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and all-optical effects is examined theoretically. Energy exchange between the 

orthogonal light polarizations, the cross polarization conversion, results. The 

assisting external field acts as either the effect-enhancing or functionality-

controlling parameter. Various materials such as silica glass, silicon, other bulk and 

quantum well semiconductors, organic materials, and particle-doped nanostructures 

are referred to as possible candidates for device implementations. Numerical 

estimates of achievable parameters in a selected suitable material are discussed. 
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1. Introduction 

Photonic waveguide devices utilizing optical nonlinear effects have been studied, designed and 

implemented over the last several decades. Different materials have been used such as lithium niobate, 

organic compounds, silicon or III-V semiconductors. Mainly the second-order and the third-order 

nonlinearities have been employed. Traditionally, the second-order nonlinear effect has been exploited 

in electro-optic modulators [1], or for efficient second-harmonic generation [2], whereby the lithium 

niobate material has offered one of the best operating parameters. The third-order nonlinear effect has 

been utilized, for example, for all-optical switching and bistability in bulk as well as quantum-well-

based semiconductor device structures [3], in cross-phase and self-phase modulation including four-

wave mixing devices [4], or for soliton generation in optical fibers [5]. On the other hand, in fibers, it 

contributes rather negatively to the overall performance of high-speed long-haul communication systems 

[6]. Higher-order nonlinearities rarely either need to be considered or can be exploited because of their 

very small values. One recent example of the fifth-order nonlinearity used in a CdTe-based all-optical 

switching mirror is reported in [7].  

The third-order nonlinearity is usually very weak in non-crystals such as glass, while the second-order 

effect does not exist there due to symmetry, i.e. the isotropic nature of the material. In semiconductors, 

especially in quantum-well structures and in nanoparticle-doped materials, the third-order nonlinearity is 

enhanced by many orders of magnitude. However, such enhancement is achieved at the expense of the 

required optical power due to the associated high absorption losses. These so-called resonant 

nonlinearities [8], in addition to having a very narrow range of wavelength operability, thus do not offer 

a good and practical switching-energy/switching-time/per-bit figure of merit as many past failed 

attempts to implement an efficient practical all-optical bistable switch can testify. On the other hand, the 

non-resonant nonlinearity such as, for example, the pure Kerr effect that exists even far from the band 

edge of a semiconductor and thus does not require high absorption for its utilization, is again quite weak. 

Yet and despite these obvious disadvantages, the third-order nonlinearity has remained in the focus of 

research studies because of some indisputable attractive characteristics it offers. One is that it exists in 

basically all materials of interest for photonic devices, especially silicon, organics, silica glass, III-V and 

II-VI semiconductors, as well as in recently technologically mastered nanostructures. Second is that it 

may lead to the implementation of polarization-independent devices so much sought after for many 

years. Therefore, combining the potential advantages with achievable high optical densities in 

waveguides, particularly in fibers whereby long propagation distances are obtainable, still seems very 

attractive for the development of fiber-based or fiber-compatible functional devices. Also, the modern 

nanomaterials, particularly the silicon-based ones, with their high nonlinear constants promise future 

development of efficient integrated functional photonic devices, with silicon being the best 

technologically-mastered and the most application-exploited material. 

Detailed and thorough theoretical treatments can be found in rather vast literature on light propagation 

in third-order nonlinear media, be it in semiconductors, organic materials or optical fibers. Almost 

exclusively, though, these treatments deal with an all-optical aspect of the third-order nonlinearity (AC 

Kerr effect) exploitation. It means, in essence, that the third-order nonlinear effect, generally described 

by a tensor-vector product of 
(3)

EEE , where 
(3)

 is the nonlinear susceptibility tensor and E  is the 
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electric field vector of the participating fields (e.g. optical mode, external optical control), is engaged in 

a device functionality as an intensity-dependent refractive index change of a waveguide material.  

However, the electric field terms, E , do not necessarily have to be all contributors from optical 

modes or controlling optical signals, as is the case in optical solitons, four-wave mixing or all-optical 

switching. An externally applied electric field can play a role of one or more constituting field 

contributors in this term. They can also be information-carrying signals while participating in a given 

functionality.  

The first comprehensive study of more general cases for the third-order nonlinearity in isotropic 

media with applied external DC (or slow-varying) fields (DC Kerr effect) is found in [9]. A number of 

interesting situations can occur; for example, a propagating mode having arbitrary polarization 

components. In this case, the electric field modulates the different polarization mode components and 

can cause birefringence, which is known in fibers as polarization mode dispersion. Use of external 

electric fields in poling techniques or exploitation of an internal electrostatic field in optical fibers have 

also been used in efficient second-harmonic generation [10] where values of the second-order 

nonlinearity close to that of the lithium niobate were obtained. A well-known electrically-controlled 

optical beam shutter can be implemented utilizing the electro-optic Kerr effect.  

In this paper, a different situation is investigated theoretically. The focus is on the effect of an 

external assisting electric field on the character of the third-order nonlinearity in terms of its role in 

determining the properties of propagating waves or modes, namely their longitudinal development along 

the propagating direction. The assisting external fields can, in fact, turn the third-order nonlinearity into 

a second-order-like one, as if one were dealing with an electro-optic-like effect. This is, of course, the 

quadratic electro-optic effect discovered by J. Kerr in 1875, when it was shown that a biasing DC 

electric field can induce a birefringence in optically isotropic media [11]. This birefringence is 

proportional to the square of the DC electric field.  

However, if the optical field is significantly intense, the all-optical effects start to appear as well. 

Therefore in such a case, both the quadratic electro-optic and the all-optical nonlinear effects act 

instantaneously together. Consequently, these instantaneous actions cause an interplay regime. Such a 

mutual co-existence of the two effects has not been studied systematically. Usually, one effect is 

considered dominant while the other is neglected. This proved to be a good approximation in all-optical 

switching that has been investigated quite thoroughly in recent years whereby the electro-optic Kerr 

effect plays no role. Similarly, in an optical beam shutter or electro-optic intensity modulation, the 

optical Kerr effect needs not to be included. In this study, we consider both effects as being the 

contributors to the overall functionality and thus show that this induced interplay leads to a power 

exchange between the light polarization modes as well as to other interesting situations.  

The origin of this interplay regime can be understood by realizing that coupling between the two light 

polarization modes takes place via the all-optical cross phase polarization modulation effect and via 

birefringent modulation due to the quadratic electro-optic effect. Thus intuitively, this will lead to an 

energy exchange between the light polarization modes (nonlinear polarization rotation). This energy 

exchange is of the same sort of mechanism as in two coupled waveguides where spatial modes are 

coupled in a near-waveguides structure. The energy is exchangeable once there is a phase mismatch in 

the coupled waveguides modes.  

Utilizing the nonlinear polarization rotation has been intensively studied for pulse reshaping [12]-

[13], light modulation [14], intensity discrimination [15]-[16], optical logic gating [12], and mode 

locking in fiber lasers [17]-[18]. Although the analysis during this paper is carried out for isotropic 

media, which we consider to have applicability advantages, the same approach is workable for 

birefringent crystals whereby the external field may either enhance the desired effect or act as an 

adaptive control. This, and different other configurations, may lead to novel photonic device designs. 

Some considerations are provided later of various practical material candidates. Silicon, silicon 

nanocrystals, silica glass, bulk and quantum well GaAs, bulk CdTe semiconductor, and SiO2-based 

CdTe-nanoparticle-doped, some plastics, and other materials are mentioned. It is known that the size, the 

density and the shape of nanoparticles embedded in a base material can modify molecular [19] and/or 

atomic [20] polarizability. This leads to a drastically enhanced third-order nonlinearity [21], the effect of 

which can now be controlled by an external electric field. Our investigation thus addresses another 

possible exploitation of new material nanostructuralities in novel functional photonic devices. 
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2. Theory 

The interaction of a light wave with a propagating medium can be described by solving the nonlinear 

wave equation. In this paper, where a light wave is considered to propagate in a third-order nonlinear 

medium with an applied external electric field (slow-varying compared to the optical frequency), the 

general nonlinear wave equation for polarization components produces nonlinear coupled differential 

equations. Generally, such a set of equations does not have an analytical solution. However, to approach 

this challenge yet analytically, the following approximate methodology is adopted. First, a perturbation 

approach is employed such that the coupled nonlinear differential equations are solved approximately by 

neglecting certain terms for a given special case of a small nonlinearity. Second, the obtained solution 

considered a first iteration, is then used again to find an analytical solution of the second iteration step, 

which leads to amplitude constants becoming functions. Third, the obtained solutions being considered 

local spatial quantities analytically described, are then expressed in an infinitesimal limit in order to 

arrive at the desired (second-order approximate) global solution.  

2.1 Governing equations 

Propagation of light in a nonlinear medium is described by Maxwell‟s equations for the field vectors, E  

and H , in a notoriously known form [22]: 

 

                      

0

0

( )

t

.
t

E P
H

H
E

      (1)     

The polarization, P , can be written out consisting of linear and nonlinear terms: 

 
(1) (2) (3) (1)

0 0
( )... ,

NL
P E EE EEE E P                 (2) 

 

where 
( )i

 are the linear, i 1 , and the nonlinear, .,2 3,..i ,  susceptibilities, respectively. Combining 

Eqs. (1) and (2) yields the known vector wave equation: 

 

2 2

0 02 2
,

t t

NLE P
E     (3) 

      

where 
(1)

1 )(
2

o Ln  is the material permittivity and Ln  is its linear refractive index. The double 

curl operator, , in Eq. (3) becomes the simpler Laplace operator, , in a homogeneous medium. 

In a third-order nonlinear medium, the nonlinear polarization is usually written out in the Cartesian 

coordinates using the 81 components of the fourth-ranked susceptibility tensor, 
(3)

, as [23]: 

 

0

0

( ....

) ,

NL

ijkl

P
i ixxx x x x ixxy x x y

j k lizzy z z y izzz z z z
x y z

E E E E E E

E E E E E E E E E
                           (4) 

with { , , }i x y z .  

For isotropic media such as, for example, silica glass used in optical fibers, the tensor 
(3)

 has 21 

nonzero components, of which only 3 are independent due to symmetry. One can obtain the following 

relationships [24]: 
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yyzz zzyy zzxx xxzz xxyy yyxx

yzyz zyzy zxzx xzxz xyxy yxyx

yzzy zyyz zxxz xzzx xyyx yxxy

xxxx xxyy xyxy xyyx

yyyy xxzz xzxz xzzx

zzzz yyzz yzyz yzzy

xxxx yyyy zzzz

                     (5) 

 

Using Eq. (5) in Eq. (4), the nonlinear polarization can be simplified into: 

 

            

2 2 2

0

2 2 2

0

2 2 2

0

( )

( )

( ),

NL

NL

NL

x x x y z

y y x y z

z x y z

P E E E E

P E E E E

P E E E E
z

                     (6) 

where 
xxxx

. The vector wave equation (3) can be simplified into a scalar wave equation under 

certain assumptions, for example, a TE mode propagation in a planar waveguide or a linearly-polarized 

mode traveling in a fiber. The latter is a well-studied subject whereby the scalar polarization is written as 

NL
L

2 02 Z
P E E E I

n
, where I  is the light intensity and 

0
Z  is the free space impedance. This thus 

indicates an intensity-dependent field via the intensity-dependent refractive index, n , that is 

L NL
n n n I , where 

NL
n  is the known nonlinear refractive index coefficient for a given material. The 

scalar approximation leads then to the nonlinear wave equation. It can be solved approximately for some 

situations, the most known being the spatial soliton in optical fibers [25]. For this approximate case 

specifically, it is incorrectly called in literature the nonlinear Schrödinger equation due to its similar 

form. However, Schrödinger himself did not derive any nonlinear equation. In 1925 he formulated a 

linear motion equation for a free particle [26].    

The third-order nonlinearity term, generally written as 
(3)

0NL
P EEE , does not necessarily have to 

be considered only as a refractive index change with intensity of light. An externally applied electric 

field can play a role of one or more constituting field contributors, E , in this term. This can lead to 

different situations yielding various interesting effects. 

2.2 Propagation expressions 

Let us assume a linearly polarized mode at an angular optical frequency , propagating along the z-

axis, and having generally all field components, ,x yE E  and zE : 

   
1 1

2 2, , , ,

*
x y z x y z x,y,z

*
E e e           (7) 

where 
( )j t k z

e , *  means complex conjugate, /
L

k n c  is the propagation constant, and c  is 

the speed of light in vacuum. An external electric field, 
1

2
extE , is applied parallel to the x axis. The 

induced nonlinear polarization, using Eq. (6), is then given by: 
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0

0

1 1 1 12 3 2 2 2 2
[ ( ) (
8 4 2 4

1 3 1 1 1* 2 2 * 32
) ]

8 8 2 4 8

1 1 12 3 2 2
[ (

, , , ,8 4 4

1 1 1* 2 2 * *
) ( ) ],

, ,8 8 4

NL

NL

x x x ext x

x x ext x x ext ext ext

y z y z y z x ext y z

y z ext y z x y,z x ext

P E

E E E E

P E

E E
y,z

e e e e e e

e e e e e e

e e e e e e

e e e e e e e

                          (8) 

where 
2 2 2 2

x y z
e e e e  and 

* * *2

x x y y z z
e e e e e e e . The complex conjugate terms are omitted 

in Eq. (8) for simplicity but have been taken into account in derivations. 

    The nonlinear polarization can be considered a source of new fields at frequencies 2 3, , . In a 

dispersive medium, which is usually the case, the terms at harmonic frequencies, 2 3,  suffer from 

the phase mismatch unless some of the known techniques for phase matching is employed. This can 

include periodic perturbation of the dielectric constant or the boundary, or periodic modulation of the 

nonlinear properties of the waveguide material. In this work, we are interested only in the fundamental 

frequency terms at , and thus the harmonic terms as well as the dc terms are omitted in the further 

analysis. The non-zero components of the nonlinear polarization at  thus are: 

 

0 0

0

0

1 1 3 3* 2 22 2
( ) [
4 8 8 8

* *
1 1 3* * 2

(1 ) (1 ) ]
* *8 8 8

1 1 1* 2 22
( )

, , ,4 8 8

*
3 1 *2

[ (1 )
, , *8 8

,

1

,8

NL

NL

x x x x ext x

x y x z
x y y x z z x ext

x y x z

y z y z y,z y z ext

y,z x

y z y z x x
y z x

y z

P E

E

P E

e e e e e e e

e e e e
e e e e e e e

e e e e

e e e e e

e e
e e e e e

e e

e e

*
1,* 2

(1 ) ]
, ,* 8

,

.
y,z z y

z y z,y y z ext
y z z,y

E
e e

e e
e e

  (9)   

 

The source functions in Eq. (9) enter the nonlinear equation in Eq. (3). For weak nonlinearity, this 

wave equation can be solved employing the slow-varying-envelope approximation. In that case, all field 

component complex amplitudes are assumed to be functions of the longitudinal coordinate, i.e ( )
x

ze , 

( )
y

ze , and ( )
z

ze . The spatial dependence on transversal coordinates, ,x y , is omitted for simplicity 

and because it is not relevant in the analysis. For small nonlinearity, the longitudinal variations of the 

mutual power coupling factors in Eq. (9) can also be neglected; therefore, one can set approximately: 

         

* * **
,

* * * *
, ,

1.
x y y,z x y,z z yx z

x y x z y z x y z z,y

e e e e e ee e

e e e e e e e e
                                   (10) 

This drastically simplifies the otherwise coupled differential equations, yielding a practical assumption 

that all mode components satisfy the wave equation individually, and leads to the final source field 

expressions in the form: 
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0

0

3 22
( )

8

3 1 22
( )

, ,8 3
.

NL

NL

x ext x

y z ext y z

P E

P E

e e

e e

                                           (11) 

The first term in all polarization components in Eq. (11) represents typical nonlinear phenomena that 

exist without the external electric field. It corresponds to self-phase modulation of each individual field 

component, i.e. 
*

)(
x x x

e e e , 
*

)(
y y y

e e e , and 
*

)(
z z z

e e e , as well as to cross-phase polarization 

modulation amongst the three polarization components, i.e. 
* *

)(
x y y z z

e e e e e , 
* *

)(
y x x z z

e e e e e , and 

* *
)(

z x x y y
e e e e e . The second term describes an external-field-controlled propagating field. 

2.3 Field solutions 

The slow-varying-envelope approximation applied to Eq. (3) whereby the second derivatives are 

neglected, the transversal field variations are omitted, and a harmonic field is assumed, yields a well 

know first-order differential equation: 

 

                      
2

' k
j

z
.

NL

E
E P                                                (12) 

 

Substituting the source functions in Eq. (11) into Eq. (12) yields first-order differential equations for 

the envelopes of all three mode components: 

   

              

2

2

'
3 22

( )
8

'
3 1 22

( )
8 3,

( )

( )

( )
.

( )

L

L

x
ext

x n

y,z

ext
y z n

z k
j E

z

z k
j E

z

e
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e

e

                                            (13) 

 

These equations integrate to yield the required approximate solutions in the form: 

 

      
1

3

2

2

( )

( )

,
, ,

(0)

(0)

0 L NL EXT

0 L NL EXT

ext

ext

j k n n n zj t

x x

j k n n n z
j t

y z y z

I E
E e e

I E

E e e

e

e

                       (14) 

 

where 
00 0

k Z , and (0)
x

e  and 
,

(0)
y z

e  are the field‟s initial amplitudes.  

The all-optical effects (self-phase and cross-phase polarization modulation) are represented by the 

second term in the exponent in Eq. (14). It is identical to the known relationship [5], namely: 

                        
2

3 2

24

.0 L

NL
0

L

n
nZ

Zn
I e                                              (15) 

 

The induced external-electric-field-controlled refractive index change is described by the third term in 

the exponent in Eq. (14), 
2

EXT ext
n E , with: 
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3

8 2
,L

EXT NL
L 0

n
n

n
n Z

                                                 (16) 

where 
EXT

n  is called in this paper the nonlinear electrical refractive index coefficient to distinguish it 

from 
NL

n . It is simply related to the Kerr constant, K , for a DC Kerr effect via 
2

EXT
0

n K
k

. Eq. (16) 

establishes a simple practical relationship between the known parameter 
NL

n , the nonlinear optical 

refractive index coefficient, which is tabulated for many materials used in photonic structures and 

devices, and the new parameter 
EXT

n , the nonlinear electrical refractive index coefficient, which 

determines the strength of the external-electric-field-assisted effect.  

For the external-electric-field-assisted effect, one can write from Eqs. (14)-(16) the refractive index 

change as: 

2 2 23

28

.
EXT

0
NL

L

L

ext ext ext

n

Zn
n n E E n E                                  (17) 

Using Eq. (17), one can express the propagation length L required for a phase shift in the form: 

                             
2

,0

L NL

0

ext

Z

n n E
L                                                          (18) 

where 
2

0
0 k

 is the wavelength of light. 

It can be seen from Eqs. (14) and (17) that the refractive index change is quadratic with the applied 

external electric field. The effect affects all mode vector components while it is a factor of three stronger 

for the component parallel to the external field. It thus causes propagation mode phase changes that are 

different for different polarization components meaning an induced, and controlled, mode birefringence. 

The strength of this third-order-nonlinearity electro-optic effect is identical to the all-optical effect in 

that it produces the same refractive index change when the external electric field is the same as the 

electric field vector of the optical mode. Therefore, in the case when the optical power in a propagating 

mode is constant, the external-electric-field-assisted effect is the determining feature. On the other hand, 

assuming a reasonably practical condition that 
2 2

, ,ext x y zE e , which corresponds to approximately 

1- mW  of optical power in a 
2

10 - m  cross-section waveguide and about extE 1V/ m , one can 

neglect the all-optical effects and thus make the external electric field the dominating control parameter. 

One word of caution is in order when considering Eqs. (15) and (16). The third-order nonlinearity 

described phenomenologically by the susceptibility  χ  represents a complex combination of different, 

sometimes independent, often quantum physical effects at an atomic level. This is a very complicated 

theoretical problem of physics of materials. It is certainly beyond the scope of this paper to attempt to 

explain it properly and rigorously. Some aspects are not even well understood today, especially in 

relation to new engineered nanomaterials. The susceptibility is generally dispersive whereby appreciable 

nonlinear dispersion and large absorption exist close to resonances (e.g. bandedge, excitons, multiphoton 

absorption). Extremes would be the resonant nonlinearity at an optical frequency and a DC electro-optic 

Kerr effect. The values of the nonlinear constants, 
NL

n  and 
EXT

n  in Eqs. (15) - (17), respectively, would 

be quite different.  

Therefore, the application of the simplified expressions in Eqs. (15) and (16) needs to be exercised 

carefully by first considering an actual situation being investigated. For example, for the case of a non-

resonant nonlinearity at an optical frequency far from any absorption line, the susceptibility can be 

assumed dispersionless. This can be shown quantitatively by the classical anharmonic model. The actual 

value of the nonlinearity 
NL

n  is then basically equal to the known Kerr constant of a given material and 

Eq.(16) is valid; it is well known that the pure electro-optic Kerr effect is a quasi-static limit of the 
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optical nonlinearity.           

For cubic crystalline materials such as, for example, cadmium tellurite (CdTe, space group Fm3m), 

gallium arsenide, indium phosphide or silicon (GaAs, InP, Si, space group F-43m), the tensor 
(3)

 has 

21 nonzero components, of which only 4 are independent. Relationships similar to those in Eq. (5) can 

be derived as follows [24]: 

  

yyzz zzyy zzxx xxzz xxyy yyxx

yzyz zyzy zxzx xzxz xyxy yxyx

yzzy zyyz zxxz xzzx xyyx yxxy

xxxx yyyy zzzz

                    (19) 

 

Combining Eqs. (4) and (19) yields the nonlinear polarization components: 

 

2 2 2

0

2 2 2

0

2 2 2

0

[ ( )]

[( ( )]

[( ( )],

NL

NL

NL

x x x y z

y y x y z

z x y z

P E E E E

P E E E E

P E E E E
z

    (20) 

where 
xxxx

 and  ( ) /
xxyy xyxy xyyx xxxx

. 

Following the same procedure as above, one can arrive at similar expressions for the source 

(polarization) fields: 

    
0

[
0

23 2 2 2
[ ( ) ]

8

23 12 2 2
( ) ]

, ,8 3
.

NL

NL

x ext x

y z ext y z

P Ex y z

P Ex y z

e e e e

e e e e

      (21) 

 

It can be seen that the effects of self-phase modulation (proportional to 
2

xe ) and the cross-phase 

polarization modulation (proportional to 
2 2

( )y ze e ) are separated and modified in their strengths 

as a result of two effective susceptibility coefficients ( and ) governing the interaction. The field 

solutions are basically identical to those in Eq. (14) except that the light intensity is modified due to the 

difference between the self-phase and cross-phase modulation terms. It assumes the form: 

                  
22 2

[ ( )]
2

.L

0

n
x y zZ

I e e e                                                (22) 

However, the actual interaction coefficient, 
NL

n , remains the same, and so as the external-electric-field-

assisted effect (
EXT

n ). It is interesting to note that the dispersive properties of  χ with respect to optical 

versus electrical fields‟ values, as discussed above, might be properly accounted for in a similar manner 

as in this case where  χ  and  φ.χ  appear in the equations together. 

2.4 Power exchange expressions 

Assuming the equalities in Eq. (10) simplifies considerably the solution to the nonlinear wave equation. 

However, it introduces an error since the coupling between the polarization components described by 

these terms has been neglected. To take this coupling into account and correct the error, at least partially 
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since the full solution is not analytically possible, one can evaluate the terms in Eq. (10) employing the 

solutions from the first iteration in Eq. (14), with assuming the amplitudes to be functions of distance 

(perturbation approach). Solving the differential equation in Eq. (12) again then yields the second 

iteration.  

Analyzing only the x  component and with coupling only to/from the y  component of the mode for 

simplicity and without losing the generality of the solution, one writes: 

   

0 0

1 1 3 3 2* 2 22
( ) [
4 8 8 8

*
2 23 1 3 2

(1 ) ]
*8 8 8

,

NLx x x x ext x

x y

x x x ext
x y

P E x

Ey y

e e e e e e e

e e
e e e e e

e e

   (23)   

where the common phase factor  has been omitted for simplicity as well. 

Substituting the source function in Eq. (23) into Eq. (12) yields the first-order differential equation for 

the envelope similar to the one in Eq. (13): 

 

*' 2 23 12 2
[ ( 1)]

*8 3
.0

L

x yx
x y yextnx x y

k
j E

e ee
e e e

e e e
       (24) 

Using the solutions from the first iteration, one can evaluate the coupling term in Eq. (24) as: 

                 

*

1 1 2 ( ),
*

j 2 z j zx y
j

x y

e e sin z
e e

e e
                                       

(25) 

where 
21

4

0

L
extn

k
E . Integrating Eq. (24) with respect to z  yields: 

             

3 22 2
( )

8

2 2
( ) ,

3

{

}

0

L
x ext

n

j z
j dz

k
j E dzx y

sin zy

ln

e

e e e

e

                   (26) 

 

The integration in Eq. (26) cannot be performed analytically in this form because the magnitudes of light 

polarization modes, ,x ye , are functions of the distance z . To obtain a solution to Eq. (26), one can 

divide the whole process into a series of local processes where in each single local process, the light 

waves magnitudes, ,x ye , are z independent. This kind of partition of the whole process is valid as 

long as a change in z  is small enough so the interaction strength can be considered constant for the 

amplitude changes (not the phase changes, of course). The interaction strength depends on the non-

linearity, , the external electric field, extE , and the initial light polarization magnitudes. One can thus 

assume that the light propagation magnitudes, ,x ye , are z independent. Then the solution to Eq. (26) 

for each local process leads to a local coupled-field solution whereby evaluating the integral in Eq. (26) 

for constant light magnitudes is possible. Choosing the integration constant to be equal to 
1

4
 in order to 

satisfy a physical condition that the optical field does not grow towards infinity when the external 

electric field approaches zero, leads to: 

            

.
2

23 2 2
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21 1
[ ( )]

3 2

{

1 }
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e e e
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                                  (27) 
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As can be seen from the local field solution in Eq. (27) above, the new factor, the last term, 

contributes not only a phase but also an amplitude change of the mode component, with both new 

contributions being determined by the power in the other, coupled mode component, in addition to the 

external electric-field dependence. In order to separate both the phase and amplitude terms, one can 

write the coupling term in the form: 

 

         

1 1
( 1) [ ( ) 1 ( )]

2 2

1
[ ( ) 1] ( ).

2

j 2 z
2 j 2

2 j 2

z z

z z z

e cos sin

cos sinc

             (28) 

The new phase and the new amplitude of the field can thus be expressed as: 
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j Ex y y

n

k
y

n
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x
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2

e

e

e e e

e

e
           (29) 

It can be seen from Eq. (29) that the new term in the phase containing the sinc function disappears when 

2
0

ext
E  (i.e. 0 ), thus leaving in only the self-phase and cross-phase polarization modulation 

terms, as expected. Also, the new amplitude term assumes a value of unity, as it is supposed to under the 

same condition of zero external electric field.  

   The same procedure can be applied to derive expressions for the other orthogonal components. As 

there is no fundamental qualitative difference between them, one can write, for example, for the 

y component:  

       

3 1 12 22 2
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e

e

e e e

e

e
         (30) 

Equations (29) and (30) clearly indicate local exchange of power between both mode polarization 

components. It is thus interesting to examine that effect in more detail. The local mode fields in Eqs. 

(29) and (30) are normalized to unity; for a more general case, we introduce normalized power density 

quantities for both components, xp  and yp , such that Tx yp p p , where 
2

[ ]/
T

p mW m  is the 

total (constant) power in the wave per cross-sectional area. We also define the term with the superscript 

“i” as the one associated with the i-th local process, i.e. , ,
i

x y x yp p (at the i-th process). The local 

power densities can then be expressed as: 

       

2

2

2

2

1

1

1
( )

2

1
( )

2

1

2

1

2

[ 2 ]

2

[ 2 ]
2

.

L

0

L

0

i i

i i

Eext

Eext

y

x

x x

y y

cos z

n

Z

cos z

n

Z

i

x

i

y

i
p p e

i
p p e

e

e

e

e

                        (31) 

 

Substituting for 
2

xe  and 
2

ye  in the exponents of Eq. (31) using powers xp  and yp  again, one can 

obtain two local coupled power equations: 
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1

1
,

i i

i i

x x

y y

i
f py

i
f px

p p e

p p e

                                                    (32) 

where: 

                
2

[1 ( )]( , ) 2 .
L

0
ext

ext

Z
zf E cos z

n E
                         (33) 

The series of these dynamic interplays between the coupled local processes constitutes the whole 

interaction that can be seen as a continuous chain of local interactions, whereby the output of each single 

local interaction is the input to the next one, and so on. Obtaining an analytical expression that describes 

these dynamic processes in a global manner is thus necessary to characterize the overall process 

behavior. As a first step to globalize the solution, one can rewrite the local coupled equation in Eq. (32) 

as difference local coupled equations:  

                                 

1

1
(

( 1)

1),

i i i

i i i

x x x

y y y

i
f py

i
f px

p p p e

p p p e

                     (34) 

The difference in two successive local power density values, 
1

, ,
i i

p p
x y x y

, is very small for a very 

small value of ( )
,

f p
i
x y

. In the infinitezimal limit one can write ( ) ( )
, ,

f p f p
i

d
x y x y

 and thus 

justify the approximation 
1

( )
, , ,

i i
p p d p

x y x y x y
. The following differential equations then replace 

the difference ones in  (34):  

 

                                 

(

(

) ( )

) ( ).

x x y

y y x

d p p d f p

d p p d f p
        (35)                  

Integrating the two coupled equations in (35) and denoting 
0

xp  and 
0

yp  as initial values of xp  and 

yp , respectively, yields the following global coupled power expressions:  

                           

.

0

0

x x

y y

f y

f x

p

p

p p e

p p e

                                       (36) 

Applying the condition of constant total power (assuming constant wave‟s transverse cross section, e.g. a 

guided mode), Tx yp p p , in Eq. (36) allows one to find the decoupled global analytical expressions 

for both power quantities in the form: 

 

                      

1
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1
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N N
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T

T

x x y

y y x

f p
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f

p ln p e p
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p ln p e p

                                      (37) 

where /N

T

0

x xp p p  and /N

T

0

y yp p p  are the normalized power densities, which basically 

determine the initial power percentage distribution between the mode components. The power densities 

in Eq. (37) can also be expressed in a completely uncoupled form:  
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The periodic exchange of the power between the two wave polarization components (cross 

polarization conversion) is obvious in Eq. (38) above. It is, as expected, controlled by the strength of the 

third-order nonlinear susceptibility, by the applied external electric field, and by the power in the 

respective mode components. These three parameters combined with the interaction length dictate the 

overall achievable effect.  

The analysis of the behavior of the solutions in Eq. (38) by examining the total differential of, for 

example, [ ]( )
( )

ext
ext

p f fxdp d E dz
x zEf

, shows that the minima in f  in Eq. (33) correspond 

to the minima of xp , while the maxima of f  determine xp  maxima with the first one being the 

largest. An interplay between the external electric field, extE , and the distance, z , then produces an 

optimal condition for the maximum power exchange between the mode components, although there is no 

absolute maximum. The power density maximum condition dictated by the distance comes from the 

condition that (2 ) 0sin z . The maximum dictated by the external field is determined from the 

condition that (2 ) (2 ) cos (2 ) 1 0z sin z z . For the first (largest) maximum, these 

conditions yield a hyperbola in 3-D for ( , )
ext

zf E , described by the two equations in the extz E  

coordinate system: 

             0

2 2

2
, .L

L ext ext

Z n
f z

n E E
                                                  (39) 

 

Examination of the behavior shows that the interplay between the external electric field and the 

propagation distance determines the maximum of the power exchange. The total optical power in the 

mode then determines the value of this maximum. It should be noted that, contra-intuitively, decreasing 

of the external field causes an increase in the maximum value of the power exchange; however, at the 

cost of a longer propagation distance required. This is a direct consequence of the fact that the f  

function does not have a global maximum, except at infinity (i.e. for z  or 0extE ), and behaves 

as a 3-D hyperbola according to Eq. (39).  

On the other hand, for a given extE , or alternatively for a given z , a maximum of the power 

exchange can always be found, while the stronger the nonlinearity , the shorter the distance is required 

for the same power exchange and the same external field. The value of the power exchange maximum 

increases more less linearly with the total power in the mode. For example, for 
2

1 /
T

p mW m , 

1 /extE V m , 
2 2

0.12 /m V , and an equal initial distribution of the power between the mode 

components, the maximum achievable power exchange is over 10 %. 

3. Numerical considerations 

Since it is not an objective of this paper to conduct a comprehensive devices design based on the 

theoretical treatment presented, no specific design examples for different materials and/or structures are 

provided here. However, numerical estimates of the cross-polarized conversion effect (CPC) are 

presented. They indicate promising features for novel photonic devices. The most attractive feature, in 

addition to the already-mentioned advantage that the third-order effect exists in all materials suitable for 

implementation of photonic devices, especially silicon and silicon-based nanomaterials, is that either 

novel electro-optic or electrically/optically controlled optical/electrical devices might be envisioned and 

eventually designed [33, 34]. For example, an electronically controlled all-optical switch is feasible that 

would function as a re-configurable all-optical device. Alternatively, an optically controlled electro-optic 
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device can be designed, the functionality of which is, for example, an optically stored information- 

bearing electrical signal [35].    

Generally, it should be pointed out that the third-order susceptibilities have normally real and 

imaginary parts, 
ijkl

Re
 and 

ijkl

Im
, corresponding to the phase and loss effects, respectively. They are 

coupled via Kramers-Kronig relation. Both contributions should be considered in numerical estimates; 

however, the values of 
ijkl

Im
 are not usually readily available or are not even known. Thus the nonlinear 

loss is often not considered and only the phase effects are included in estimates or device designs.  

Most materials of application interest and importance can be found in literature with their third-order 

nonlinearities cited or reported. For the above-mentioned reasons, the numerical calculations are, indeed, 

estimates as some values for given materials differ in literature as a result of various experimental 

methods used to evaluate them. It is known that several physical effects contribute to a material response 

on different time scales [27], which fact then causes the actual experimental values to vary, in addition to 

their wavelength dependence. Therefore, in the calculations, simulations or device designs, since the 

nonlinear susceptibilities are not unique quantities, rather some effective values that are available need to 

be used. Typical materials with known third-order susceptibilities potentially useful for photonic device 

design employing the external-electric-field-assisted effect theoretically investigated here, may include 

silicon, silica glass [5], GaAs bulk [6], CdTe bulk [7], GaAs quantum wells [8], CdTe nanocrystal [28], 

CdS nanocrystal [29], Si nanocrystal [30], poly ( -pinene) [31], fullerene-containing polyurethane films 

[32], and others. 

Choosing an Si nanocrystal for its relatively strong nonlinearity, the optical power percentage in the x-

component as a function of the distance is shown in figure 1 for different external electric field strengths. 

The total optical power and the initial power percentage are constant, that is 
2

0.11 [ ]/W m  and 9% , 

respectively.   

The external electric field is the determining parameter of the CPC in this case. The strengths of the 

external field are 
(1)

0.8 / ,extE V m
(2)

2 / ,extE V m and 
(3)

3 /extE V m , respectively. 

It can be seen from figure 1, as mentioned before, that decreasing the external field causes an increase in 

the maximum value of CPC. 
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Fig. 1. The power percentage in the x-component versus distance. Constant total power and initial power 

percentage. The external electric fields are 
(1) (2) (3)ext ext ext

E E E . 
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In figure 2, a normalized optical power percentage of the x-component as a function of distance is 

shown for different initial percentages while keeping the external field and the total power constant. The 

external electric field is 2 /V m  and the total optical power is 
2

0.101 [ / ]W m . The initial power 

percentage in the x component is the determining parameter of the CPC in this case. The values are 

%(1)
0.001,

I
P

%(2)
0.5,

I
P

%(3)
0.9,

I
P

%(4)
0.99

I
P .  

As it can be seen from figure 2, the initial power percentage plays a role in determining the range of 

the CPC, i.e. the depth of the power exchange. The smaller the initial power percentage in the 

component parallel with the direction of the external field, the stronger the CPC becomes.   

In figure 3, the optical power percentage in the x-component is shown as a function of distance for 

different total launched optical powers, 
T

P , while keeping the external field and the initial power 

percentage constant. The external electric field is 2 /V m , and the initial power percentage in the 

x component is 0.2 . The total launched optical power is the determining parameter of the CPC in this 

case with its values taken as 
2 2

(1) (2)
0.448 / , 0.011 / ,

T T
P mW m P W m

2 2

(3) (4)
0.101 / , 1.01 /

T T
P W m P W m . 

As it can be seen from figure 3, the strength of the CPC is a function of the optical power. This 

feature promises electrically reconfigurable all-optical device functionality [34]. 
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Fig. 2 The power percentage in the x-component versus distance. Constant external field and total optical 

power. The initial power percentages are 
% % %%(1) (2) (3) (4)I I I I

P P P P .   
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Fig. 3. The power percentage in the x-component versus distance. Constant external field and initial power 

percentage. The total launched optical powers are 
(1) (2) (3) (4)T T T T

P P P P .   
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4. Summary 

The presented simulated results in figures 1, 2 and 3, based on the theoretical treatment described in the 

previous sections and based on real-life material considerations, reveal a potential for functional 

photonic devices implementable and intergattable with simple structures in known well-mastered 

materials. An electro-optic control combined with an adaptive all-optical functionality are definitely 

attractive features.  

5. Conclusions 

The detailed theoretical treatment has been developed and a thorough analysis has been performed of 

optical wave propagation phase and amplitude changes due to an external electric field applied in a 

third-order nonlinear optical material. One of the most interesting observed features is the consequence 

of the all-optical and the quadratic electro-optic effects interplay. This interplay can cause the cross-

polarized conversion (CPC) that can be electrically and optically controlled. The discussed features and 

properties of optical waves (or modes) under these conditions indicate a future potential some materials 

possess for functional integrated photonic devices as presented in [33]. The results obtained offer an 

application view at some interesting and promising characteristics. Numerical estimate considerations 

were briefly discussed. 
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