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LINEARIZACE POLYNOMIÁLNÍCH MATICOVÝCH NEROVNOSTÍ 

Abstract 
This paper proposes a linearization approach for the study of solutions of Polynomial Matrix 

Inequalities (PMIs). The Polynomial Matrix Inequality is transformed into a set of linear inequalities 
with compatibility conditions by using a Carleman-like linearization. An insight into these 
compatibility conditions is proposed by representing them in a logarithmic space, in which they are 
also linear. The existence of solutions is then reduced to the identification of the range space of a 
linear operator. Geometrically, the problem can be interpreted as the intersection of a curvilinear cone 
and some linear hyperplanes.  

Abstrakt 
Příspěvek popisuje linearizační přístup pro studium řešení polynomiálních maticových 

nerovností. Polynomiální maticová nerovnost je převedena na soustavu lineárních nerovností 
s podmínkami kompatibility použitím linearizace podobné Carlemanově linearizaci. Díky vyjádření 
podmínek kompatibility v logaritmickém prostoru, je možno na ně pohlížet jako na lineární 
podmínky. Existence řešení je potom omezena na identifikaci rozsahu prostoru lineárních operátorů. 
Problém může být interpretován geometricky jako průnik mezi zakřiveným kuželem a lineární 
nadrovinou. 

 

 1 INTRODUCTION 
The study of Linear and Polynomial Matrix Inequalities is an important problem of actual 

interest within the control community. This interest was generated from the realization that many 
control problems can be rewritten in terms of them. Over the last decade, there have been many 
advances in the study of Linear Matrix Inequalities (LMIs), being the book by Boyd, et.al. [1] one of 
the most cited monographs. This has allowed their application in different control problems, which 
are commonly rewritten as convex optimization problems with LMI constraints. Some of the control 
problems include the stability study of Lotka-Volterra systems with delays [4] and the design of H∞ 
controllers [3] among many. Despite the wide range of applications of LMIs, many control problems 
are actually written in terms of Polynomial Matrix Inequalities, e.g. in the case of Bilinear Matrix 
Inequalities (BMIs), in [5] it was shown that core problems in robust control could be formulated not 
as linear but rather as BMIs. However, the study of general PMIs is more complicated than the study 
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of LMIs, as their feasible set usually lacks convexity and the problems involve more decision 
variables and dimensions, which means that the computation of solutions is not straightforward. This 
opened a lot of actual interest and research possibilities under this subject as there is still a long way 
to go to reach the research level achieved on the study of LMIs and there seems to be no existing 
texts covering BMIs and PMIs. The research possibilities are many. One can study their geometry, 
feasibility, the possibility of transforming them to LMI problems, the development of algorithms 
which solve non-convex optimization problems, the representation of control problems into 
optimization problems with BMI or PMI constraints, etc.  

 

In this paper, a linearization of the PMI problem is proposed to obtain a set of linear 
inequalities with linear compatibility conditions. The compatibility conditions are represented in the 
logarithmic space, in which they are linear. The existence of solutions reduces to the identification of 
the range space of a linear operator which can be interpreted geometrically as the intersection of some 
linear hyperplanes with a curvilinear cone. The purpose of the paper is not to give a new algorithm to 
solve PMI problems but to study the problem using a linearization approach. The paper is organized 
as follows. Section 2 presents the reduction of the Polynomial Matrix Inequality problem to a set of 
linear inequalities with compatibility conditions, Section 3 proposes a logarithmic representation of 
the compatibility conditions to linearize completely the PMI.  Section 4 presents a simple example 
and finally Section 5 presents some conclusions.  

 

 2 LINEARIZATION OF POLYNOMIAL MATRIX INEQUALITIES 
In this section, consider PMIs in the form 
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where the symmetric matrices Fi,…,Fm ∈ Rl×l and βi,…,βm are m  polynomials in n variables of order 
≤ N⋅n. Eq. (1) can be written in the equivalent form. 
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where A is an l×l  matrix with polynomial elements of order at most N⋅n . The (i,j)th  element of A can 
be written in the form 
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or in the vector notation, 
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where k=(k1,…,kn), N=(N,…,N), x=(x1,…,xn). By Sylvester's criterion, the condition for positivity in 
(2) is simply that 
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i.e. using the standard determinant equation 
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where Sμ is the symmetry group on μ symbols and sgnσμ is the sign of the permutation σμ. 
Substituting (4) into (6) gives a set of l  inequalities of the form 
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By using a Carleman-like linearization technique, the next new variables are defined, 
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then, the polynomial inequalities (7) become  l  linear inequalities in y-space: 
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In this case, the y-space is ((L+1)n -1)-dimensional. Each inequality defines a half-space in y-
space; these l  linear inequalities have a solution when these half-spaces have non-empty intersection. 
Of course, any such solution is a solution of (7) if and only if its components are of the form (9). 

 

 3 LOGARITHMIC REPRESENTATION OF THE COMPATIBILITY 
CONDITIONS  
Consider the reduced problem of the PMI (1) consisting of the l  linear inequalities in y-space 

(10) with the variables (9).  

Remark 3.1. The y-space is of dimension ((L+1)n -1), obtained when ⏐v⏐≠0. Note that the 
cases when ⏐v⏐=0, e.g. the affine case, the variable y0…0, is not included in the compatibility 
conditions.  

Suppose that yv satisfies (9).  To obtain linear compatibility conditions, the logarithmic of the 
variables (9) is obtained, therefore, 
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with m=((L+1)n-1). Define the new set of variables  
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where zn ∈ Rn . Therefore, the linear equation 

 η=Αz     (14) 
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therefore, A ∈ Rm×n, z ∈ Rn and η ∈ Rm where m=((L+1)n-1). 

Remark 3.2. Note that for each particular PMI problem, the dimensions of the linear equation 
(14) can be reduced by only including the variables (9) that are occurring in the problem. However, in 
this paper, all variables are included for simplicity of notation 

To obtain a solution of the system (14), the generalized inverse of A is used. Note that in 
general and by Remark 3.2, the matrix A is not square. From linear algebra [2], the generalized 
inverse of a matrix A is defined as: 

     (16) TT AAAA 1)( −+ =

and the solution of system (14) is 
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The original PMI problem (1) has now been reduced to the linear problem of finding solutions to the 
l  linear inequalities in y-space  
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such that their logarithm belongs to the range space of the linear operator AA+.  

Remark 3.3. Note that negative solutions of the problem (1) can be found by shifting the 
variables yv by an appropriate constant before taking the logarithms.  

Geometrically, the problem can be interpreted as the intersection of a curvilinear cone 
obtained from the compatibility conditions and some linear hyperplanes obtained from the linear set 
of inequalities.  

 

 4 EXAMPLE 
Consider the following BMI, 
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which can be transformed to the following set of linear inequalities 
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to obtain the compatibility conditions, variables z are introduced: z1=ln x1 and z2=ln x2, and the 
logarithm of (21) is obtained, therefore the following linear equation is obtained,  

 η=Αz     (22) 

with  
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by using  , the generalized inverse of A is calculated, as well as the operator AATT AAAA 1)( −+ = +, in 
this case,  
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The column space of (24) is spanned by the vectors [v1 v2], 
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Asη must belong to the range space of (24), one possible solution is obtained by taking η=v1+5v2. 

The corresponding y’s are obtained from exp(η), in this case, 
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is easy to check that the obtained y’s satisfy the linear inequalities (20). Therefore, one possible 
solution of the BMI (19) is  

  01.518  and  833.2 1271 ==== yxyx     (27) 

 

 5 CONCLUSIONS 
In this paper, the problem of solving Polynomial Matrix Inequalities was addressed by using a 

linearization approach. First, the original problem was transformed to the problem of solving a set of 
linear inequalities with nonlinear compatibility conditions by using a Carleman-like linearization. 
Then, linear compatibility conditions were found by introducing new variables and obtaining the 
logarithm of the original compatibility conditions.  The original problem was then reduced to the 
problem of solving a set of linear inequalities together with linear compatibility conditions.  It was 
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shown that the problem is actually reduced to finding solutions of the linear inequalities that belong 
to the range of a linear operator obtained from the compatibility conditions.  
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