Comparison of modeling approaches and the resulting warning products in the framework of the Indonesia Tsunami Early Warning System (InaTEWS)

Sven Harig¹, Andrey Babeyko², Antonia Immerz¹

Natalja Rakowsky¹ and Tri Handayani³

¹Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany ²GFZ German Research Centre for Geosciences, Potsdam, Germany ³Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta, Indonesia

,2017 - International Tsunami Symposium, Bali - Flores, 21-25 August 2017

- Tsunami Early Warning systems determine and disseminates Warning products like
 - Estimated wave height (EWH)
 - Estimated arrival time (ETA)
- These informations are obtained by numerical simulations and may lead to severe implications like evacuations of the potentially affected population.
- Thus the quality of these products is of crucial importance

in coastal areas over a large range

InaTEWS contains

- Database of precomputed high resolution tsunami scenarios (TsunAWI) including an inundation scheme
- On-the-fly modeling component for areas not covered by database (easyWave)

Warning products based on values in points of interest (POIs) Full set defined by DLR.

HELMHOLTZ

GEMEINSCHAFI

- Model resolution, boundary conditions
- Topography
 - easyWave: ETOPO or GEBCO
 - TsunAWI: GEBCO augmented by additional G08MOD datasets (tcarta, SRTM, some local measurements)
- Governing equations: Additional terms in TsunAWI
 - Advection
 - Viscosity
 - Bottom friction
 Coriolis force

small impact in deep ocean more important close to the coast

G08

 Determination of warning products (Algorithm: Direct calculation, projection)

The model components in InaTEWS

	EasyWave	TsunAWI	
Warning products: Determined by aggregation over model results in Points of Interest (POIs) along the coast	 Options: Calculations to nearest coast point Calculation to given water depth and projection (Green's law) 	Mesh covers coastal area up to terrain height of ~50m. Direct calculation of wave height in POIs	
	• poi	poi	

100m

contour

50m

contour

coast

50m

contour

100m

contour

Warning zones and POIs

100°0.000'

POIs, warning zones and computational nodes for projections 0°0.000 0°0.000' -Warning zone values of EWH -1°0.000' defined as median of the 100°0.000' corresponding POI values

000'

Warning zones and POIs

0'

Scenario overview

20

Magnitude	total nmb
7.0	497
7.2	495
7.4	486
7.6	454
7.8	412
8.0	273
8.2	326
8.4	271
8.6	214
8.8	142
9.0	66
Sum	3636

Central patches of the scenarios involved in the study **Rupture Generator by** A. Babeyko 4(Total number of scenarios in the comparison: 3636

General Strategy

Model configurations:

- TsunAWI (as in database bathy. G08MOD)
- easyWave
 - Calc. to coast (G08)
 - Calc. to coast (G08MOD)
 - ⊖ Green's law (G08)
- Identical sources (RuptGen -> indexing of scenarios)
- Bathymetry varies
- Analyse POI values and aggregated warning zone results

General Strategy

Model configurations:

- TsunAWI (as in database bathy. G08MOD)
- easyWave
 - Calc. to coast (G08)
 - Calc. to coast (G08MOD)
 - Green's law (G08)
- Identical sources (RuptGen -> indexing of scenarios)
- Bathymetry varies
- Analyse POI values and aggregated warning zone results

Green's law option resulted in systematic overestimations - here mainly results from coastal values

EWH values obtained by the models

70

For systematic investigation of the EWH differences the coast is split into segments according to the RuptGen cross-trench disctetisation and determine EWH differences occurring from the wave propagation in one section.

EWH overview in single scenario

EWH overview in single scenario

Bathymetry sections

Bathymetry sections

Results after bathymetry adjustment

()

<u>ITS,2017 - International Tsunami Symposium, Bali - Flores, 21-25 August 2017</u>

The overall mismatches are reduced

Nevertheless the overall state of the system is improved

- The total number of mismatches is reduced
- The correlation
 between EWH
 results of both
 models grows

Correlation overview

		G08 and Green's law	G08 coast calc	G08MOD coast calc
Magnitude 7.0	EWH correlation	0.81466	0.8576	0.91898
	ETA correlation	0.93576	0.9410	0.94768
Magnitude 8.0	EWH correlation	0.8096	0.89876	0.95222
	ETA correlation	0.91045	0.94236	0.95046
Magnitude 8.4	EWH correlation	0.74616	0.87141	0.95171
	ETA correlation	0.86683	0.91786	0.92824

ITS,2017 - International Tsunami Symposium, Bali - Flores, 21-25 August 2017

InaTEWS categories:

120

110

90

80

70

50

HELMHOLTZ

GEMEINSCHAF1

60

40

100

ITS,2017 - International Tsunami Symposium, Bali - Flores, 21-25 August 2017

warning system

Advisory - Warning mismatches

ITS,2017 - International Tsunami Symposium, Bali - Flores, 21-25 August 2017

Warning - Major Warning mismatches

Study ongoing - Conclusions so far

- Overall consistency of warning products good especially for small magnitudes very little discrepancies
- Improvements of the consistency in the system are possible
- Due to the vast range of the topographical setting implications of adjustments are diverse
- Many factors involved in deviating results improving one may increase the influence of another
- Absolute agreement is not achievable by definition, nevertheless studies like this may help to reduce variations to the minimum

