter of M if for any x, y ∈ M ,

ν(x ∨ y) = ν(x) ∨ ν(y).

In this section we will focus on fuzzy prime filters of pseudo BL-algebras.
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Theorem 4.1 Let M be a pseudo BL-algebra and let ν be a non-constant fuzzy filter of
M . Then the following conditions are equivalent.

(1) ν is a fuzzy prime filter of M .

(2) ∀x, y ∈ M ; ν(x ∨ y) = ν(1) =⇒ ν(x) = ν(1) or ν(y) = ν(1).

(3) ∀x, y ∈ M ; ν(x → y) = ν(1) or ν(y → x) = ν(1).

(4) ∀x, y ∈ M ; ν(x y) = ν(1) or ν(y  x) = ν(1).

Proof. (1) ⇒ (2): Let ν be a fuzzy prime filter of M, x, y ∈ M and ν(x ∨ y) = ν(1).
Then ν(x) ∨ ν(y) = ν(x ∨ y) = ν(1), hence ν(x) = ν(1) or ν(y) = ν(1). (Note that this
implication is true for an arbitrary R`-monoid.)

(2)⇒ (3): Let ν be a non-constant fuzzy filter of M satisfying (2). Since M is a pseudo
BL-algebra, (x → y) ∨ (y → x) = 1 for any x, y ∈ M , thus ν((x → y) ∨ (y → x)) = ν(1),
therefore ν(x → y) = ν(1) or ν(y → x) = ν(1) for every x, y ∈ M .

(3) ⇒ (1): Let a non-constant fuzzy filter ν of M satisfy (3). Let x, y ∈ M and
ν(x → y) = ν(1). We have

y ≥ (x ∧ y) ∨ ((x → y)� y) = ((x → y)� x) ∨ ((x → y)� y) = (x → y)� (x ∨ y),
hence

ν(y) ≥ ν((x → y)� (x ∨ y)) ≥ ν(x → y) ∧ ν(x ∨ y) = ν(1) ∧ ν(x ∨ y) = ν(x ∨ y),
thus ν(x ∨ y) = ν(y).

Moreover, ν(x ∨ y) ≥ ν(x), hence ν(x ∨ y) = ν(x) ∨ ν(y).
Analogously, ν(y → x) = ν(1) implies ν(x ∨ y) = ν(x) ∨ ν(y).
Therefore ν is a fuzzy prime filter of M .

(1)⇔ (4): Analogously. �

Let F be a proper filter of a pseudo BL-algebra M . Then F is called prime [5] if for
all x, y ∈ M, x∨ y ∈ F implies x ∈ F or y ∈ F . By [5, Proposition 4.25], a proper filter F
of M is prime iff x → y ∈ F or y → x ∈ F , for all x, y ∈ M , iff x y ∈ F or y  x ∈ F ,
for all x, y ∈ M .

Theorem 4.2 If M is a pseudo BL-algebra and F is a filter of M , then F is a prime
filter of M if and only if νF is a fuzzy prime filter of M .

Proof. Let F be a prime filter of M . Since F is a proper filter, νF is non-constant. Let
x, y ∈ M . Then (x → y) ∨ (y → x) = 1 ∈ F , thus x → y ∈ F or y → x ∈ F , hence
νF (x → y) = α = νF (1) or νF (y → x) = α = νF (1). Therefore by Theorem 4.1, νF is a
fuzzy prime filter of M .

Conversely, let νF be a fuzzy prime filter of M . Then, also by Theorem 4.1, F is a prime
filter of M . �

Theorem 4.3 If M is a pseudo BL-algebra and ν is a fuzzy filter of M , then ν is a fuzzy
prime filter if and only if Mν is a prime filter of M .
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Proof. Let ν be a fuzzy prime filter of M . If x, y ∈ M are such that x ∨ y ∈ Mν , then
ν(x) ∨ ν(y) = ν(x ∨ y) = ν(1), hence ν(x) = ν(1) or ν(y) = ν(1), therefore x ∈ Mν or
y ∈ Mν Consequently, Mν is a prime filter of M .

Conversely, let ν be a fuzzy filter of M such that the filter Mν is prime in M . (Then
ν is non-constant.) If x, y ∈ M , then (x → y) ∨ (y → x) = 1 ∈ Mν , thus x → y ∈ Mν or
y → x ∈ Mν , hence ν(x → y) = ν(1) or ν(y → x) = ν(1). That means, ν is a fuzzy prime
filter of M . �

Theorem 4.4 Let M be a pseudo BL-algebra and let ν be a non-constant fuzzy set in M .
Then ν is a fuzzy prime filter of M if and only if for every α ∈ [0, 1], if U(ν; α) 6= ∅ and
U(ν; α) 6= M , then U(ν; α) is a prime filter of M .

Proof. Let ν be a fuzzy prime filter of M . If α ∈ [0, 1] and U(ν; α) 6= ∅, then by Theorem
3.6, U(ν; α) is a filter of M . Let U(ν; α) be a proper filter of M and let x, y ∈ M . If
x ∨ y ∈ U(ν; α), then ν(x ∨ y) = ν(x) ∨ ν(y) ≥ α, hence ν(x) ≥ α or ν(y) ≥ α, and so
x ∈ U(ν; α) or y ∈ U(ν; α). That means, U(ν; α) is a prime filter of M .

Conversely, let ν be a non-constant fuzzy set in M such that for every α ∈ [0, 1], if
U(ν; α) 6= ∅, then U(ν; α) is a prime filter of M . Let x, y ∈ M and let ν(x∨y) > ν(x)∨ν(y),
i.e. ν is not a fuzzy prime filter of M . Put β = 1

2
(ν(x ∨ y) + (ν(x) ∨ ν(y))). Then

ν(x ∨ y) > β > ν(x) ∨ ν(y), thus x ∨ y ∈ U(ν; β), x /∈ U(ν; β), y /∈ U(ν; β), hence
U(ν; α) 6= ∅, but U(ν; α) is not a prime filter of M , a contradiction. Therefore ν is a fuzzy
prime filter of M . �

Theorem 4.5 Let ν be a fuzzy prime filter of a pseudo BL-algebra M and let τ be a non-
constant fuzzy filter of M such that ν ≤ τ and ν(1) = τ(1). Then τ is a fuzzy prime filter
of M .

Proof. Let x, y ∈ M . Then by Theorem 4.1, ν(x → y) = ν(1) or ν(y → x) = ν(1). If
ν(x → y) = ν(1), then τ(x → y) = τ(1). Similarly, ν(y → x) = ν(1) implies τ(y → x) =
τ(1). Hence τ is a fuzzy prime filter of M . �

Theorem 4.6 If M is a non-trivial pseudo BL-algebra, then the following conditions are
equivalent.

(1) M is linearly ordered.

(2) Every non-constant fuzzy filter of M is a fuzzy prime filter of M .

(3) Every non-constant fuzzy filter ν of M such that ν(1) = 1 is a fuzzy prime filter of
M .

(4) Fuzzy filter χ{1} is a fuzzy prime filter of M .

Proof. (1) ⇒ (2): Let M be a linearly ordered pseudo BL-algebra. Suppose that ν is a
non-constant fuzzy filter of M . If x, y ∈ M , then x ≤ y or y ≤ x, thus x → y = 1 or
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y → x = 1. Hence ν(x → y) = ν(1) or ν(y → x) = ν(1), therefore ν is a fuzzy prime filter
of M .

(2)⇒ (3), (3)⇒ (4): Obvious.
(4)⇒ (1): Let χ{1} be a fuzzy prime filter of M and let x, y ∈ M . Then χ{1}(x → y) =

χ{1}(1) = 1 or χ{1}(y → x) = 1, thus x → y ∈ {1} or y → x ∈ {1}, i.e. x → y = 1 or
y → x = 1. Therefore x ≤ y or y ≤ x. �

Theorem 4.7 Let ν be a fuzzy prime filter of a pseudo BL-algebra M and α ∈ [0, ν(1)).
Then the fuzzy set ν ∨α in M such that (ν ∨α)(x) = ν(x)∨α is a fuzzy prime filter of M .

Proof. Let ν be a fuzzy prime filter of M and α ∈ [0, ν(1)). Let x, y, z ∈ M . If z ≥ x� y
(that means x → (y → z) = 1), then by Lemma 3.1, ν(z) ≥ ν(x� y) = ν(x)∧ ν(y). Hence
(ν∨α)(z) = ν(z)∨α ≥ (ν(x)∧ν(y))∨α = (ν(x)∨α)∧ (ν(y)∨α) = (ν∨α)(x)∧ (ν∨α)(y),
therefore by Theorem 3.7, ν∨α is a fuzzy filter of M . Since ν is not constant and α < ν(1),
we have (ν ∨ α)(1) = ν(1) ∨ α = ν(1) 6= (ν ∨ α)(0), hence ν ∨ α is a non-constant fuzzy
filter of M .

Moreover, (ν ∨ α)(1) = ν(1) and ν ≤ ν ∨ α, therefore by Theorem 4.5, ν ∨ α is a fuzzy
prime filter of M . �

Theorem 4.8 Let ν be a non-constant fuzzy filter of a pseudo BL-algebra M such that
ν(1) 6= 1. Then there is a fuzzy prime filter τ of M such that ν ≤ τ .

Proof. If ν is a non-constant fuzzy filter of M , then by Theorem 3.5, Mν is a proper filter
of M . Hence by [5, Theorem 4.28], there is a prime filter F of M such that Mν ⊆ F . Since
F is a prime filter of M , χF is by Theorem 4.2, a fuzzy prime filter of M .

Denote α := sup{ν(x) : x ∈ M \ F} and suppose ν(1) 6= 1. Then α ≤ ν(1) < 1.
Therefore by Theorem 4.7, τ = χF ∨ α is a fuzzy prime filter of M satisfying ν ≤ τ . �

5 Concluding remarks

The logical foundations of processes that handle various kinds of uncertainty in information
use certain classes of algebras as algebraic semantics. Among others, the class of commuta-
tive bounded residuated lattice ordered monoids (R`-monoids) contains various classes of
algebras behind the fuzzy logic, such as MV -algebras and BL-algebras, as well as the class
of Heyting algebras, i.e. algebras of the intuitionistic logic. Hence commutative bounded
R`-monoids can be taken as an algebraic counterpart of a logic which is a generalization of
Hájek’s basic fuzzy logic and the intuitionistic logic. Bounded R`-monoids, in which the
multiplication (conjunction) need not be commutative, are generalizations of both com-
mutative R`-monoids and pseudo BL-algebras, i.e. algebras of the non-commutative basic
fuzzy logic (and consequently of pseudo MV -algebras = GMV -algebras, i.e. algebras of the
non-commutative  Lukasiewicz logic). Recall that non-commutative logics not only reflect
the human reasoning which need not be strictly commutative, but they are also used in
concurrent programming languages. The sets of provable formulas in corresponding infer-
ence systems are described by filters, and from the point of view of uncertain information,
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by fuzzy filters of algebraic semantics. Moreover, the properties of the sets of filters have
a strong influence on the structure properties of bounded R`-monoids. In the paper we
have described the fuzzy variants of filters and prime filters of bounded R`-monoids and,
particularly, of pseudo BL-algebras.

Acknowledgement The first author was supported by the Council of Czech Govern-
ment, MSM 6198959214.

References

[1] R. Balbes, P. Dwinger, Distributive Lattices, Univ. of Missouri Press, Columbia, Mis-
souri, 1974.

[2] K. Blount, C. Tsinakis, The structure of residuated lattices, Intern. J. Alg. Comp. 13
(2003) 437–461.

[3] C.C. Chang, Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88
(1958) 467–490.

[4] R.L. Cignoli, I.M.L. D’Ottaviano, D. Mundici, D. Algebraic Foundation of Many-
valued Reasoning, Kluwer Acad. Publ., Dordrecht – Boston – London, 2000.

[5] A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: Part I, Multiple-Valued
Logic 8 (2002) 673–714.

[6] A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: Part II, Multiple-
Valued Logic 8 (2002) 715–750.
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