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LINEARIZATION OF POLYNOMIAL MATRIX INEQUALITIES

LINEARIZACE POLYNOMIALNICH MATICOVYCH NEROVNOSTI

Abstract

This paper proposes a linearization approach for the study of solutions of Polynomial Matrix
Inequalities (PMIs). The Polynomial Matrix Inequality is transformed into a set of linear inequalities
with compatibility conditions by using a Carleman-like linearization. An insight into these
compatibility conditions is proposed by representing them in a logarithmic space, in which they are
also linear. The existence of solutions is then reduced to the identification of the range space of a
linear operator. Geometrically, the problem can be interpreted as the intersection of a curvilinear cone
and some linear hyperplanes.

Abstrakt

Pfispévek popisuje linearizacni pfistup pro studium feSeni polynomialnich maticovych
nerovnosti. Polynomidlni maticovd nerovnost je prevedena na soustavu linedrnich nerovnosti
s podminkami kompatibility pouzitim linearizace podobné Carlemanové linearizaci. Diky vyjadfeni
podminek kompatibility v logaritmickém prostoru, je mozno na n¢ pohlizet jako na linearni
podminky. Existence feSeni je potom omezena na identifikaci rozsahu prostoru linedrnich operatorti.
Problém mutze byt interpretovan geometricky jako prunik mezi zakfivenym kuzelem a linedrni
nadrovinou.

1 INTRODUCTION

The study of Linear and Polynomial Matrix Inequalities is an important problem of actual
interest within the control community. This interest was generated from the realization that many
control problems can be rewritten in terms of them. Over the last decade, there have been many
advances in the study of Linear Matrix Inequalities (LMIs), being the book by Boyd, et.al. [1] one of
the most cited monographs. This has allowed their application in different control problems, which
are commonly rewritten as convex optimization problems with LMI constraints. Some of the control
problems include the stability study of Lotka-Volterra systems with delays [4] and the design of Hoo
controllers [3] among many. Despite the wide range of applications of LMIs, many control problems
are actually written in terms of Polynomial Matrix Inequalities, e.g. in the case of Bilinear Matrix
Inequalities (BMIs), in [5] it was shown that core problems in robust control could be formulated not
as linear but rather as BMIs. However, the study of general PMIs is more complicated than the study

* PhD Student, Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin
Street, Sheffield, UK, tel. (+44) 114 222 5137, c.l.navarro@sheffield.ac.uk

" Senior Lecturer, Department of Electrical and Computer Systems Engineering, Monash University,
Melbourne, Australia, francesco.crusca@eng.monash.edu.au

™" Associate Professor, Department of Electrical and Electronic Engineering, The University of Melbourne,
Australia, m.aldeen@ee.unimelb.edu.au

™ Professor, Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin
Street, Sheffield, UK, tel. (+44) 114 222 5137, s.banks@sheffield.ac.uk

47


https://core.ac.uk/display/8963074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of LMIs, as their feasible set usually lacks convexity and the problems involve more decision
variables and dimensions, which means that the computation of solutions is not straightforward. This
opened a lot of actual interest and research possibilities under this subject as there is still a long way
to go to reach the research level achieved on the study of LMIs and there seems to be no existing
texts covering BMIs and PMIs. The research possibilities are many. One can study their geometry,
feasibility, the possibility of transforming them to LMI problems, the development of algorithms
which solve non-convex optimization problems, the representation of control problems into
optimization problems with BMI or PMI constraints, etc.

In this paper, a linearization of the PMI problem is proposed to obtain a set of linear
inequalities with linear compatibility conditions. The compatibility conditions are represented in the
logarithmic space, in which they are linear. The existence of solutions reduces to the identification of
the range space of a linear operator which can be interpreted geometrically as the intersection of some
linear hyperplanes with a curvilinear cone. The purpose of the paper is not to give a new algorithm to
solve PMI problems but to study the problem using a linearization approach. The paper is organized
as follows. Section 2 presents the reduction of the Polynomial Matrix Inequality problem to a set of
linear inequalities with compatibility conditions, Section 3 proposes a logarithmic representation of
the compatibility conditions to linearize completely the PMI. Section 4 presents a simple example
and finally Section 5 presents some conclusions.

2 LINEARIZATION OF POLYNOMIAL MATRIX INEQUALITIES

In this section, consider PMIs in the form

m
3 Bi (X s X )i >0 @D
i=1
where the symmetric matrices Fj,...,Fy € R* and LS+ Fn are m polynomials in n variables of order
< N-n. Eq. (1) can be written in the equivalent form.

A(X{ 50 X ) > 0 (2)

where A is an {x{ matrix with polynomial elements of order at most N-n . The (i,j)" element of A can
be written in the form

N N (3)

KK, o K K,

aij (X]5eees Xp) = E 2 ajj ! X1 ... Xp
k,=0 k,=0

or in the vector notation,

4)

N
aij (X{seees Xp) = Zaﬁxk
k,=0

where k=(Ky,...,Ky), N=(N,...,N), X=(Xy,...,Xn). By Sylvester's criterion, the condition for positivity in
(2) is simply that

a - alﬂ
>0, Vuell,..r} )

a a

41 yoz

i.e. using the standard determinant equation
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6
Z(SgnG,u)aIO"u(l)'“a,uO'#(,u) >0, 1<u</t (©)

o,€S,

where Su is the symmetry group on x symbols and sgno, is the sign of the permutation o,
Substituting (4) into (6) gives a set of £ inequalities of the form

L L
D3 B x>0, 1< us<t )
v=0 v,=0 '
where L=xN and
i j (®)
=2 (sgnoy) Z aﬂéﬂ)(l)"'a:,(a/i)(ﬂ)
o,E8, J)+..+ j()=v

By using a Carleman-like linearization technique, the next new variables are defined,
vo=X".Xy, 0y <L, 1<k<n ©))

then, the polynomial inequalities (7) become ¢ linear inequalities in y-space:

L L

10
PO I A R YTy (10)
v,=0 v, =0

In this case, the y-space is ((L+1)" -1)-dimensional. Each inequality defines a half-space in y-
space; these £ linear inequalities have a solution when these half-spaces have non-empty intersection.
Of course, any such solution is a solution of (7) if and only if its components are of the form (9).

3 LOGARITHMIC REPRESENTATION OF THE COMPATIBILITY
CONDITIONS

Consider the reduced problem of the PMI (1) consisting of the £ linear inequalities in y-space
(10) with the variables (9).

Remark 3.1. The y-space is of dimension ((L+1)" -1), obtained when Vv /0. Note that the
cases when /V /:0, e.g. the affine case, the variable Y, o is not included in the compatibility
conditions.

Suppose that y, satisfies (9). To obtain linear compatibility conditions, the logarithmic of the
variables (9) is obtained, therefore,

v ) =vi(nx)+vy(Inxy)...+v,(Inx,), 0<v, <L, 1<k<n (11)
and by renumbering the y,,

In(yy) :vll(lnxl)+v§(lnx2)+...+v},(lnxn)
In(y,) =vZ(Inx;) +V3 (InXy) +...+ V3 (In X)) (12)

In(ypm) =" (Inx)) +V3'(InXp) +...+ V' (In X))

with m=((L+1)"-1). Define the new set of variables

71 =1nX1,
2.2 :1HX2, (13)
in =InXx,
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where z, € R" . Therefore, the linear equation

Az=p (14)
with
vi v v 7 Iny,
A V}z v% v.% - z? = ln:yz (15)
vl'm v;zn v Zn Inyp

therefore, A € R™", z € R" and 7 € R™ where m=((L+1)"-1).

Remark 3.2. Note that for each particular PMI problem, the dimensions of the linear equation
(14) can be reduced by only including the variables (9) that are occurring in the problem. However, in
this paper, all variables are included for simplicity of notation

To obtain a solution of the system (14), the generalized inverse of A is used. Note that in
general and by Remark 3.2, the matrix A is not square. From linear algebra [2], the generalized
inverse of a matrix A is defined as:

At =(ATA)TAT (16)
and the solution of system (14) is
z=Atp iff AATp=7. (17)

The original PMI problem (1) has now been reduced to the linear problem of finding solutions to the
A linear inequalities in y-space

L L
D B Yy >0, 1<use (18)
v=0 v=0 | "

such that their logarithm belongs to the range space of the linear operator AA".

Remark 3.3. Note that negative solutions of the problem (1) can be found by shifting the
variables Yy, by an appropriate constant before taking the logarithms.

Geometrically, the problem can be interpreted as the intersection of a curvilinear cone
obtained from the compatibility conditions and some linear hyperplanes obtained from the linear set
of inequalities.

4 EXAMPLE
Consider the following BMI,
—13x2—5x1x2+x§ X 0 (19)
Xy X| 0 >0
0 0 —13% —5x + XX — X
which can be transformed to the following set of linear inequalities

—13y; -5y, +y3>0
=13y, =5y4+Yys-y3>0 (20)

—13y; -5y +Y,-¥1 >0

with variables
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2 2
YiI=X2 Y2=XX3 Y3=X5 Ya=X(X 21)
Y5 = X1X§ Yo = X12 Y7=X
to obtain the compatibility conditions, variables z are introduced: z;=In X; and z,=In X,, and the
logarithm of (21) is obtained, therefore the following linear equation is obtained,

Az=n (22)
with
o102121) 7
A= s 7=
1121200 Z,
n=(ny, Iy, lny; Inys; Inys Inys Iny;)’ (23)

by using A+ = (AT A)"! AT, the generalized inverse of A is calculated, as well as the operator AA, in
this case,

96 16 48 96 96 96 96 (24)

AA*:fifiiii

B A A T
48 8 24 48 48 24 48
-5 1 -5 17 1 11 11

vl 113 3 1.1
"l16 8 8 16 16 8 16 (25)

Vz:(o;lo;l;l;l;lj
96 98 96 48 96
Asn must belong to the range space of (24), one possible solution is obtained by taking 7=v;+5v,,

The corresponding y’s are obtained from exp(#), in this case,

y; =518.01, y, =1468.01, y; =2.68x10° (26)
ys =4160.26, ys=7.6x10°, y6=8.03, y;=2.83

is easy to check that the obtained y’s satisfy the linear inequalities (20). Therefore, one possible
solution of the BMI (19) is

X| = Y7 =2.833 and X, = y; =518.01 (27)

5 CONCLUSIONS

In this paper, the problem of solving Polynomial Matrix Inequalities was addressed by using a
linearization approach. First, the original problem was transformed to the problem of solving a set of
linear inequalities with nonlinear compatibility conditions by using a Carleman-like linearization.
Then, linear compatibility conditions were found by introducing new variables and obtaining the
logarithm of the original compatibility conditions. The original problem was then reduced to the
problem of solving a set of linear inequalities together with linear compatibility conditions. It was
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shown that the problem is actually reduced to finding solutions of the linear inequalities that belong
to the range of a linear operator obtained from the compatibility conditions.
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