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ABSTRACT

This paper extends the previous works that appears in the International

Journal of Multiphysics, Varatharajoo, Salit and Goh (2010). An approach

incorporating cohesive zone modelling technique is incorporated into an

optimized flywheel to properly simulate the stresses at the layer interfaces.

Investigation on several fiber stacking sequences are also conducted to

demonstrate the effect of fiber orientations on the overall rotor stress as

well as the interface stress behaviour. The results demonstrated that the

rotor interlaminar stresses are within the rotor materials’ ultimate strength

and that the fiber direction with a combination of 45°/-45°/0° offers the

best triple layer rotor among the few combinations selected for this

analysis. It was shown that the present approach can facilitate also further

investigation on the interface stress behaviour of rotating rotors. 

1. INTRODUCTION
The flywheel energy storage technology is indeed a promising technology in replacing the
conventional battery as energy storage devices for spacecraft. The simultaneous use of the
flywheels as attitude control actuators enables the further reduction in spacecraft operating
mass. In the context of flywheels in space applications, it is observed that the operation of
the flywheel has been well investigated in the works of Varatharajoo and Kahle (2005) on
the feasibility of the combined energy and attitude control system (CEACS); Varatharajoo
and Fasoulas (2002, 2005), Varatharajoo (2006), Roithmayer et al. (2003), as well as
Tsiotras et al. (2001)  on the CEACS attitude control performances; Varatharajoo, Wooi
and Mailah (2011) where Active Force Control (AFC) techniques has been integrated for
the enhancement of the attitude control of CEACS; and Varatharajoo (2004) on CEACS
for small satellites. Other works on CEACS can be found in Varatharajoo and Filipski
Abdullah (2004); Varatharajoo and Ahmad (2004); Varatharajoo, Ibrahim, Harun, Filipski 
Abdullah (2005). But, none of the works have investigation done on the flywheel operating
speed. In view of this circumstance, the critical operating speed for the energy storage
application has been investigated by Varatharajoo, Salit and Goh (2010); however, the
interlaminar problems remained unaddressed in the mentioned work.

With the increasing use of laminated composites in the flywheel rims where weight
savings is of paramount concern, thus rising the need in developing an appropriate models
to predict the stress behavior of these composites as the interfacial surfaces of a laminate are
planes of minimum strength (Pagano, N.J. & Pipes, R. B., 1973) due to discontinuities in 
the load path, such as free edges and notches (Wilkins, 1983). Furthermore, the shell
curvature effect of the rings has also been attributed to the presence of high interlaminar
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stresses (Edward, K.T., Wilson, R.S. and McLean, S.K., 1989; Lagace, P.A., 1983). In
addition, with a different material for each ring of the multi rings, the interlaminar stresses
might also be induced due to the sudden transition of material properties or material
discontinuity (Tahani, 2005). Yet till date, the interlaminar behaviour has only been
investigated for the two layer rotating rotor in the analysis performed by Tahani (2005);
instead, this work presents extends the double layer interlaminar stress problem to the triple
layer interlaminar stress analysis. In addition, ply orientations also play an important role in
altering the stress distribution of composite laminates. In bonded repair of cracks in aircraft
components, laminated composite patch with ply orientations of 0¡, +45¡, -45¡ and 90¡ have
been favourable with the +45¡, -45¡ and 90¡ orientation to crack direction being identified
as the optimal design where variable flight loadings are concern (Chue and Liu, 1995; Baker
and Jones, 1988). Thus, it is also of importance that the fiber recipe be considered in the
design of such structures, especially for flywheels spun at high operating speed. 

Finite element analysis using ANSYSTM is employed for three high speed rotor
configurations; i.e., single layer, double layer and triple layer rotor after considering the
relevant properties involved, e.g., composite materials, rotor dimensions and rotor speed.
The single layer rotor of IM6 carbon epoxy composite has been built via numerical
modelling with finite element analysis (FEA) and the results has been compared with the
analytical solution for the validation of the model. The validated model is then extended to
the double layer model where the novel approach of using the cohesive zone modelling
technique to simulate the interface stress behaviour has been incorporated to the double layer
model which is compared with the analytical and numerical solution by Tahani. It is
discovered that the results for the cohesive zone model closely approximate the trends of the
analytical solutions by Tahani (2004), indicating the cohesive zone modeling approach as a
feasible conceptual design tool for future replication in simulating stresses at the interface of
material discontinuity. The validated model also forms the fundamental tool in the highlight
of this paper on the investigation of the interlaminar stresses of the triple layer rotor. The
numerical solutions are discussed from the stress distribution point of view. Finally, several
variation of the fiber orientation combination has been performed on the triple layer rotor.
The work demonstrates how fiber orientation alters the stress distribution of the flywheel
rotor as well as the use of cohesive zone elements in simulating the three dimensional stress
effects at the interface.

2. SPACECRAFT FLYWHEEL
The stresses for the orthotropic can be represented as functions of the radius by several
equations as shown by Varatharajoo, R., Salit, M.S., and Goh, K.H. (2010). The radial
displacement is as follow:

(2.1) 

Here, the radial stress, σr , and tangential stress, σθ , as functions of the radius are as
described below.
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The material constant is depicted by ; with the Poisson s ratio for the

transverse direction, ; and where the equations (2.1) and (2.2) can be used

to calculate the rotor stress distributions for certain operating speeds as a function of
radius. The ultimate strength of the materials that are derated for space applications
provides the usable material strength which has been estimated for by the rotor stress
distribution. For space applications, the derated factor employed for the longitudinal
tensile strength is 0.65; for transverse tensile and compressive strength, the derated factor
is 0.53.

Constants C1 and C2 in equations (2.1) and (2.2) are to be determined after the rotor
boundary conditions are set. The first boundary condition for the rotor would be σr being
null at r = R0 as the outer radius is a free surface where no loads are applied. Other than that,
the innermost rotor functions to support of the metallic return rings belonging to that of the
motor/generator magnet rings and metallic bearings (Varatharajoo & Kahle, 2005). As metals
are vulnerable to high stress concentration at high speeds, segmented rings are preferred over
continuous to achieve higher flywheel rotational speeds (Kirk et. al., 1997, as cited in
Varatharajoo, Salit & Goh, 2010) for segmented rings introduce pressure to the inner rotor
wall during high rotational operational speed, with consequent radial stresses, and as such,
hoop stresses are also not allowed to exist in the material. The second boundary condition is
depicted by the following equation:

(2.4)

Here treturn is the mean return ring radial thickness; and ρreturn is the density of return ring
material (cobalt ferrite with ρ ¯ 8150 kg / m3). On the other hand, the estimates for C2 and
C1, which are dependent on the rotational speed ω of the rotor, are as given below:
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Table 2.1  Safety Factors for IM6 Carbon/ epoxy

Parameter Longitudinal direction Transverse direction
Stress Tensile Tensile Compressive
Maximum Strength σmax [MPa] 3500 56 150
Vacuum, fatigue coefficient 0.8 0.65
Reciprocal safety coefficient 0.9 0.9
Over speed factor 0.9 0.9
Total product factor f 0.65 0.53
Usable strength f σmax [MPa] 2275 30 80



(2.5)

(2.6)

In addition to the aforementioned boundary conditions, pre-stressed condition was also
introduced to simulate the compressive radial stress induced by press fitting manufacturing
procedures. For flywheel rotors generating high stresses in the radial and circumferential
directions, the main loading is the inertia loading which, in finite element modelling
environment, is applied at a fixed axis. This fixed axis rotation is independent of finite
element mesh, thus allowing mesh modifications without the need to reapply the loadings for
each model variation. For these models (single, double and triple layer rotor), angular
velocity was applied with respect to the Z-axis the rotor at the rotor s operating limit of 
50 000 rpm. 

3. COHESIVE ZONE MODELING
At the interface, a cohesive zone as a separate region or surface with zero thickness can be
used to properly represent the interface and its constitutive behaviour. The cohesive zone
model with properties unique to both the adjacent composite materials consists of 
a constitutive relation between the traction vector, T, acting on the interface and the
corresponding interfacial separation, δ, (displacement jump across the interface). As 
the cohesive surface separates due to the occurrence of damage growth, the traction
initially increases, reaching a maximum value and then approaching zero as the separation
continues to increase; and depending on the form of the T-δ functions, CZMs can 
be categorized as multilinear, polynomial, trigonometric and exponential, with the
exponential cohesive zone law being the more popular of all. The exponential cohesive law
has several advantages as compared to other cohesive zone laws i.e. a phenomenological
description of contact is automatically achieved in normal compression; and that the
tractions and their derivatives are continuous which is attractive from an implementation
(i.e. it is more stable than discontinuous models such as the bilinear model) and
computational point of view. However, the exponential cohesive law of Xu and Needleman
only realistically describes the coupling between normal and tangential direction in a
specific case of Φn = Φt. This limits the application of the cohesive zone law in mixed
mode loading. Based on the model proposed by Xu and Needleman (1993, 1994), there
exist an interfacial potential Φ such that 

(3.1) 

Here T = T(Tn, Tt) is the traction vector acting at the cohesive surface and ∆ = ∆(∆n, ∆t) is
the displacement jump vector; whereas the potential is of the form 
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(3.2, 3.3, 3.4)

In the above equations, Φn is the work of normal separation, Φt is the work of tangential
separation and ∆∗

n is the value of ∆n after complete shear separation under the condition of
zero normal tension, Tn = 0; whereas the lengths δn and δt are the characteristic lengths of the
cohesive law such that

(3.5)

(3.6)

Here, σmax and τmax are the interface normal and tangential strengths respectively. 
Combining the two equations given, the expressions for the normal and tangential
components of traction at the interface can be obtained as below

(3.7)

(3.8)

The areas under the normal traction-separation curve and the shear traction-separation
curve represent the work for normal separation (Φn) and shear separation (Φt), respectively;
it is the energy required for complete separation. It can be shown using [3.5] and [3.6] that
Φn and Φt take the form 

(3.9)

The two dimensional traction separation relationship can be extended to three
dimensional by tangential traction and displacement which acts perpendicular to the two
previously considered directions (Gon alves et. al., 2000)
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4. MODEL VALIDATION
The single layer of IM6 carbon/epoxy composite rotor model with inner radius of 0.07 m and
outer radius of 0.1 m is built in ANSYSTM with the operational rotating speed of 50 000
(rpm). The results obtained via numerical modelling with finite element analysis (FEA) have
been compared with the analytical solution from Varatharajoo, R., Salit, M.S., and Goh,
K.H., 2010.

For the double layer case, the hybrid rotating annular disks is constructed of a
Kevlar/epoxy ring shrink fitted over an S-2 glass/epoxy ring (Tahani, 2005). The inner
and outer radii of the disks are RI = 0.05 m and RO = 0.1 m and the disks is assumed to
rotate with a constant angular velocity of 1000 rad/s with free- free boundary conditions.
The material properties of Kevlar/epoxy in the principal material coordinate system are
taken to be E1 = 76.8 GPa, E2 = E3 = 5.5 GPa; G12 = G13 = 2.07 GPa, G23 = 1.4 GPa; and
v12 = v13 = 0.34, v23 = 0.37, ρ =1380 kg/m3; whereas the material properties of S-2
glass/epoxy in the principal material coordinate system are taken to be E1 = 43.5 GPa, 
E2 = E3 = 11.5 GPa; G12 = G13 = 3.45 GPa, G23 = 4.12 GPa; and v12 = v13 = 0.27, v23 = 0.4,
ρ = 2000 kg/m3; where the subscripts 1, 2, and 3 indicate the on- axis (i.e. principal)
material coordinates. For increased accuracy of the results, there are six numerical layers
in each ring and thirty numerical rings in each physical ring for the hybrid rotating disk
(Tahani, 2004).

For validating purposes, the model built only consists of two layers to reduce
computational time. In addition, the cohesive zone modelling is also attempted on the model.
The cohesive zone model selected is the exponential model by Xu and Needleman as it is
readily available in the commercial finite element package ANSYSTM. The normal cohesive
strength used is the value of 1/10 of the elastic modulus for the epoxy which is 
11.2 GPa/10 = 1.12 GPa, similar with how Xu and Needleman assumed the normal cohesive
interface strength as one tenth of the elastic modulus of PMMA (Poly-Methyl-Methacrylate)
in their study of numerical simulations of fast crack growth in brittle solids. (Xu &
Needleman. 1994)

5.1. SINGLE LAYER ROTOR
The magnetic bearing s return rings forms the basic reference for determining of the radial
thickness for the rotor analysis. A mean radial thickness of less than 3 mm is common for
these return rings that are attached to the rotor; therefore, it is a requirement that the radial
thickness have a mean thickness higher than this value (Varatharajoo and Kahle, 2005). The
single layer rotor analytical studies can be performed with the use of Eqs. (2.1—2.6). This also
acts as a reference for the numerical rotor modeling through finite element analysis (FEA).
Due to the complexity of the analytical solutions for multi- layer rotors, numerical modeling
through finite element analysis (FEA) is often preferred. In this context, Eqs. (2.1—2.6) also
act as a reference for the numerical rotor modeling.

A numerical rotor model for a single layer carbon/epoxy rotor with an inner radius of 
0.07 m and outer radius of 0.1 m (thickness of 3 mm) and height of 0.0183 m is established
via finite element modeling in ANSYSTM and the solutions for the rotor speed at 50 000
rpm (as shown in figure 5.1) are compared with that of the analytical solution in Figures
5.2 and 5.3 which depict the analytical stress distributions in the transverse and tangential
direction respectively. The numerical modeling is in agreement with the analytical
solution; therefore, the numerical model can be extended to a multi-layer rotor analysis. 
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5.2. DOUBLE LAYER ROTOR
This hybrid composite disk has been originally modelled by Tahani, Nosier and Zebarjad
(2005) with six numerical layers in each of the thirty numerical rings for each physical
ring; and the analysis encompasses both the analytical and FEM solutions in the study to
investigate the three dimensional effect of stresses at the interface. Here, a comparison
between the results obtained by Tahani, Nosier and Zebarjad (2005) and that of the use of
a cohesive zone as in the present flywheel rotor model was done to further verify the
modelling method. For simplicity, the present cohesive zone model of 12800 mesh
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elements only has one numerical layer for each of the two physical rings although it
should be noted that the accuracy of the results increases with the number of numerical
layers used. 

Figure 5.4 shows the distribution of the radial stress which is non- zero and continuous at
the interface, and Figure 5.5 shows the hoop stress distribution which has a marked
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discontinuity at the interface. Similarly, the interlaminar normal stresses σz is non- zero and
discontinuous at the interface as shown in Figure 5.6 (b), a trend comparable to that in 5.6
(a). Figure 5.7 (a) displays the interlaminar shear stresses σxz behaviour with stresses
vanishing far away from the material discontinuity. This stress pattern is similarly shown in
figure 5.7 (b) where a smaller amount of numerical layers has been employed. The numerical
modeling is thus in agreement with the analytical solution and hence, the validated model
can be implemented in present double and triple layer problem. 

The present double layer rotor model of inner radius of 0.1106 m and outer radius of
0.1174 m with MR50/LTM25 carbon/epoxy composite in the inner layer and T300/934
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carbon/epoxy composite in the outer layer is constructed in ANSYSTM and the results are
presented for the rotational speed of 50,000 rpm.

Figures 5.8 (a) and (b) show the distribution of the stresses in the transverse and
longitudinal direction respectively. The maximum transverse tensile stress occurs in the outer
layer (6.6 MPa), which is lower than the usable transverse tensile strength of 22.79 MPa
available for the outer layer; whereas the maximum transverse compressive stress occurs in
the inner layer (6.4 MPa) which is still lower than the usable transverse compressive strength
of 89.09 MPa available for the inner layer. About 470 MPa longitudinal tensile stress occurs
in the inner layer where the usable values for the inner layer is 1313 MPa whereas the
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maximum longitudinal tensile stress occurs in the outer layer (610 MPa) layer which is
below the usable longitudinal tensile stress (1313.5 MPa) in this particular layer. This
longitudinal tensile stress at the outer layer is higher than that of the inner layer. As 
the longitudinal tensile strength is more critical at the outer layer, the triple layer rotor is
presumed to be capable of improving the rotor strength. (Varatharajoo, R., Salit, M.S., and
Goh, K.H., 2010).

Figure 5.8 (c) shows the interlaminar shear stresses of the rotor which ranges from -4.71
MPa for the compressive value till 4.71 MPa for the tensile value. The interlaminar normal
stresses shown in figure 5.8 (d), on the other hand, has a maximum compressive value of -15.2

Int. Jnl. of Multiphysics Volume 5 · Number 4 · 2011 363

(a)
0.03

0 0.2 0.4
(r-RI)/(RO-RI)

0.6

Present
FEM

0.8 1

0.02

0.01

0

−0.01

−0.02

−0.03

−0.04

−0.05

−0.06

−0.07

(b)

1038.354
1

POST 1
STEP = 1
SUB   = 1
TIME  = 1
PATH PLOT
NOD 1 = 7676
NOD 2 = 10389
ZPLOT

896.305

754.260

612.215

470.170

328.125

44.035

−98.009

−240.054

−382.099
0

.463
.926

1.389
1.852

2.315
DIST

2.778
3.241

3.704
4.167

4.625

(×10**−2)

186.080

(×10**1)
ANSYS 12.1

  z
 (

M
P

a)
σ 

Figure 5.6 Distribution of interlaminar normal stresses σz at Z = h/4 for the disk in
free- free condition. (a) Tahani, Nosier and Zebarjad (2005). (b) numerical model
with cohesive zone elements inserted.



MPa and a maximum tensile stress of 12.7 MPa. It is observed in Figure 4.11 that the
interlaminar shear stresses σxz distribution for the double layer rotor shows a twin peak with
sharp decrement at the interface for z = 0.4 h whereas at z = h location, only a single sharp peak
is visible at the interface. On the other hand, the interlaminar normal stresses σz distributions
are quite similar for both location of z = 0.4 h and z = h. The only noticeable difference is the
curvier and steeper gradient of the peaks at location z = h due to the edge effects.

5.3. TRIPLE LAYER CASE
The triple layer 3D model was built via ANSYSTM with thickness of 0.0183 m, inner
radius of 0.1106 m and outer radius of 0.1174 m with AS4/3501-6 carbon/epoxy
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composite in the innermost layer, MR50/LTM25 carbon/epoxy composite in the middle
layer and T300/934 carbon/epoxy composite in the outer layer; the double layer rotor
with inner radius of 0.1106 m and outer radius of 0.1174 m with MR50/LTM25
carbon/epoxy composite in the inner layer and T300/934 carbon/epoxy composite in the
outer layer; and the single layer of IM6 carbon/epoxy composite with inner radius of 0.07
m and outer radius of 0.1 m. In the study by Varatharajoo, R., Salit, M.S., and Goh, K.H.
(2010), the rotor operating limit is approximately 50 000 rpm, and for that reason, the
rotor is assumed to rotate with a constant angular velocity of 50 000 rpm. The material
properties for the unidirectional AS4/3501-6 carbon epoxy is E11 = 142 GPa, E22 = 10.3
MPa; G12 = 7.2 GPa; v12 = 0.27 and ρ = 1580 kg/m3; for unidirectional MR50/LTM25
carbon/ epoxy is E11 = 155 GPa, E22 = 7.31 MPa; G12 = 4.19 GPa; v12 = 0.345 and 
ρ = 1520 kg/m3; and for T300/934 carbon/ epoxy is E11 = 148 GPa, E22 = 9.65 MPa; 
G12 = 4.55 GPa; v12 = 0.30 and ρ = 1500 kg/m3.

Figure 5.9 (a) displays the stress distribution in the radial direction. For the -45¡/0¡/-45¡
stacking sequence, the maximum transverse tensile stress occurs in the innermost layer
(74.9 MPa) which is higher than the usable transverse tensile strength of 30.21 MPa
available for the inner layer; whereas the maximum transverse compressive stress occurs in
the middle layer (11.5 MPa) which is still lower than the usable transverse compressive
strength of 76.85 MPa available for the middle layer. For the 45¡/-45¡/0¡ combination, the
maximum transverse tensile stress occurs in the outermost layer (18.4 MPa) which is lower
than the usable transverse tensile strength of 22.79 MPa available for the outer layer;
whereas the maximum transverse compressive stress occurs in the outer layer (17.3 MPa)
which is still lower than the usable transverse compressive strength of 89.04 MPa available
for the outer layer. 

366 Interlaminar stress analysis for carbon/epoxy composite space rotors

(d)

1206.538
1
POST 1
STEP = 1
SUB   = 1
TIME  = 1
PATH PLOT
NOD 1 = 1010
NOD 2 = 2586
ZPLOT

936.983

667.429

397.875

128.321

−141.232

−680.340

−949.894

−1219.448

−1489.002
0

.68
1.36

2.04
2.72

3.4
DIST

4.08
4.76

5.44
6.12

6.8

(×10**−3)

−410.786

(×10**4)
ANSYS 12.1

Figure 5.8 Distribution of stresses for the 6400 mesh elements double layer
rotor; 0°/0° stacking sequence at z = 0.4 h. (a): Stresses in the transverse/ radial
direction; (b) Stresses in the longitudinal/ hoop direction; (c): interlaminar shear
stresses σxz; (d): interlaminar normal stresses σz .



Int. Jnl. of Multiphysics Volume 5 · Number 4 · 2011 367

(a)

4586.331
1

POST 1
STEP = 1
SUB   = 1
TIME  = 1
PATH PLOT
NOD 1 = 1993
NOD 2 = 10664
XPLOT

4130.599

3674.865

3219.131

2763.397

2307.663

1396.195

940.461

484.727

28.993
0

.6
1.2

1.8
2.4

3
DIST

3.6
4.2

4.8
5.4

6

(×10**−3)

1851.929

(×10**3)

(b)

3377.443
1

POST 1
STEP = 1
SUB   = 1
TIME  = 1
PATH PLOT
NOD 1 = 1993
NOD 2 = 10664
XPLOT

3057.791

2738.137

2418.483

2098.829

1779.175

1139.867

820.213

500.559

180.905
0

.6
1.2

1.8
2.4

3
DIST

3.6
4.2

4.8
5.4

6

(×10**−3)

1459.521

(×10**3)

(c)

2929.456
1

POST 1
STEP = 1
SUB   = 1
TIME  = 1
PATH PLOT
NOD 1 = 1993
NOD 2 = 10664
XPLOT

2650.960

2372.463

2093.966

1815.469

1536.972

979.978

701.481

422.984

144.487
0

.6
1.2

1.8
2.4

3
DIST

3.6
4.2

4.8
5.4

6

(×10**−3)

1258.475

(×10**3)

Figure 5.9 Distribution of the radial stress σr at z = 0.4 h for the stacking sequence
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Figure 5.10 (b) shows that the maximum longitudinal tensile stress occurs in the
innermost layer (783 MPa) layer -45¡/0¡/-45¡ stacking sequence which is below the usable
longitudinal tensile stress (1482 MPa) in this particular layer. About 398 MPa and 610
MPa longitudinal tensile stresses occurs in the middle layer and outer layer where the
usable values for these layers are 1313 MPa and 1313.35 MPa respectively. This concurred
with the condition that the longitudinal tensile stress is more critical at the outer layer of
the rotor. For the 45¡/-45¡/0¡ stacking sequence, the maximum longitudinal tensile stress
occurs in the innermost layer (772 MPa) layer which is below the usable longitudinal
tensile stress (1482 MPa) in this particular layer. About 474 MPa and 474 MPa
longitudinal tensile stresses occurs in the middle layer and outer layer where the usable
values for these layers are 1313 MPa and 1313.35 MPa respectively. The 45¡/-45¡/0¡
configuration has, similarly, a maximum longitudinal tensile stress in the innermost layer
(737 MPa) layer which is below the usable longitudinal tensile stress (1482 MPa) in this
particular layer. About 470 MPa and 546 MPa longitudinal tensile stresses occurs in the
middle layer and outer layer where the usable values for these layers are 1313 MPa and
1313.35 MPa respectively. 

Figures 5.11 and 5.12 exhibit the flywheel s interlaminar shear and normal stresses
respectively. For the -45¡/0¡/-45¡ stacking sequence, the maximum interlaminar shear
stress is 52.1 MPa in both the tensile and compressive direction whereas for the
interlaminar normal stress, the value ranges from -101 MPa for compressive and 107 MPa
for tensile stresses. On the other hand, the interlaminar shear stress for the fiber orientation
of 45¡/-45¡/0¡ has a range from a compressive value of -13.7 MPa to 13.7 MPa in tensile
as well as a maximum compressive normal stress of -56.7 MPa and a maximum tensile
stress of 50 MPa; whereas the interlaminar shear stresses σxz distribution for the -45¡/45¡/
-45¡ stacking sequence ranges from -17.4 MPa till 17.4 MPa, with interlaminar normal
stresses σz in the range of between a maximum tensile stress of 43.8 MPa and a maximum
compressive stress of -48.9 MPa.

With a maximum traction value of 10.7 MPa and minimum -16.3 MPa for the -45¡/0¡/
-45¡ stacking sequence; 8.12 MPa and -8.85 MPa for the 45¡/-45¡/0¡ stacking sequence; and
10.7 MPa in tension, -16.3 MPa in compression for the -45¡/45¡/-45¡ stacking sequence, it
is discovered that the traction values are still within the usable strength of the IM6
carbon/epoxy which are 30 MPa in the transverse tensile direction and 80 MPa in the
compressive tensile direction.

In general, the transverse stresses are non-zero and discontinuous at the interface,
decaying to zero at the boundaries corresponding to the free-free boundary conditions of the
flywheel rotor; whereas the longitudinal stresses are generally higher than the transverse
stresses, and are discontinuous at the interface. Where interlaminar stresses are concerned,
severe out- of- plane stresses are noted at the interfaces where the sudden material transitions
occur. The investigation of these stresses are thus, especially crucial, as the initiation of these
stresses have been attributed to the onset of delamination and transverse cracking unique to
hoop wound composite rotors, which if are to propagate to a substantial region of the rotor
might result in the subsequent loss of strength and stiffness that would adversely affects the
smooth operation of the flywheel.

Comparison between several of the fiber orientations also revealed that the rotor
interlaminar stresses are within the rotor materials ultimate strength and that the 45¡/-45¡/0¡
fiber direction combination presents the best triple layer rotor based on its lower traction
stress levels at the interface as well as its overall and lower tensile stresses in the radial
direction.
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Figure 5.10 Distribution of the longitudinal (hoop) stress sq; at z = 0.4 h for the
stacking sequence of (a) -45°/0°/-45°; (b) 45°/-45°/0° and (c) -45°/45°/-45°.
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Figure 5.11 Distribution of the interlaminar shear stresses σxz at z = 0.4 h for the
stacking sequence of (a) -45°/0°/-45°; (b) 45°/-45°/0° and (c) -45°/45°/-45°.
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Figure 5.12 Distribution of the interlaminar normal stresses σz at z = 0.4 h for the
stacking sequence of (a) -45°/0°/-45°; (b) 45°/-45°/0° and (c) -45°/45°/-45°.



4. CONCLUSION
The exponential cohesive zone modeling is used to simulate the stress distribution at the
interface of material discontinuities in the rotating composite rotor. The single layer rotor
was validated and the validation of the double layer finite element model was performed
prior to incorporating the cohesive zone model to the rotating composite rotor. For the double
layer model, it was discovered that the maximum longitudinal tensile stress at the outer layer
(610 MPa) is higher than that of the inner layer (470 MPa). As the longitudinal tensile
strength is more critical at the outer layer, triple layer rotor analyses are carried out in order
to achieve a better performance in the outer layer. (Varatharajoo, R., Salit, M.S., and Goh,
K.H., 2010).The results obtained from these models indicate the existence of severe out- of-
plane stresses notably at the interfaces where the sudden material transitions occurred. The
initiation of these stresses have been attributed to the onset of delamination and transverse
cracking unique to hoop wound composite rotors, which if are to propagate to a substantial
region of the rotor might result in the subsequent loss of strength and stiffness that would
adversely affects the smooth operation of the flywheel. Here, varying the fiber stacking
orientation to determine the most appropriate fiber recipe looks promising in mitigating these
stresses. Of the few typical fiber orientations simulated, the 45¡/-45¡/0¡ fiber direction
combination presents the best triple layer rotor among the few combination selected for
analyses. Thus, the optimization of fiber orientation in the investigation of these stresses is
especially crucial as well in the design of such high speed rotating structures.

APPENDIX A

THEORETICAL FORMULATION (TAHANI, NOSIER AND
ZEBARJAD, 2005)
3.1. PLATE EQUATIONS OF MOTION
layerwise laminated plate theory for the displacement field:

K = 1, 2, , N + 1,
local Lagrangian linear interpolation functions:

the global interpolation functions Φk(z):
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Substituting into the linear strain-displacement equations for elasticity results in:

3.2. EQUATIONS OF MOTION
The Hamilton principle for an elastic body is (Fung, 1965):

Where 

Mk
r and Rk

r are obtained by substituting σr (� σ-r) and σrz (� σ-rz) respectively, into the
definitions of stress resultants Mk
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Where

Using the Hamilton s principle, the equations of motion for the ith ring can be obtained  

For the present LWT, the primary variables are Uk , Wk ; whereas the secondary variables:
are rMk

r , rRk
r

The linear constitutive relations for the kth orthotropic lamina with respect to the disk
coordinate axes are (Herakovich, 1998):

the stress resultants are obtained as follows:

Where the rigidity terms are given by
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