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PENGESANAN SERPIHAN PADA MATA ALAT SERAMIK DARIPADA 

TANDA PENGENALAN PROFIL BAHAN KERJA SEMASA PROSES 

PELARIKAN MENGGUNAKAN PENGLIHATAN MESIN 

ABSTRAK 

 Mata alat seramik lebih cenderung kepada kegagalan menjadi serpihan 

bukannya kehausan berterusan disebabkan oleh keliatan hentamannya yang rendah. 

Mata alat menjadi serpihan akan menyebabkan kualiti permukaan dan ketepatan 

dimensi merosot. Oleh itu, pengesanan dalam proses kegagalan tersebut pada mata 

alat seramik amat penting terutamanya dalam pengendalian pemesinan tidak berjaga. 

Kaedah pengesanan kegagalan mata alat dalam proses dengan menggunakan isyarat 

penderia yang wujud mempunyai had keupayaannya untuk mengesan serpihan mata 

alat. Pengawasan malat alat daripada profil bahan kerja dengan menggunakan 

penglihatan mesin mempunyai potensi yang tinggi digunakan semasa proses 

pemesinan, tetapi tiada percubaan dibuat untuk mengesan kegagalan serpihan mata 

alat. Dalam kerja ini, kaedah penglihatan mesin dibangunkan untuk mengesan 

kegagalan serpihan mata alat seramik daripada tanda pengenalan profil 2-D bahan 

kerja. Profil permukaan bahan kerja bertentangan dengan mata alat dirakam semasa 

pelarikan dengan menggunakan kamera DSLR. Profil permukaan bahan kerja 

diekstrak kepada ketepatan sub-piksel dengan menggunakan kaedah momen 

ketakvarianan. Kesan serpihan mata alat seramik pada tanda pengenalan profil 

permukaan bahan kerja disiasat dengan menggunakan fungsi autokorelasi (ACF) dan 

transformasi Fourier cepat (FFT). Pengesanan kegagalan serpihan dijalankan dengan  

sub-tetingkap FFT dan transformasi gelombang selanjar (CWT). Kegaglan serpihan 

mata alat seramik menyebabkan puncak ACF profil bahan kerja merosot cepat 

apabila jarak susul meningkat dan melencong dengan nyata pada sudut putaran bahan 

kerja yang berlainan. Amplitud frekuensi suapan asas semakin meningkat dengan 

masa apabila kehausan mata alat berlaku. Akan tetapi amplitud frekuensi suapan 
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turun naik dengan nyata selepas mata alat gagal menjadi serpihan. Proses 

pemotongan yang stokastik selepas mata alat menjadi serpihan menyebabkan 

amplitud frekuensi ruangan yang lebih rendah daripada frekuensi suapan asas 

meningkat dengan meruncing. Kaedah CWT didapati lebih efektif untuk mengesan 

permulaan serpihan mata alat dengan tepat pada masa 16.5 s berbanding 17.13 s yang 

diperolehi daripada sub-tetingkap FFT. Punca min kuasa dua pekali CWT bagi profil 

bahan kerja pada skala yang lebih tinggi didapati lebih peka bagi mengesan serpihan 

mata alat seramik dan seterusnya boleh digunakan sebagai petunjuk untuk mengesan 

kejadian kegagalan serpihan mata alat seramik.  
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DETECTION OF CHIPPING IN CERAMIC CUTTING  INSERTS FROM 

WORKPIECE PROFILE SIGNATURE DURING TURNING PROCESS 

USING MACHINE VISION  

ABSTRACT 

 Ceramic tools are prone to chipping due to their low impact toughness. Tool 

chipping significantly decreases the surface finish quality and dimensional accuracy 

of the workpiece. Thus, in-process detection of chipping in ceramic tools is 

important especially in unattended machining. Existing in-process tool failure 

detection methods using sensor signals have limitations in detecting tool chipping. 

The monitoring of tool wear from the workpiece profile using machine vision has 

great potential to be applied in-process, however no attempt has been made to detect 

tool chipping. In this work, a vision-based approach has been developed to detect 

tool chipping in ceramic insert from 2-D workpiece profile signature. The profile of 

the workpiece surface was captured using a DSLR camera. The surface profile was 

extracted to sub-pixel accuracy using invariant moment method. The effect of 

chipping in the ceramic cutting tools on the workpiece profile was investigated using 

autocorrelation function (ACF) and fast Fourier transform (FFT). Detection of onset 

tool chipping was conducted by using the sub-window FFT and continuous wavelet 

transform (CWT). Chipping in the ceramic tool was found to cause the peaks of ACF 

of the workpiece profile to decrease rapidly as the lag distance increased and 

deviated significantly from one another at different workpiece rotation angles. From 

FFT analysis the amplitude of the fundamental feed frequency increases steadily with 

cutting duration during gradual wear, however, fluctuates significantly after tool has 

chipped. The stochastic behaviour of the cutting process after tool chipping leads to a 

sharp increase in the amplitude of spatial frequencies below the fundamental feed 

frequency. CWT method was found more effective to detect the onset of tool 

chipping at 16.5 s instead of 17.13 s by sub-window FFT. Root mean square of CWT 

coefficients for the workpiece profile at higher scale band was found to be more 
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sensitive to chipping and thus can be used as an indicator to detect the occurrence of 

the tool chipping in ceramic inserts. 



1 

CHAPTER ONE 

 

INTRODUCTION 

1.1 Background of the study 

 Tool condition monitoring plays a significant role in machining process 

because the worn out cutting tool can be identified and replaced in time to avoid the 

deterioration in the surface quality and dimension accuracy of the machined part. 

Flank wear is often selected as the tool life criterion in the tool wear monitoring and 

is accomplished by direct and indirect methods. Direct tool condition monitoring 

method is usually performed by means of optical devices such as toolmaker’s 

microscope, scanning electron microscope (SEM) and CCD (charge coupled device) 

camera. Toolmaker's microscope and the SEM are the most popular devices used to 

measure the flank wear in the past. However, these devices have severe limitation as 

they can only be used in offline measurement which requires the cutting tool to be 

removed from the machine for inspection and measurement. Numerous previous 

works have been conducted to measure the flank wear using CCD camera without 

the need of dismantling the worn tool from machine. However, this method can only 

be applied between the cutting operations (Lanzetta, 2001; Wang et al., 2006; Zhang 

et al., 2012; Chethan et al., 2015). 

 One major prerequisite of an automated manufacturing system is 

uninterrupted machining to achieve maximum productivity which require continuous 

monitoring of the cutting process and cutting tool condition. Most of the in-process 

tool condition monitoring is conducted by indirect methods. Indirect methods of 
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monitoring the tool condition depend upon the measurement of sensor signals, which 

are indirectly related to the condition of the cutting tool edge. With recent 

advancement in signal processing technology, a large number of  indirect methods 

have been attempted to achieve the in-process tool wear monitoring based on sensor 

signal features associated with the tool condition such as cutting force, vibration, 

acoustic emission (AE) and tool temperature (Rehorn et al., 2005; Teti et al., 2010). 

Many researchers have even combined several sensors to monitor the multitude of 

information available during machining to assess the tool condition such as the 

combination of AE and cutting force (Jemielniak et al., 2011a), cutting force and 

vibration (Kalvoda & Hwang, 2010), AE and vibration (Bhuiyan et al., 2014), cutting 

forces, vibration and AE (Jemielniak et al., 2011b), AE and cutting sound (Zhang et 

al., 2015).  

 The acquired sensor signal obtained from the machining process has been 

correlated with flank wear by extracting the signal features from any time domain 

signal using statistical parameters such as the mean value, the root mean square 

(RMS), kurtosis and skewness. Sensor signals are also transformed into frequency 

domain and time-frequency domain. The signal features such as the amplitude of the 

dominant spectral peaks and wavelet coefficient extracted from these transform are 

used to correlate to the flank wear (Yesilyurt, 2006; Kious et al., 2010; Fang et al., 

2011). Other methods such as statistical regression method, neural network, artificial 

intelligence and pattern recognition have also been widely explored to establish the 

correlation between the sensor signal and flank wear (Siddhpura & Paurobally, 2013).  

 The detection of the tool failure by chipping has become more important 

recently since hard tools such as ceramic cutting tools are commonly used in the 
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cutting of difficult-to-cut materials such as stainless steel (Lin, 2008; Sobiyi et al., 

2015), superalloy (Bushlya et al., 2013), tool steel and hardened tool steel (Özel et al., 

2005; Özel et al., 2007; Meddour et al., 2015). Although advances in ceramic 

processing technology has resulted in high performance tools by improving the 

toughness, fracture strength and shock resistance, tool chipping and fracture are still 

serious issues when machining difficult-to-cut material using ceramic cutting tool  

(Yin et al., 2015). Failure by chipping has more severe effect on the surface finish 

compared to progressive wear because the cutting forces fluctuates and increases 

(Liao & Stephenson, 2010). Thus, in-process tool chipping detection as early as 

possible in ceramic cutting is considered important, in order to stop the machine tool 

before a catastrophic failure occurs.  

 Tool chipping occurs when a small piece tool material breaks away from the 

cutting edge of the tool. The chipped pieces from the cutting edge may vary from 

microchipping to macrochipping. Breakage of a cutting tool can lead to the total loss 

of contact between the cutting tool and the workpiece. Chipping and breakage are 

different from wear which is a gradual process. Chipping and breakage usually occur 

abruptly resulting in a sudden loss of tool material due to mechanical shocks. The 

onset of chipping or fracture in a cutting tool results in a change in the contact 

characteristics between the tool and the workpiece. This in turn results in a 

significant change in the sensor signals.  

 Cutting force signal monitoring is one of the most promising methods to 

detect the precise moment of tool failure. Cutting forces was found to be more 

effective to detect tool failure than other sensor signals (Li & Mathew,1990). The 

measurement of cutting force is usually performed by using a dynamometer. When 
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the tool breaks the cutting force increases slightly above the pre-set threshold and 

then drops sharply because of the loss of contact between the tool and the workpiece 

(Cakir & Isik, 2005). However, chipping can also cause failure of a cutting edge 

without decreasing the cutting force significantly when turning of carbon steel using 

ceramic insert (Jemielniak, 1992). In addition, tool chipping has been reported to be 

more difficult to detect using cutting force as the variation of cutting force due to tool 

chipping may not exceed the threshold limits (Shi & Gindy, 2007). 

 Previous researchers have reported that AE could be used effectively in 

detecting tool tip chipping. The AE intensity increases as the tool wear increase and a 

burst AE signal is produced when the cutting tool has chipped (Jemielniak & Othman, 

1998; Wang et al., 2003; Belgassim & Jemielniak, 2011). Strong burst in AE was 

found after tool fracture because of the sudden increase in the contact area between 

the workpiece and the chipped cutting tool (Lan & Dornfeld, 1984; Wang et al., 

2003). However, these results were contradicted by the recent work of Neslušan et al. 

(2015) who considered that conventional processing of AE signals does not enable 

the different phases of the tool wear be clearly recognised during turning of bearing 

steel using ceramic insert. Besides, most AE sensors have been designed for non-

destructive testing and are not suitable for tool wear monitoring as they cannot 

withstand extreme conditions at the cutting point such as high cutting temperatures 

and impacts from the chip.   

 The use of sensors fusion allows more reliable tool failure by chipping 

detection. Sensor signals from different sources are integrated to provide extended 

information for tool chipping detection such as the combination of AE and motor 

power (Wang et al., 2003) and AE and cutting force (Balsamo et al., 2016). However, 
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previous study have reported that multiple sensor signals used together produced 

results a little worse than using a single sensor signal during turning of Inconel 625 

using ceramic cutting tool (Jemielniak et al., 2011a).  

 Direct monitoring methods such as vision and optical approaches have been 

utilized for tool chipping observation on ceramic cutting tool (Patil & Tilekar, 2014). 

However, this method is only feasible for in-cycle or intermittent observation which 

requires the machine to be stopped because the continuous contact between the 

cutting tool and the workpiece does not allow the capture of images of the cutting 

tool tip during turning. In order to overcome the limitations of the in-process direct 

observation on cutting tool, identifying the cutting tool condition by analyzing 

surface texture of machined surface using digital image processing methods from the 

images of machined surface has been attempted in the past.  

 The surface texture of machined surface image contains information about 

the interaction between the tool and the workpiece such as machining conditions (e.g. 

feed rate, machining speed), waviness, roughness, vibration and chatter. The 

machined surface image also carries the information about the cutting tool condition 

by tool imprint on the workpiece. The surface texture of turned workpiece changes 

remarkably due to the changes in the cutting tool by wear and chipping. For example, 

previous study has reported that the groves are even and straight with clear ridge 

lines when the cutting tool is sharp but the groves appear uneven and ridge lines 

become disjoint when the cutting tool is dull (Kassim et al., 2007). However, the 

images of workpiece surface were captured between cutting operation using a CCD 

camera. 
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 Several attempts have been made to evaluate the tool condition by extracting 

the surface finish descriptors from the images of the freshly machined surface texture 

to be correlated with the flank wear (Datta et al., 2013; Dutta et al., 2015). The 

textural analysis methods showed some potential to interpret the tool condition, but 

they are subject to the changes in illumination condition and the contamination of the 

dirt and cutting fluid. In addition, their work was conducted offline and no attempt 

was made to investigate the correlation between the extracted textures features with 

tool chipping. 

 According to machining theory, the surface profile of a turned workpiece is 

formed by the repetition of the nose radius of the cutting insert at a regular interval of 

feed rate. Thus, nose radius has direct effect on the surface profile of the workpiece 

and all predominant tool wear such as the flank wear and notch wear can have 

significant influence on the surface roughness of the workpiece (Penalva et al., 2002; 

Grzesik, 2008b). An attempt has been made to determine the nose wear and the flank 

wear from the silhouette of the workpiece profile captured using CCD camera with 

the aids of backlighting (Shahabi & Ratnam, 2009a; Shahabi & Ratnam, 2009b). 

However, the work was carried out in-cycle, i.e. in between cutting process. 

 The development of an effective in-process tool condition monitoring method 

to detect the onset of tool chipping has not been attempted by previous researches. 

The case of tool chipping detection in ceramic cutting tool has not been given great 

attention by the researchers in the past and this is the motivation of the present study. 
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1.2 Problem statement 

 Although the vision method has the advantages of capturing the actual 

geometric changes arising from the wear and chipping of the cutting tool, the direct 

assessment of the cutting tool using machine vision is not possible during turning. 

This is because the cutting area is inaccessible due to the continuous contact between 

the tool and the workpiece as well as presence of coolant and obstruction by chips 

during turning operation.   

 In-process tool chipping monitoring is usually performed by using indirect 

method based on various sensor signals. However, a number of previous studies have 

shown that tool chipping is hardly detected using sensor signals due to the significant 

contradictory findings (Jemielniak, 1992; Wang et al., 2003; Cakir & Isik, 2005; 

Belgassim & Jemielniak, 2011; Neslušan et al., 2015). Thus, there still exists a need 

to develop a more reliable in-process tool chipping monitoring method. 

 Previous studies show that with the advancement in image processing 

technology, the features extracted from the images of the machined surface texture 

could be used to correlate well with the cutting tool condition. However, this method 

requires the machine to be stopped before the images of the machined surface can be 

captured (Datta et al., 2013; Dutta et al., 2015). 

 Since the cutting tool tip is directly in contact with the workpiece during the 

turning operation, an imprint of the cutting tool profile is replicated on the machined 

surface (Kassim et al., 2007). Therefore, the workpiece profile of turned part is 

directly dependent on the geometry of the cutting tool tip. As the tool chips, the 
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contact geometry changes, thus affecting the surface being machined. Two 

dimensional (2-D) image of the surface profile of the turned workpiece has been 

successfully used for in-cycle nose wear and flank wear measurement in the past 

(Shahabi & Ratnam, 2009b).  

 It should be noted from the abovementioned investigations that existing in-

process tool condition monitoring method using sensor signals have limitations in 

detecting tool chipping. The monitoring of tool wear from the turned profile using 

machine vision shows great potential to be applied in-process. However, to date, no 

attempt has been made to explore the potential of the 2-D images of the workpiece 

profile for in-process tool chipping detection in ceramic cutting tool and this has 

motivated the present study.  

1.3 Objectives 

The objectives of this research are as follows:  

i. To develop a novel approach of in-process tool chipping detection in ceramic 

cutting insert based on the workpiece profile signature using machine vision. 

ii.  To investigate the effect of the tool chipping in ceramic cutting inserts on the 

workpiece profile using autocorrelation function (ACF) and  fast Fourier 

transform (FFT). 

iii.  To detect the onset of tool chipping by extracting the features from the 

workpiece profile using sub-window FFT and continuous wavelet transform 

(CWT).   
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1.4 Research approach 

 The approaches of this study are as follows: 

i. A 2-D machine vision system consisting of a digital single lens reflex (DSLR) 

camera and backlighting was developed to capture the images of the edge of 

the turned workpiece.  

ii.  Experiments were carried out using aluminium oxide based ceramic cutting 

insert and the workpiece materials were AISI 01 Arne oil hardening tool steel 

and SUS 304 stainless steel with diameter of 50 mm.  

iii.  The condition of the cutting insert was evaluated using the SEM.  

iv. Invariant moment method was used to extract the workpiece profile. 

v. ACF, FFT and CWT were utilised to extract the features from the 2-D 

workpiece profile that correlate to tool chipping. 

1.5 Scope of study 

 The scopes of this research are as follows: 

i. Proposed tool chipping detection method only considers in turning process.  

ii.  This study focuses on the tool chipping detection in the aluminium oxide 

based ceramic cutting insert.  

iii.  This study distinguishes the sign of tool chipping from gradual wear using 2-

D images of turned workpiece. 

1.6 Organization of thesis 

 This thesis is organized into five chapters. The overview of the research is 

presented in the Chapter One. The background of the research and the existing 



10 

problems in similar studies are addressed. The objectives, research approach and the 

scopes of the research are listed. Chapter Two is about the literature review focusing 

on the in-process tool condition monitoring methods. The advantages and limitations 

of the existing in-process tool condition monitoring methods are discussed in detailed. 

Literature reviews reveal that an effective in-process tool chipping detection methods 

in ceramic cutting insert has not been thoroughly investigated.  

 The methodology for in-process detection of tool failure by chipping from the 

2-D workpiece profile signature using machine vision method is outlined in Chapter 

Three. The proposed vision system using high resolution digital camera at high 

shutter speed has been used in this study for capturing the images of the workpiece 

profile during turning operation is presented. Detailed workpiece profile extraction 

method from 2-D images of the workpiece up to sub-pixel accuracy is described in 

this chapter. Finally, analysis of the 2-D workpiece profile to detect the tool chipping 

is discussed. The specific procedures in detection of tool chipping in ceramic cutting 

insert based on the 2-D surface profile extracted from the images of the edge of 

turned workpiece using ACF, FFT and CWT are discussed.  

 The results of the simulations and experiments are described in Chapter Four. 

The effects of the tool chipping on the workpiece surface are discussed. The results 

on detection of tool chipping in ceramic cutting insert from workpiece profile 

signature using vision method is presented. Finally, Chapter Five provides 

conclusion of the thesis and recommendations for future work. The contributions of 

the proposed method in the field of tool chipping detection are also presented. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

2.1 Introduction 

 A review of previous research works that are closely related to the studies on 

the tool failure monitoring in a turning process is presented in this chapter. Firstly, 

types of tool failure are presented. Previous research works related to the monitoring 

of tool failure by gradual wear and premature failure by chipping are reviewed in the 

next section. Emphasis is placed on the in-process detection of the tool chipping for 

ceramic cutting tool. A summary of the literature review is presented at the end of 

the chapter. 

2.2 Types of tool failure  

 The turning process is widely used in industry for finish machining of a wide 

range of components. Tool failure monitoring in turning is essential to achieve not 

only optimum productivity by reducing machine downtime and unnecessary tool 

changes, but also to obtain high surface quality and dimensional accuracy as well as 

minimize the damage to the workpiece or machine tool.  

 Tool failure can be classified into two groups namely wear and fracture. Wear 

is generally the removal of material from a cutting tool and is a result of  the relative 

motion between the tool and workpiece. Flank wear at the front edge of the tool flank 

face and crater wear at the tool rake face are the most typical modes of tool wear in 

turning (Figure 2.1). Flank wear is mainly caused by the abrasion between the 
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workpiece and the cutting tool. Crater wear is the formation of a groove on the tool 

rake face where the chips rubs the tool surface.  

                        

Figure 2.1: (a) Tool-workpiece interaction, and (b) location of crater wear and flank 
wear (Ӧzel & Davim, 2009) 

 Directly measured dimensional features of a typical wear pattern have been 

applied in the past to assess cutting tool's performance which are standardized in 

International Organization for Standardization (ISO, 1993). Compared to crater wear, 

flank wear is often used as a criterion to define the end of effective tool life as the 

wear progresses gradually as shown in Figure 2.2 and thus can be easily monitored. 

 

Figure 2.2: Typical flank wear versus time curve (Wang & Gao, 2006) 
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 Flank wear appears in the wear land and is defined by the width of the wear 

land VB as shown in the Figure 2.3. According to the ISO (1993), the cutting tool is 

considered to have failed if the average flank wear (VBB) and the maximum flank 

wear (VBmax) exceeds some critical value such as VBB> 0.3 mm and VBmax> 0.6 mm.  

 

 

 

Figure 2.3: Typical wear pattern according to ISO (1993) 

 Tool fracture is the damage on the cutting edge that range from 

microchipping to gross chipping. Premature tool failure by chipping refers to the 

breaking away of small piece from the edge of a cutting tool in micro-scale to 

massive chipping of cutting edge as shown in Figure 2.4(a) and Figure 2.4(b) 

respectively. Tool  breakage, on the other hand, is the breaking of the entire insert 

that leads to a total loss of contact between the cutting edge and workpiece as shown 

in Figure 2.4(c). Chipping of a tool is different from wear, which is a gradual process, 

premature tool failure by chipping and breakage mostly occur as a sudden and 

unpredictable breaking away of tool material from the cutting edge. The main 

reasons for chipping and breakage include brittle nature of the cutting tool materials, 

the rapid  growth of the crater wear, pre-existing potential cracks on the cutting edge, 

inclusions in the workpiece profile leading to mechanical shocks and impact loading 
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resulting from the sudden engagement of the cutting tool into the workpiece (Grzesik, 

2008a).  

 

                               

Figure 2.4: Tool failure by chipping and breakage (Grzesik, 2008a) 

2.3 Monitoring of gradual wear 

 Monitoring of gradual wear generally can be divided into two types: direct 

and indirect method which is explained in Section 2.3.1 and Section 2.3.2, 

respectively. 

2.3.1 Monitoring of gradual wear using direct method 

 Extensive efforts have been focused on tool wear monitoring using optical 

methods which is conducted by directly analysing the change in the geometry of the 

cutting tool. Toolmaker's microscope is the most popular device used to measure 

wear of cutting tools (Grzesik, 2008a; Čerče et al., 2015). SEM with magnification in 

the range of several hundred to several thousand is most often used for micro 

examination. More advanced measuring techniques such as white light 

interferometry and confocal microscope can be of interest when the analysis in the 
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nano-scale range is necessary and is useful for crater wear measurement (Devillez et 

al., 2004; Dawson & Kurfess, 2005). However, the abovementioned direct methods 

have one main limitation, which is they can only be used for offline measurement. 

For the offline measurement, the cutting tool has to be dismantled from the machine 

tool for inspection and this causes interruption to the cutting process as well as is 

time consuming. Atomic force microscopes (AFM) are powerful tools for 3-D profile 

measurement with a very high resolution. However, it is very difficult and time 

consuming to accurately align the AFM cantilever probe with respect to the cutting 

edge (Cazaux, 2004; Mazzeo et al., 2009).  

 The past decades has seen the rapid development of tool condition monitoring 

using machine vision coupled with image processing techniques as direct method in 

flank wear measurement. In this method, a CCD camera with appropriate lighting 

reflected in the plane of wear surface is used to acquire the image of the cutting tool. 

Kurada and Bradley (1997) carried out pioneering work in direct tool condition 

monitoring by capturing images of flank wear using two fibre optic guided lights and 

CCD camera. Lanzetta (2001) recognized the types of defects of cutting tool and 

simultaneously measured the flank wear using a CCD camera equipped with an auto-

focus zoom lens for different sizes of cutting tool. However, their study was 

performed offline.  

 Pfeifer and Weigers (2000) captured images of tool inserts using CCD 

camera with a ring light in different angles of incidence for controlled illumination. 

But there still remain the problem of accuracy because the measurement of flank 

wear using digital image processing method is highly dependent on the quality of 

captured images as it is vary considerably although there is a small variation in 
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illumination. This leads to error in dimensional measurements. Sortino (2003) 

developed an automated flank wear measurement software by using statistical 

filtering method from a colour image. However, this measurement method is limited 

for small flank wear width. 

 Jurkovic et al. (2005) proposed a vision system which comprised of a CCD 

camera, laser diod with linear projection as a light, frame grabber for capturing and a 

personal computer as direct means in flank wear and crater wear measurement. 

Castejόn et al. (2007) and Barreiro et al. (2008) applied machine vision to determine 

flank wear by means of the discriminant analysis based on geometrical descriptors. 

The main advantages of their methods is the information about the condition of 

cutting tool can be obtained without having to remove the cutting inserts from the 

tool holders. However, the proposed wear measurement techniques using machine 

vision method were performed between the cutting operation such as in-cycle or 

intermittent, which requires the machine tool to be stopped. Fadare and Oni (2009) 

used Canny edge operator to detect significant edges of the worn area of a cutting 

tool in order to determine the flank wear and notch wear. Although this method is 

very useful for flank wear determination, but the method is very much sensitive to 

the fluctuation of ambient light.  

 Nose wear measurement has also gained attention in the recent years since 

the machined surface is mainly formed by the tool nose in finish turning. The nose 

wear can be measured by subtracting the 2-D image of a worn tool from the image of 

an unworn tool. Kwon and Fischer (2003) determined the nose wear by subtracting 

the worn tool image from a template after spatial registration of these images. A 

similar method was also carried out by Shahabi and Ratnam (2009a). The nose wear 
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was determined by subtracting the 2-D image of a worn tool from the image of 

unworn tool. The subtraction method can effectively and accurately determine the 

nose wear, but it requires two images that are aligned precisely before the subtraction. 

To overcome the limitation, a new approach was proposed by Mook et al. (2009) for 

measuring nose wear using a single worn cutting tool image. However, this method 

is not feasible to implement in-process.  

 In a recent work, Čerče et al. (2015) developed an intermittent 3-D cutting 

tool wear measurement system using a 2-D profile laser displacement sensor. With 

movement of the laser displacement sensor across the cutting insert, the sensor 

measured the distance from the measurement head to the points projected onto the 

cutting insert and the profile data of cutting insert were grabbed in a matrix form for 

further evaluation. The depth of flank wear is clearly visible from the comparison of 

the new and worn cutting inserts cross-sections profiles. Nose wear and crater wear 

can also be determined by calculating tool wear volume. However, the disadvantage 

of this method is that it is sensitive to contaminants such as coolant, chips and dust 

that may remain on the cutting inserts to be measured, which can cause error in the 

measurement.  Chethan et al. (2015) used digital camera with a halogen light to 

capture the images of cutting insert. The wear region of the cutting insert was 

estimated using Blob analysis in order to extract the features such as wear area, 

perimeter and compactness to correlate with the flank wear. However, this method 

was carried out offline. 

 

 



18 

2.3.2 Monitoring of gradual wear using indirect method 

 In-process tool wear monitoring is gaining considerable importance in the 

manufacturing industry. This can be attributed to the transformation of 

manufacturing systems from manually operated production machines to highly 

automated machining centres. In-process tool condition monitoring implies 

identifying the cutting tool conditions without interrupting the machining process. 

The direct tool wear evaluation on cutting tool using machine vision system is very 

simple and accurate, but this method only can be implemented in between cutting 

operations when the cutting tool is not in contact with the workpiece. 

 In-process monitoring of tool wear is usually performed by indirect methods 

that depend upon the measurement of sensor signals which are indirectly correlated 

to the condition of the cutting tool during the machining operation. Commonly used 

sensor signal in previous studies including cutting force, AE, vibration, temperature, 

motor current and power consumption.  

 Cutting force has been proven to be the one of the significant indicator of tool 

wear as gradual increase in tool wear during machining causes the cutting force to 

increase (Gao et al., 2015). The cutting forces generally increases with flank wear 

because an increase in contact area of the wear land with the workpiece. The use of 

dynamometer is the most popular method for measurement of cutting forces. It was 

reported that cutting force currently is the most reliable method employed in in-

process tool wear monitoring because cutting force is more sensitive to tool wear 

than AE and vibration. Thus, many studies have been conducted in the past using 



19 

cutting forces to establish the relationship with the flank wear (Sikdar & Chen, 2002; 

Sick, 2002; Oraby et al., 2005).  

 Dimla and Lister (2000) used three perpendicular cutting forces to correlate 

with the flank wear through time series and FFT. They reported that the tangential 

cutting force is the most sensitive to flank wear while Li (2005) reported that the feed 

and radial forces are more sensitive to flank wear than tangential cutting force. Fang 

et al. (2011) concluded that feed force was more sensitive to flank wear. Salgado and 

Alonso (2007) also found that feed force was more suitable to be applied in tool wear 

monitoring system because the radial force and tangential force showed greater error 

in flank wear estimation which reduce the success rate and can cause false alarm. 

Zhou et al. (2003) indicated that the radial force showed a significant increase when 

the flank wear increase to 0.2 mm. Penedo et al. (2012) also suggested the radial 

cutting force to monitor the flank wear by using a hybrid incremental model. In a 

recent work, Liao et al. (2016) developed a novel approach for flank wear monitoring 

which is based on the multi-scale hybrid hidden Markov model analysis of cutting 

force signal. In their study, the instantaneous resultant forces was taken into account 

because the authors indicated that resultant force signal provides multi-scale 

information of different directions.  

 Cutting forces are often used to monitor the flank wear because cutting forces 

are easy to measure and they have a clear phenomenological relationship with flank 

wear. However, there is no agreement to which cutting force component has more 

closer relationship with tool wear. In addition, Liao et al. (2016) reported that the 

high temperature in tool tip and fast tool material losing rate always result in rapid 
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tool wear and large fluctuation of cutting force during machining of difficult-to-cut 

materials.  

 Ren et al. (2011) applied cutting forces in a Takagi-Sugeno-Kang (TSK) 

fuzzy approach for tool wear monitoring. Liu et al. (2013a) used several statistical 

parameters such as average value, RMS, kurtosis and skewness extracted from the 

cutting forces as input of back-propagation neural network and adaptive neuro-fuzzy 

inference system for in-process flank wear monitoring. In a recent work, Gao et al. 

(2015) proposed a data driven modeling framework for flank wear monitoring in 

turning which is based on statistical processing of cutting force wavelet transform by 

a hidden Markov tree model. The drawback of these methods is greater 

computational burden in training phase as a large number of observation samples 

were used as training data with different machining conditions to build the model to 

estimate the flank wear.  

 Ghani et al. (2009) presented a tool wear monitoring method from the cutting 

forces and cutting parameters using the regression model to predict the flank wear. 

Camargo et al. (2014) developed a mathematical model based on multiple regression 

analysis to estimate tool wear during turning of AISI D6 hardened steel using PCBN 

cutting insert. Although the developed regression model accurately determined the 

flank wear, the regression based method cannot be extrapolated to different range of 

cutting condition and to other workpiece and cutting tool materials. 

 Monitoring cutting tool wear via AE signal analysis has long been practiced. 

AE can be defined as the transient elastic wave generated by the sudden release of 

energy in a material. There are several sources of AE signal during machining such 
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as (i) friction contact between the flank face of cutting tool and workpiece resulting 

in flank wear, (ii) plastic deformation of cutting tool, (iii) chipping and tool fracture 

(Li, 2002). The main benefit in the use of AE signal in tool wear monitoring is that 

the frequency range of the AE signal is much higher than that of the machine 

vibrations and environmental noises.  

 Bhaskaran et al. (2012) used skewness and kurtosis of the RMS value of AE 

signal to monitor flank wear. The kurtosis of RMS value of AE signal increased as 

the flank wear increased. High skewness of the RMS value of AE signal was found 

when the flank wear land reached the critical value. Compared to the conventional 

data processing method, Chen and Li (2007) reported that the wavelet resolution 

coefficient norm of AE signal is more reliable and useful to estimate tool wear. 

However, low magnitude of AE signal was generated when the cutting tool 

undergoes gradual wear compared to the higher magnitude of AE signals which 

accompanies tool failure by plastic deformation or tool chipping. Thus, AE is not 

suitable for use as tool wear indicator in gradual wear monitoring applications, but 

could be used  to detect the end of tool life when the tool has deformed due to the 

excessive wear.  

 Maia et al. (2015) reported that monitoring the tool wear through the AE 

signal processed using the average power spectral density (PSD) is sensitive to the 

wear rate, responding with the high magnitude AE signal value at the beginning of 

tool life and followed by a decrease at the middle of tool life and increase at the end 

of the tool life when the wear rate becomes higher. However, monitoring of tool 

wear using AE signal was  difficult because each of the mild wear and severe wear 

excited a different frequency band (Hase et al., 2012).  
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 During machining, the workpiece and chips rub against the worn tool and 

produce vibrations which can be used in various ways for tool wear monitoring. 

Accelerometers are often used to acquire the vibration response. Dimla (2002) 

reported that vibration increased with flank wear and the vibration signal in the feed 

and tangential direction were the most sensitive to flank wear. The results showed 

that time domain analysis of vibration signal to be more sensitive to cutting condition 

than tool wear, whereas sum total power of vibration signal correlated well with the 

flank wear. However, the author found that vibration signal can only give better 

estimation of flank wear in low feed rate because the vibration signal is noisier in 

higher feed rate.  

 Chen et al. (2011) monitored flank wear in turning based on logistic 

regression model by using vibration signals. The wavelet package transform was 

used to decompose the original vibration signal to find out the frequency bands 

which well correlated to flank wear and applied the extracted most related features of 

vibration signals into the logistic regression model to monitor the cutting tool wear. 

Alonso and Salgado (2008) proposed tool wear monitoring based on longitudinal and 

transverse vibration signal using singular spectrum analysis (SSA) to decompose the 

acquired vibration signal. The RMS and variance of the decomposed vibration 

signals were extracted and the corresponding cutting condition parameters were fed 

into a back-propagation neural network to determine the flank wear. However, not all 

the decomposed vibration signals correlated well with the flank wear. The 

information in the decomposed vibration signals about flank wear is contained 

mostly in the high frequency components. Alonso and Salgado (2008) indicated that 

the range of frequencies most correlated with the tool wear changes with the cutting 
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tool condition and tool wear. For this reason, implementation of the tool condition 

monitoring based on vibration signal becomes difficult because the frequency range 

that correlated with the tool wear was difficult to be identified.  

 Temperature has also been used as a parameter for monitoring tool wear 

because heat generation is unavoidable in all machining process and it will damage 

the cutting tool tip due to the effect of diffusion and plastic deformation. Several 

attempts have been made to monitor the wear of cutting tool based on temperature 

monitoring. To measure the temperature in the tool tips, thermocouples are the 

commonly used sensors (O'Sullivan & Cotterell, 2001; Choudhury & Bartarya, 2003; 

Korkut et al., 2011). However, due to the narrow shear band, chips obstruction and 

the contact phenomenon between tool and workpiece the measurement of the cutting 

temperatures closed to tool tip becomes much difficult. In addition, since the 

temperature varies during machining and cannot be uniquely described by discrete 

values at a point this can cause error in the tool wear estimation (Sivasakthivel & 

Sudhakaran, 2013). Infrared thermal cameras have been applied to overcome the 

limitation of the thermocouple (O'Sullivan & Cotterell, 2001; Davoodi & 

Hosseinzadeh, 2012). However, the major drawback of the infrared sensor is due the 

coolant and the chip that may come between the sensor and the surface to be 

measured thereby causing errors in measurement. 

 Application of microphone to measure the sound signal for tool condition 

monitoring has also been attempted in the past. Tekiner and Yesilyurt (2004) used 

sound signal to assess the flank wear, built up edge, radii of chip curl and surface 

roughness. Salgado and Alonso (2007) estimated flank wear progression by the 

emitted sound using singular spectrum analysis in turning of AISI 1040 steel. Samraj 
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et al. (2011) used singular value decomposition to extract the information regarding 

flank wear from the emitted sound during turning. Monitoring of flank wear using 

sound signal has been proven possible, however this method is difficult to implement 

in the real industry because the noise from adjacent machines and motors can 

influence the signals.  

 The use of current and power signal has also been proposed in tool wear 

monitoring, either from spindle motor or from feed motor. This is because a worn 

cutting tool require more cutting forces than an unworn cutting tool, thus resulting in 

more power and current. The major advantage of using current and power signals is 

its simple hardware implementation that does not interfere with the cutting process. 

However, current and power signals are not as sensitive to flank wear when 

compared to cutting forces, AE and vibration signal (Kaye et al., 1995; Silva et al., 

1998; Fu & Hope, 2006; Lee et al., 2007). 

 The need for a more reliable and accurate tool condition monitoring system 

over a wide range of industrial application is driving the research works towards a 

multiple sensor approach (known as sensor fusion).  This is because signals from a 

single type of sensor are typically insufficient to provide enough information for tool 

wear monitoring. The use of several sensors at different locations simultaneously has 

been proposed for data acquisition in the past. Signals from different sensors are 

integrated to give the maximum information needed about the tool wear such as the 

combination of cutting force and vibration (Chelladurai et al., 2008; Chen et al., 2010; 

Fang et al., 2011), AE and cutting force (Youn et al., 1994; Jemielniak et al., 2011a), 

AE and vibration (Bhuiyan et al., 2014), cutting forces, vibration and AE (Jemielniak 

et al., 2011b; Gajate et al., 2012), AE and cutting sound (Zhang et al., 2015).  
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 The strategy of integrating the information from a variety of sensors will 

increase the accuracy and reliability by resolving the ambiguities about the tool 

condition. Thus, the most significant advantage of sensor fusion is that sensor fusion 

enrich information for feature extraction and decision making strategy to correspond 

to the tool wear. However, this requires complex instrument and extensive data 

processing makes this method difficult to implement in a real manufacturing 

environment.  Although indirect methods based on various sensor signals have 

gained a wide interest among researchers in tool wear monitoring, the extraction of 

the tool condition from the acquired signal is still a challenging task as the detected 

signals contain noise and other uncertainties (Sanjanwala et al., 1990; Nakao & 

Dornfeld, 2003; Abellan-Nebot & Subirόn, 2010). 

2.4 Detection of tool failure by chipping 

 While tool wear is a slow and progressive process, tool failure by chipping 

and breakage is a sudden and mostly unexpected event which requires immediate 

reaction. Tool chipping is a major cause of unscheduled stoppage in a machining 

operation. It was reported that an average up to 20% of downtime of machine tools 

resulted from tool failure. Tool failure by chipping on the cutting edge can also cause 

substantial damages to the workpiece and machine tool. Thus, the ability to detect the 

occurrence of a tool failure by chipping during machining is much needed and the 

detection of tool failure must be reliable so as to eliminate machine downtime due to 

false alarm (Rehorn et al., 2005).  

 Several signal variables have been reported as good indicators of tool failure 

by chipping. Among these, cutting force, AE, vibration and motor current have been 
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investigated intensively in the past for their sensitivity to tool chipping. The effect of 

the tool chipping on the measured signals must be unique to be distinguishable so 

that other process irregularities such as hard inclusion in workpiece materials will not 

be confused with tool chipping.  

 The use of the  cutting force in detecting the tool chipping and breakage has 

been applied widely in turning process. The effect of the tool chipping is usually 

revealed from an abrupt change in the signals measured in excess of a threshold 

value (Kim & Choi, 1996). Cakir and Isik (2005) used cutting forces to detect the 

precise moment of tool breakage. They found that when a tool breaks the tangential 

cutting force increases slightly above the pre-set threshold and then drops sharply. 

This was due to the loss of contact between the tool and the workpiece. The finding 

is consistent with the findings of past study by Kwak (2006). Cakir and Isik (2005) 

also reported that cutting force is more sensitive to tool chipping instead of the 

vibration and motor current. However, tool chipping can also cause failure of a 

cutting edge without decreasing the cutting force significantly (Jemielniak, 1992; Shi 

& Gindy, 2007). 

 A number of studies have also found that monitoring of AE signal to be an 

effective method to monitor tool chipping. Some previous studies have shown that 

the level of the RMS of AE signal increases as cutting time and significant burst of 

AE energy is generated at the instant of tool chipping (Jemielniak & Szafarczyk, 

1992; Jemielniak & Othman, 1998; Li et al., 1998). Wang et al. (2003) used time-

frequency analysis to process different AE signals emitted from cutting process to 

estimate the tool state in turning. They found that a burst AE signal in frequency 

domain was observed after tool chipping because of the sudden increase in the 
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contact area between the workpiece and the chipped cutting tool. However, 

contradictory finding was reported by other researchers whereby when tool chipped 

on a large scale the AE signal reduced due to the decrease in the depth of cut (Li & 

Mathew, 1990). 

 Belgassim and Jemielniak (2011) applied statistical method to analyse the AE 

signal to detect tool failure. They investigated the distribution moments of the AE 

signal at a predetermined sampling and used the skewness and kurtosis of the 

distribution to detect tool chipping. They reported that conventional data processing 

of AE signal features does not enable the different phases of tool wear to be clearly 

recognised for the detection of tool chipping.  

 The use of the FFT has been attempted by several researchers in order to 

detect unusual changes in vibration frequencies due to wear and chipping (Jiang et al., 

1987; Colgan et al., 1994). However, the main drawback in the use of vibration 

signal is their susceptibility to noise and the dependency of the vibration 

characteristics on combination of machine, tool and workpiece (Wang & Gao, 2006). 

In addition, as spikes in vibration signals are also generated by hard spots in 

materials, this can be confused with the spikes generated by chipping.  

 Tool chipping detection from a single signal variable may lead to 

misinterpretation of the data due to the complicated dynamic characteristic of 

machining process. To improve the reliability of tool chipping signature, efforts on 

integration of multiple sensor signals measurement to detect tool chipping using 

various pattern classification techniques have been done. Colgan et al. (1994) used 

multi-valued influence matrix (MVIM) method to determine tool chipping from 
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vibration and feed motor current signals. However, this detection method result 

indicated that vibration and feed motor current signal in MVIM were less sensitive to 

its training environment compared to the neural network. Wang et al. (2003) applied 

unsupervised neural network to detect tool chipping from AE and motor power 

signal during turning. However, the ability of neural network method to form a 

reliable tool chipping signature depends strongly upon their structure and their 

training inputs. In the case such as machining where adequate data are not available 

for comprehensive training, neural network may produce false alarms. In a recent 

work, statistical pattern classification has been also proposed for tool chipping 

detection in turning using AE and cutting force signal (Balsamo et al., 2016). The 

authors reported that this method could not correctly detect the tool chipping instant 

from the recorded signal due to a delay in the instant detection between AE and 

cutting force signals. 

 In a recent work, a precision on-machine measurement method of chipping 

on cutting tool edge which employed a diamond reference edge as a measuring 

artifact was developed based on a cutting force sensor integrated with the fast tool 

servo (Chen et al., 2016). The worn tool on the fast tool servo was brought to scan 

across the diamond reference edge based on the a contact force feedback control loop 

applied to fast tool servo. The cutting force between the cutting tool edge and the 

reference edge was kept constant by controlling the tool displacement so that the 

cutting tool edge contour can be traced by the reference edge. But, this method is 

strictly feasible for offline measurement only. 
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2.5 Detection of tool failure in ceramic cutting tool 

 The use of aluminium oxide based ceramic cutting tools in turning of 

difficult-to-cut materials is an attractive alternative to replace grinding operation in 

order to reduce manufacturing costs. Ceramic cutting tools is useful in the cutting of 

difficult-to-cut materials such as stainless steel (Lin, 2008 ; Sobiyi et al., 2015), 

superalloy (Bushlya et al., 2013), tool steel and hardened tool steel (Özel et al., 2005; 

Özel et al., 2007; Meddour et al., 2015).  

 Interest in ceramics cutting tools in turning of difficult-to-cut material is 

owing to its favourable materials properties such as high hot hardness, good abrasive 

resistance and chemical stability. But, the main limitations of ceramic tool materials 

are due to their low fracture toughness and poor thermal shock resistance, thus 

resulting in premature tool failure by chipping or catastrophic failure by breakage 

instead of gradual wear. Continuous machining with a chipped tool can severely 

deteriorate the surface finish quality and dimensional accuracy of the machined part. 

Thus, in-process detection of the tool failure by chipping in ceramic is important so 

that the machine tool to be able stopped immediately to prevent damages to the 

workpiece and machine tool.   

 Direct methods using vision system has been attempted to monitor wear in 

ceramic cutting tool in the past. Patil and Tilekar (2014) proposed an offline tool 

wear assessment using digital camera and the captured images of cutting tool were 

processed in MATLAB. Cakan (2011) used a laser source that focuses on the 

workpiece and its reflected ray is captured in-process using a photodiode for accurate 

measurement of the workpiece diameters to predict the flank wear of alumina based 
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ceramic cutting tools. The flank wear was indirectly monitored in response to the 

increases in workpiece diameter. However, no attempts was made to monitor tool 

chipping in ceramic cutting insert. 

 Indirect methods using cutting force signal in detecting the tool chipping in 

ceramic cutting tools have been attempted in the past. Cutting forces are influenced 

by the tool geometry, as the cutting tool wears, its geometry changes thus impacting 

over the cutting forces. Jemielniak (1992) used the cutting force in the time domain 

to detect the tool chipping in ceramic cutting tool. Their results showed that stepwise 

increase of the average level of the cutting force indicated that tool has chipped. 

 Shi and Gindy (2007) developed an in-process monitoring method for hard 

turning using three component force sensors. Experiments were performed for 

machining Inconel 718 using ceramic tools. The acquired cutting force signals was 

subsequently processed using wavelet transform. The decomposed signal allows one 

to distinguish between the static and dynamic components in the force signal and to 

obtain features of tool malfunctions such as tool wear, tool chipping and tool 

breakage. The authors found that the use of force signal to detect tool chipping is 

more difficult compared to the detection of excessive wear and tool breakage 

because the variation of cutting force caused by tool chipping did not exceed the 

threshold limit. This study was repeated using multiple sensory signal such as power, 

force and vibration. The features of each sensor signal were extracted using statistical 

parameters to correlate with the wear of the ceramic cutting tool. Shi and Gindy 

(2007) concluded that the extracted statistical parameters from different sensor signal 

increased with tool wear. Power and force sensor signal were found to be more 

sensitive in detecting the tool wear compared to the vibration sensor signal. 
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 Neslušan et al. (2015) used an AE method to detect the failure of ceramic 

tools during hard turning of bearing steel. The authors concluded that the 

conventional processing of AE signals does not enable the different phases of tool 

wear to be clearly recognised. It was possible to detect tool failure by chipping and 

breakage only by recording and analysing the AE features using two different AE 

sensors at different frequency ranges. 

 Jemielniak et al. (2011a) applied sensor fusion including vibration, cutting 

force and AE to monitor the tool condition during turning of Inconel 625 using 

ceramic cutting insert. The signal features were extracted from time domain signals, 

frequency domain and time-frequency domain. Cutting force was found to be the 

most informative parameter for tool wear monitoring compared to the vibration and 

AE. However, the authors reported that multiple sensor signals used together 

produced results a little worse than using a single sensor signal. 

2.6 Detection of the tool failure from the workpiece surface using machine 

 vision and image processing method  

 Surface quality has also been used to evaluate the cutting tool condition as the 

cutting tool operates directly on the workpiece and the machined surface carries 

valuable information about the machining process. With the rapid development of 

machine vision and image processing methods, researchers have started using 

machine vision to investigate tool wear indirectly based on the workpiece surface of 

a machined part. Kassim et al. (2007) distinguished the sharp and dull tools based on 

the surface texture of a turned workpiece. The turned workpiece was shaped by 

cutting tool during machining process which caused ridges and groves formed on the 
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surface of workpiece. The groves are even and straight with clear ridge lines when 

the cutting tool is sharp. When the cutting tool is dull, the groves appear uneven and 

ridge lines become disjointed. However, the images of workpiece surface were 

captured in-cycle, thus interrupt the machining. 

 Several researchers have attempted to evaluate the tool condition by 

extracting the surface finish descriptors from the images of freshly machined surface 

texture. Dutta et al. (2012) captured images of machined surface in-cycle and 

analysed them offline using grey level co-occurrence method. The variation of 

texture descriptors, namely contrast and homogeneity, with machining time were 

studied and successfully correlated with tool flank wear. However, no attempt was 

made to investigate the effect of tool chipping on the texture descriptors. 

 Datta et al. (2013) successfully applied the concept of Voronoi tessellation to 

extract two texture features, namely the number of polygons with zero cross moment 

and the total void area of the Voronoi diagram from the machined surface images to 

be correlated with the flank wear. Voronoi tessellation is a popular method for 

clustering a set of points into an arrangement of regions defined by the local 

neighbourhood of each of the points. Voronoi diagram is used to create polygons 

which provides a description of the neighbourhoods for each of the constituting 

points. The geometric features of the Voronoi polygons depend on the distribution of 

points can be used to detect any underlying structural pattern in an image. Non-

uniform feed marks is formed in the machined surfaces due to the increase in tool 

flank wear which results in non-uniform edges in the machined surfaces. Thus, 

Voronoi polygons becomes non-uniform with the increase in tool flank wear. Dutta 

et al. (2016) applied texture analyses namely gray level co-occurrence matrix 
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(GLCM), Voronoi tessellation, and discrete wavelet transform (DWT) based 

methods to obtain information about the waviness, feed marks, and roughness from 

the turned surface images for predicting the tool flank wear using support vector 

machine (SVM) based regression models. However, non-homogeneous illumination 

due to improper lighting and interference of ambient lighting can affect the 

reflectance of the workpiece surfaces adversely thus resulting in redundant features 

from the images of the machined surface.  

 Recently,  Li and An (2016) used machine vision method to acquire the 

cutting tool images and workpiece surface images simultaneously to monitor tool 

wear. The automatic focusing and segmentation of the wear region of the cutting tool 

was determined by using Markov Random Field algorithm while the features of the 

surface texture of the workpiece surface was obtained using a GLCM to monitor tool 

wear. Although this proposed method seems promising, images of cutting tool and 

workpiece only can be captured in between turning operation when the cutting tool is 

not in contact with the workpiece. 

 Shahabi and Ratnam (2009b) have successfully applied backlighting to 

capture the silhouette of workpiece profile to determine the nose wear and flank wear. 

The proposed method can effectively determine the nose wear by subtracting the 

images of workpiece profile produced by worn and unworn tool. The maximum flank 

wear, VBmax in the nose radius area can also be determined accurately from the 2-D 

image of nose radius area of cutting tool using polar coordinate. However, their work 

was conducted in-cycle and no attempt was made to detect the tool chipping. 
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2.7 Signal processing method 

 The signal captured from the machining process are required to be processed 

and analyzed to obtain the important information about the tool condition. The 

extraction of signal features related to cutting tool condition is a key issue in tool 

condition monitoring system. For best performance of tool condition monitoring 

system, only those signal features which show a high sensitivity to tool condition 

should be utilized to make the sensing system more efficient. Tool wear monitoring 

based on sensor signal usually is evaluated through signal processing methods that 

comprise the steps shown in Figure 2.5. The steps including choice of the measurable 

sensor signal to be captured, feature extraction and feature classification. The raw 

sensor signals is processed to extract significant features from the signal in the time 

domain or frequency domain and to correlate the tool wear or were further fed into a 

model such as autoregression model, neural network to estimate the tool state (Lauro 

et al., 2014). 

 

 

 

 

 
 

Figure 2.5: The framework of tool condition monitoring using indirect method 
(Lauro et al., 2014) 
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2.7.1 Time domain analysis 

 Signal features need to be derived so that can be used to describe the signal 

adequately and maintain the relevant information about the process or tool conditions. 

The most common signal features that can be extracted from any time domain signal 

are the mean and RMS value of signal. Dimla and Lister (2000), Sikdar and Chen 

(2002), Cakir and Isik (2005), Sharma et al. (2008) used time domain analysis for 

force signals and they found that the time domain features of cutting forces 

correlated well with the tool wear. Guo and Ammula (2005), Bhaskaran et al. (2012), 

Hase et al. (2014) and Neslušan et al. (2015) used the RMS value of AE signals to 

estimate the tool condition and found that good correlation exists between the RMS 

of AE signals and tool wear. Other signal features such as kurtosis, skewness, 

variance and standard deviation (Bhaskaran et al., 2012; Liu et al., 2013a) are also 

been adopted for tool condition monitoring. The time domain features have still been 

widely used in tool condition monitoring as they offer a great deal of simplicity in 

terms of the extraction. However, these features are susceptible to disturbances so 

they need to be supplemented with features from other domains (Siddhpura & 

Paurobally, 2013).  

 Some previous works have discussed tool wear monitoring by the analysis of 

surface roughness. The findings agreed that an inherent relation between the surface 

roughness and tool wear exists. This is because the surface roughness of a workpiece 

is influenced by the sharpness of the cutting tool. Choudhury and Bartarya (2003) 

indicated that arithmetic average height of surface profile, Ra decreased when the 

flank wear increased. However, Lima et al. (2005) found that increased in the flank 

wear resulted higher value of Ra. Peak-to-valley height of profile, Rt is observed to 
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decrease as the amount of the flank wear increased (Runola et al., 1994). However, 

the opposite finding was reported. Penalva et al. (2002) and Grzesik (2008b) found 

that Rt becomes higher when the tool wear continued increase. Although the use of 

single parameter of the surface roughness could be used to indicate a change in the 

machining process, it is difficult to identify where the changes in the machining have 

been occurred. In addition, surface roughness parameters is also highly dependent on 

cutting parameters such as cutting speed, feed rate and depth of cut. Thus, it results 

in different surface roughness when various cutting parameters are adopted.  

 ACF is an important diagnosis tool which allows to identify the possible 

random and periodic features buried on generated surface profile. Roy et al. (2007) 

segregated the relative contribution of the electrolytic dissolution and the mechanical 

abrasion in electromechanical grinding by evaluating the surface profile using ACF.  

In a recent work, characteristic of machining process are investigated by extracting 

the topographical features of electrical discharge machining machined surface 

through the decomposition of ACF curves (Aich & Banerjee, 2017).  

 The use of ACF has also been attempted for fault detection and diagnosis. 

Zubaydi et al. (2000) successfully applied ACF to analyze the vibration response of a 

structure in order to identify the occurrence of small cracks in the side shell of ship 

structures. The advantage of using the ACF is that it could be easily obtained from 

the random vibration response of the structure using a statistical procedure. Rafiee                                                                                                                              

and Tse (2009) introduced ACF of continuous wavelet coefficient of vibration 

signals as a feature for non-stationary signals in gear fault diagnosis. The ACF plots 

of synchronized vibration signals is found dies out quickly as with the worn gear. It 

should be noted from the above literature review, ACF has been successfully applied 
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for machine surface assessment and machine fault diagnosis. However, limited 

studies are available on the use of ACF in tool wear monitoring. This has motivated 

the detection of tool chipping from workpiece profile signature using ACF . 

2.7.2 Frequency domain analysis 

 Frequency domain analysis is a tool of utmost important in signal processing 

applications. While time domain analysis shows how a signal changes over time, 

frequency domain analysis shows how the signal's energy is distributed over a range 

of frequencies. The information that cannot be readily seen in the time domain can be 

seen in the frequency domain. For this purpose, FFT is the standard method for 

observing signals in the frequency domain and it has been widely used in tool 

condition monitoring. The main advantage of frequency domain analysis over time-

domain analysis is its ability to identify and isolate certain frequency components of 

interest and thus extract the features from the signal. For example, Liu et al. (2013b) 

discovered that the fundamental and third harmonics of frequency of cutting forces 

are predominantly affected by tool eccentricity, second harmonic of the frequency is 

caused by the tool wear and fourth harmonic is associated with the chip load.  

 The signal features extracted from frequency domain are usually considered 

the amplitude of dominant spectrum peaks and signal power in specific frequency 

ranges (Teti et al., 2010). Dimla and Lister (2000) used frequency spectrum from 

vibration and cutting forces signal to correlate with wear. The amplitude of the 

fundamental frequency peaks of sensor signal was found to increase with tool wear 

and very slight shift into lower frequency. Similar results was also reported by 

Kalvoda and Hwang (2010). Haddadi et al. (2008) adopted FFT for vibration signal 
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for tool condition monitoring in turning operation. The amplitude of the signal 

spectrum in the range of 0-3.5 kHz was responsive to tool wear and the wear of the 

cutting tool was accompanied by an increase in the spectrum amplitude of vibration 

signal in the range of 0-3.5 kHz. In addition, statistic features of the band power 

spectrum has also been utilized to assess the tool condition. Binsaeid et al. (2009) 

used mean, variance, kurtosis and skewness of power spectrum in specific frequency 

band as well as the frequency of maximum peak of band power from multiple sensor 

signals of force, vibration, AE and spindle power to estimate the wear level.  

 

2.7.3 Time-frequency domain analysis 

 The band energy in frequency domain allows to predict tool wear, but the 

main drawback on the use of FFT is lack of time information for detecting transients 

which include chipping, breakage, collision of a cutting tool. To solve this problem, 

an attempts has been made through the development of short time Fourier transform 

(STFT), which is widely applied to tool condition monitoring (Marinescu & Axinte, 

2008; Marinescu & Axinte, 2009; Rad et al., 2014) .  

 In STFT method, the signal is divided into small segment where these 

segments of the signal is multiplied by a window function to characterize the changes 

of frequencies at different time intervals. Spectral coefficients are calculated for the 

short length of data within the window function, the window function is then moved 

to a new position and the calculation is repeated (Teti et al., 2010) to reveal the 

variation of the frequency content of signal within the window function. The inherent 

problem associated with STFT is the trade-off between the time and frequency, 

which indicates that time and frequency cannot be resolved simultaneously due to 



39 

Heisenberg's uncertainty principle (Zhu et al., 2009, Feng et al., 2013). The choice of 

the window function is found that directly affects the time and frequency resolutions 

of the analysis result (Gao & Yan, 2010). In addition, the use of the window function 

in STFT, a part of the window function is attenuated at the boundaries which can 

cause a loss of frequencies response in the boundaries regions (Pampu, 2011).  

 In addition to STFT, wavelet transform has been successfully applied and 

became the most informative approach for time-frequency analysis of signals. 

Wavelet theory has been developed in the late 1980s by Mallat (1989) and 

Daubechies (1990) to fulfil the needs for adaptive time-frequency analysis, which 

can overcome the resolution problem of the STFT. Wavelet transform has been 

widely applied for tool condition monitoring as its great potential in detecting the 

abrupt changes of tool condition. Khraisheh et al. (1995) found that CWT is suitable 

for analyzing the transient in vibration signal during turning process and the transient 

boundary and the built-up edge were successfully identified. Yesilyurt (2006) used 

the mean frequency variation of scalogram of vibration signal in end mill tooth 

breakage detection under varying feed rates. It was found that mean frequency 

variation of scalogram is quite responsive to the presence of fault.  

 It was reported that discrete wavelet transform (DWT) is preferable in the 

time-frequency analysis due to its ability of fast computation. When tool failure 

occurs, the signals often contain abrupt changes or a sudden shift to a different level, 

which known as singularity points. Gong et al. (1997) used DWT of cutting forces to 

monitor flank wear in turning process. Results showed that the fifth level wavelet 

coefficient were more sensitive to the changes of flank wear states under different 

depth of cut. However, Kwak (2006) found differences suggesting that the fourth 
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level approximation coefficient of the cutting force signal increased sharply at onset 

of tool failure.  

 Chen and Li (2007) applied DWT for singularity detection from AE signals 

during turning and found that wavelet coefficient norm was reliable for 

distinguishing between sharp tool and worn tool. Fang et al. (2012) adopted wavelet 

decomposition analysis to identify the changes in the vibration signals in different 

frequency bands and found that third level of wavelet coefficient of the vibration 

signal was the most sensitive to dynamic tool-edge wear. DWT utilises the sampling 

of both time data and scale to produce faster algorithm. Scale and time are sampled 

in power of two (dyadic sampling) to cause some content in scale is loss. Therefore, 

finest scale in CWT allows for localize the frequency change precisely.  

2.8 Chapter summary 

 Several tool failure monitoring methods including the methods that are still in 

development progress as well as the commercialized devices are reviewed. A 

summary of the available methods and their limitations are presented in Table 2.1. 

From the literature reviewed, it is seen that many optical and vision methods for 

direct wear assessment on the cutting tool have been developed in the past. Although 

direct measurement using machine vision have the advantages of capturing the actual 

geometric changes arising from the wear and chipping of the cutting tool, this 

methods cannot be applied in-process because the cutting area is inaccessible due to 

the continuous contact between the tool and the workpiece during machining.   
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 In-process tool failure monitoring is usually performed by indirect method 

based on various sensor signals. All the indirect methods reviewed in this chapter 

have their advantages and disadvantages when compared to one another. A number 

of studies show that a significant contradictory findings do exist. Thus, there still 

exists a need to develop a more reliable in-process tool failure monitoring method. 

Table 2.1: Summary of the methods and their limitations 

Method Limitations 

Direct tool condition 
monitoring method 

Tool maker's 
microscope, SEM, white 
light interferometry, 
confocal microscope, 
AFM, CCD camera 

- Offline, intermittent or in-cycle  
  monitoring 

Indirect tool condition 
monitoring method 
using sensor signal 

Cutting forces - Highly affected by process 
parameters, tool and workpiece 
material 

- Sensitive to noise 
- Reliability of the sensor signal to 
tool failure monitoring still has 
contradictory findings 

- Require high computational load  

Vibration 

AE 

Sound 

Temperature 

Current and Power 

Sensor fusion 

Indirect tool condition 
monitoring method 
using workpiece 
surface 

Surface Texture 

- Intermittent or in-cycle   
  monitoring 
- Subjected to illumination and 
contaminants (e.g. oils, dust) 

- No attempt was made on tool 
chipping detection 

Workpiece profile 

- Intermittent or in-cycle 
monitoring on flank wear and 
nose wear 

- No attempt made on tool chipping 
detection 

  

 The features extracted from the images of the machined surface texture 

correlated well with the flank wear. However, this method requires the machine to be 

stopped before the images of the machined surface can be captured. Previous studies 
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show that the 2-D workpiece profile possesses a great potential for the indirect 

assessment of nose wear and flank wear during turning although the previous studies 

were conducted in-cycle. To date, no attempt has been made to detect the tool 

chipping based on the workpiece profile in ceramic cutting insert. Thus, the focus of 

this work is on the development of a novel in-process method for detection of tool 

failure by chipping from a 2-D workpiece profile signature using machine vision 

method.
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CHAPTER THREE 

 

METHODOLOGY 

3.1 Introduction 

 This chapter outlines the formulation of the methodology to achieve the 

objectives of the study. The research methodology is discussed in Section 3.2 to 

Section 3.4 and is summarized in Figure 3.1. 

 The methodology for in-process detection of tool failure by chipping from the 

2-D workpiece profile signature using ACF is presented in Section 3.2. The specific 

procedures in generating the simulated workpiece profile is presented in the Section 

3.2.1 which were used in simulation to demonstrate how ACF method could be used 

to investigate the effect of tool chipping on the workpiece profile. An experiment, 

which was carried out to produce the actual workpiece profile on turned part to 

investigate the capability of the proposed method, is explained in Section 3.2.2. In 

Section 3.2.3 and Section 3.2.4, experimental setup with a specific image acquisition 

system for the in-process capturing the images of the workpiece profile during 

turning operation is presented. Calibration of the image acquisition system such as 

scaling factor determination (Section 3.2.5), distortion assessment (Section 3.2.6) 

and motion blurring assessment (Section 3.2.8) are also outlined. A detail description 

of the workpiece profile detection algorithm in sub-pixel level accuracy edge 

detection using invariant moment method is explained in Section 3.2.7.  
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Figure 3.1: Flow of research methodology 

 Section 3.3 describes the methods for tool chipping detection from the 2-D 

workpiece profile signature using FFT. The steps in generating the simulated 

workpiece profile by considering the changes of the tool geometry due to the gradual 

wear and chipping is presented in Section 3.3.1. An offline preliminary experimental 

work carried out to capture the images of the turned workpiece profile is presented in 

Section 3.3.2. In Section 3.3.3, the simulation work on detection of tool chipping 

based on workpiece profile by considering the presence of tool-workpiece vibration 

is discussed. In-process experiment to capture the images of the workpiece profile 

Start 

Investigation on in-process detection of tool chipping 
from workpiece profile ACF 

Investigation on offline detection of tool chipping from 
workpiece profile using FFT (Preliminary study)  

Investigation on the in-process detection of tool 
chipping from workpiece profile using CWT 

Investigation on the in-process detection of tool 
chipping from workpiece profile using FFT and  

sub-window FFT 

End 

Section 3.2 

Section 3.3 

Section 3.4 
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simultaneously with measurement of tool vibration using accelerometer is presented 

in Section 3.3.4. To resolve the time resolution of the FFT and drawback of STFT, 

sub-window FFT was proposed (Section 3.3.5). 

 Section 3.4 presents the methodology for the detection of tool chipping from 

workpiece profile using CWT. The reason for applying FFT and CWT is to compare 

the methods so that a better method in terms of ability of detecting the onset tool 

failure by chipping is determined. The last section of this chapter is the chapter 

summary.  

3.2 In-process tool chipping detection in ceramic cutting insert from the 

workpiece profile signature using ACF 

 Detailed procedure for the simulation work to demonstrate the use of ACF in 

tool chipping detection based on the workpiece profile signature is explained in 

Section 3.2.1 while an in-process experimental procedure to investigate the 

capability of the use of ACF method for detecting the tool chipping in ceramic 

cutting insert from the actual workpiece profile is presented in Section 3.2.2. 

3.2.1 Simulation work 

 In order to develop an approach capable of detecting the sudden tool failure 

by chipping in ceramic cutting tool, a simulation work was designed to investigate 

the potential of ACF in tool chipping detection from the simulated workpiece profile 

signature. Figure 3.2 shows the specific steps for generating the ideal workpiece 

profile used in the simulation. In the stage 1, the image of an ideal nose profile (nose 
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radius, εr = 0.8 mm) of the cutting insert was created using AUTOCAD software 

(Version 2013). The created nose profile for simulation is shown in Figure 3.3. The 

ideal nose profile was drawn according to the designation of the cutting tools used in 

this study (CNGN 120808 series). The ideal nose profile is formed by a circular edge 

and two straight lines which represent the major cutting edge and minor cutting edge.  

 

    

 

 

 

 

 

 

 

 

 

 

Figure 3.2:  The flow chart of the generation of ideal workpiece profile  
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Figure 3.3: Geometry of the nose profile created using AUTOCAD 

 In the stage 2, the nose profile was duplicated horizontally along the feed 

direction from the centre of the nose profile, O with a feed distance f = 0.4 mm as 

illustrated in Figure 3.4. This is because in a turning process the workpiece is 

revolved under a moving cutting tool resulting in the tool following a helical path 

relative to the work surface. Thus, an imprint of the nose profile of a cutting tool is 

replicated on the machined surface and each imprint is separated from the next by the 

feed distance f as a result of the feed motion as shown in Figure 3.4. The elements of 

the vectors that extend beyond the intersection points (Ip) between the nose profile 

and workpiece were trimmed off in order to produce the workpiece profile shown in 

Figure 3.5.  

 

 

 

rε =0.8 mm Nose profile 

Minor cutting edge 

Major cutting edge 
O 

80o 
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Figure 3.4: Schematic representation of interaction between the cutting tool tip and 
the formed surface 

 In the stage 3, a 4 mm length of the simulated ideal workpiece profile was 

created and exported as an image format. In the next stage, the simulated ideal 

workpiece profile was read and imported as Red-Green-Blue (RGB) image into 

MATLAB. The RGB image was converted into digitized gray-scale level image, Ugs 

encoded as a 2-D array of pixel in spatial coordinates of x and y. The images of 

simulated ideal workpiece profile is made up of black and white colours therefore its 

gray-scale level in each pixel value is either 0 (black) or 255 (white) as shown in 

Figure 3.5.  

 

 

Figure 3.5: Simulated ideal workpiece profile generated from AUTOCAD 
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 In stage 5, workpiece profile detection algorithm written in MATLAB was 

applied to extract the surface profile of the simulated ideal workpiece profile. By 

vertical scanning along each column in the horizontal direction, the y-coordinate of 

the profile was obtained by searching the y-coordinate of the pixel that has the first 

minimum gray-scale level in each column. The x-coordinate of the workpiece profile 

are corresponding to the scanned column values. The algorithms starts scanning the 

first pixel of the first column of the image to detect the coordinate of the first pixel 

intensity of 0 (black colour) to form the surface profile data. The scanning continues 

to search the second column to find the second pixel value of 0. The contour of the 

workpiece profile was determined by vertical scanning in each column from top to 

bottom. This step is repeated to detect all the pixels in all the columns that lie on the 

workpiece profile which reveal the contour of surface roughness of the simulated 

workpiece profile.  

 The first pixels with intensity 0 in all columns reveal the contour of the 

workpiece profile and the typical ideal surface profile is shown in Figure 3.6. The 

detected surface profile is in pixels value, therefore the scaling factors were used to 

convert the surface profile in pixels value to metrics value. Since the known border 

length of the simulated workpiece profile was created from AUTOCAD, thus the 

scaling factor was determined by dividing the length of the simulated workpiece 

profile with the number of pixels of the images in the horizontal and vertical 

directions. After that, the best-fit line (known as mean line) of the detected contour 

of the simulated workpiece was determined. The surface profile can be determined 

by subtracting the mean value of the roughness profile from each point on the 
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contour. The coordinates ),( ii yx  data where i=1,2,3, ..., N, were stored into two row 

vectors denoted as x vector and y vector, respectively. 

 

Figure 3.6: Simulated ideal workpiece profile extracted from Figure 3.5 using 
vertical orthogonal scanning 

 Unlike in the ideal case the characteristic of a real surface profile is 

influenced by vibration that occurs during machining. Tool vibration occurs because 

one of the structural modes of the machine tool and workpiece system is initially 

excited by cutting forces which are caused by tool failure and corresponding system 

instability in the machining process, characterized by unwanted excessive vibration 

between the tool and the workpiece and consequently cause poor quality surface 

finish. The dynamic force related to the chip-thickness variation acting on the cutting 

tool is related to the amplitude of tool vibration at resonance and to the variation of 

the tool's natural frequency while machining (Thomas et al., 1996). As a result tool 

vibration generates the irregularities seen on the machined surface. Previous work 

show that the turned surface of a machined workpiece is mainly composed of the 
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cutting feed component and the vibration component (Sata et al., 1985). Thus, the 

real surface profile can be expressed as:  

)()()( xuxUxG gs +=         (3.1) 

where ( )xU gs  is the ideal surface profile and u(x) is the dislocation in the workpiece 

profile results from the vibration generated during machining. Tool vibrates is 

mainly as a one degree of freedom system (Thomas et al., 1996). Therefore, the 

motion equation of the vibrating system can be described as a simple harmonic 

motion. During stable machining, the vibration signal oscillates with constant 

frequency and amplitude and the dislocation of workpiece profile due to tool-

workpiece vibration can be expressed as: 

φω +=∑
=

N

n
n nxCxu

1

)sin()(             n=1, 2, 3 ...      (3.2) 

where Cn is the amplitude of dislocation in the workpiece profile, ω  is the 

fundamental angular frequency and φ is the random dislocation of the workpiece 

profile caused by severe tool chipping.  

 Since vibration increases as tool flank wear increases due to the increase in 

the cutting force thus resulting in a periodic variation in depth of cut (Dimla, 2002), 

the effect of tool wear on the simulated workpiece profile was done by increasing the 

vibration amplitude. In the simulation, the dislocation in the workpiece profiles that 

result from the relative tool and workpiece vibration was added into the ideal 

workpiece profile ( )xU gs .  



52 

 For gradual wear the dislocations in workpiece profile caused by vibration is 

assumed to be low and stable. The random dislocation of vibration is thus neglected. 

Figure 3.7(a)-(b) shows the simulated workpiece profile produced from the 

combination of the ideal workpiece profile and dislocation vibration due to gradual 

wear. The dislocation of vibration were increased by 5% and 10% from the peak-to-

valley height of the surface profile (Rt), for a spatial frequency of 100 mm-1 which is 

equivalent to 40 fV  where fV  is the fundamental feed frequency of the simulated 

ideal surface profile. The fundamental feed frequency Vf  (mm-1) is given by: 

f
Vf

1=    where f  is the feed (mm).       (3.3) 

 A spatial frequency of 100 mm-1 was used because previous work has shown 

that tool wear excites high peaks of vibration signal that appear near a fundamental 

frequency of 117 Hz in the normal wear stage (Jiang et al., 1987). The maximum 

peak-to-valley height was determined from the ideal surface profile data which is 

defined as the vertical distance between the highest peak and the lowest valley along 

the evaluation length of the surface profile.  

 Previous study has shown that when a ceramic tool chipped the amplitude of 

vibration increases sharply reaching 10 times as much as that in normal wear stage 

(Jiang et al., 1987). Several high peaks were also found in the frequency range 0-117 

Hz and the amplitude of peaks fluctuated significantly and randomly as a result of 

the irregular tool shape after fracture (Jiang et al., 1987). When a tool wears or 

deforms new sources of vibration are also introduced into the machining due to 

abnormal cutting conditions (Thomas et al., 1996). Thus, a random dislocation of 
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workpiece profile with 5 and 10 times higher of the dislocation of surface profile 

resulted from wear was added as presented in Figure 3.7(c)-(d), respectively.  

 Relative high amplitude vibration between the tool and the workpiece usually 

occurs when cutting tool wear increased. Such vibration causes the formation of 

surface modulation or waviness in both cutting and the tool feed directions 

(Boryczko, 2011). The surface roughness profile along the axial direction is 

modulated by a revolution of the spindle within the range of wavelength longer than 

2λ, where λ is the wavelength of the workpiece profile (Sata et al., 1985). Therefore, 

Equation 3.2 was modified and the dislocation of the workpiece profile due to 

waviness resulting from the tool-workpiece vibration is presented in Equation 3.4. 

The simulated workpiece profile accompanied with the waviness resulting from the 

tool-workpiece vibration in Equation 3.4 is shown in Figure 3.7(e). The surface 

profile presence of waviness resulted from the tool-workpiece vibration aims to 

observe how does the surface waviness influence the ACF. Thus, the dislocation of 

vibration in workpiece profile is excluded.  

φ
λ
π +=∑

=

N

n
n

nx
Cxu

1

)
2

sin()(             n=1, 2, 3 ...     (3.4) 

 With the exception of ACF, a common drawback of statistical surface 

roughness parameters such as mean, RMS, peak-to-valley is that they do not provide 

information about periodicities. Mean and RMS values are not sensitive to very large 

impulses. Peak-to-valley height roughness parameter is sensitive to impulses such as 

tool breakage. However, a single noise spike can throw it off which could lead to 

false alarm. Therefore, ACF was applied to investigate the effect of the tool chipping 

on the workpiece profile. 



                         

                         

 

Figure 3.7: (a) simulated surface profile with increasing vibration amplitudes by 5% peak-to-valley height of simulated ideal workpiece profile; 
(b) simulated surface profile with increasing vibration amplitudes by 10% peak-to-valley height of simulated ideal workpiece profile; (c) 

simulated surface profile with random vibration with 5 times higher vibration magnitude as in (a); (d) simulated surface profile with random 
vibration with 10 times higher vibration magnitude as in (a); and (e) simulated surface profile with presence of waviness due to the tool-

workpiece vibration by 10 times higher vibration magnitude as in (a)  (Continued) 
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Figure 3.7: Continued 
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Figure 3.7: Continued
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 In this work, ACF is chosen because it is capable of detecting the presence of 

the random noise buried in any periodic surface roughness profile. The flow chart of 

ACF algorithm written in MATLAB is presented in Figure 3.8. The ACF analysis is 

done by comparing the workpiece profile with a replica of itself whereby the replica 

is shifted by a lag distance (τ) and is evaluated over the length of the workpiece 

profile. In other words, for surface profile G(x), the ACF is the average value of 

product the un-shifted and shifted surface profile, G(x)G(x+τ) and is given by 

Equation 3.5 (Bendat & Piersol, 1993): 

dxxGxG
L

A
L

L ∫ +=
∞→ 0

)()(
1

lim)( ττ         (3.5) 

 For discrete surface profile data the ACF  is defined as in Equation 3.6: 

∑
=

−=∆
N

i

miGiG
N

mA
1

)()(
1

)( τ         (3.6) 

where m is an integer, τ∆ is lag interval, N is total number of sample points on the 

workpiece profile, )(iG is the surface profile at position τ∆m and )( miG −  is the 

surface profile at position  τ∆− )( mi , i.e. at m sampling intervals earlier. The ACF 

is then normalized by dividing )(τA by the square of RMS roughness (2qR ). The 

RMS roughness is defined as the RMS average of the workpiece profile )(iG  

calculated from the mean line and is expressed in Equation 3.7. 

∑
=

=
N

i
q iG

N
R

1

2)(
1

                        (3.7) 
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Figure 3.8: Flow chart for ACF algorithm 
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 The mechanism of ACF is depicted in Figure 3.9. Firstly, each ordinate of the 

workpiece profile was multiplied by itself across the whole workpice profile and the 

products are add together. After that, the sum of the product is divided by the number 

of ordinates multiplied and normalized by dividing by 2
qR  to obtain the 

autocorrelation coefficient to yield a measure of how similar the workpiece profile is 

at a given distance from the original location. It is always maximum at the origin.  

    

  

Figure 3.9: Mechanism of ACF 
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 After the autocorrelation has been carried out, the workpiece profile was 

shifted relative to itself by an amount of 1τ . In this study, each lag distance τ is 

equivalent to one pixel. The steps abovementioned was repeated by multiplying each 

ordinate on the un-shifted workpiece profile by the ordinate of shifted workpiece 

profile and the average of all products are also normalized by dividing by 2
qR  to 

obtain the second autocorrelation coefficient, ( )1τA . The process of shifting the 

workpiece profile by a lag of 2τ  was repeated to obtain autocorrelation coefficient of 

( )2τA  and so on till the end of the workpiece profile is reached. The ACF value 

between 0 to 1 gives the strength of the relationship between the original profile and 

shifted profile. Higher ACF value that is close to 1, signifies that there is high 

correlation between un-shifted surface profiles and shifted surface profile, whereas, 

close to 0 implies no such significant correlation existed between these surface 

profiles. 

3.2.2 Experimental work 

 An experimental work was conducted to compare the experimental results 

with the hypothesis of the simulation. In this section, machining condition and the 

experimental setup with a specific image acquisition system for capturing the images 

of the turned workpiece profile during turning operation is presented. Calibration of 

image acquisition system such as scaling factor determination, distortion assessment 

and motion blurring assessment was made to ensure a reliable workpiece profile to 

be used in analysis is obtained. The algorithm for workpiece profile detection in sub-

pixel level accuracy edge detection using invariant moment method is also presented. 
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3.2.3  Machining condition 

 The turning operation was performed on a Pinocho S90 conventional lathe 

machine under dry cutting condition. The workpiece material used in experiments 

was a cylindrical bar with diameter of 50 mm and a length of 250 mm made of  AISI 

01 Arne oil hardening tool steel (C: 0.95%, Mn: 1.1%, W: 0.6%, V: 0.1% Cr: 0.6%) 

with the hardness of 190 HB. The commercially available aluminum oxide based 

ceramic insert with added zirconia (CNGA 120408T02520 CC620, Sandvik 

Coromant Ltd., Sweden) was used for the machining experiments. The cutting insert 

was of rhombic shape. The tool holder used for the turning was DCLNR 2020M 

(Sandvik Coromant, Sweden).  

 The cutting conditions were as follows: the spindle rotational speed, 950 rpm; 

feed rate, 0.4 mm/rev; and depth of cut, 0.5 mm were selected according to the 

recommendations provided by the cutting tool manufacturer (Sandvik Coromant, 

2015). No coolant were employed in the cutting experiment to facilitate the image 

acquisition of the workpiece profile during turning. 

3.2.4 Image acquisition system 

 The basic components of image acquisition setup consists of 18-megapixel 

DSLR camera (model: Canon EOS 700D) with a picture resolution of 5184×3456 

pixels. The DSLR camera was fitted with Canon EF 100 mm macro lens and 

connected via USB cable to a personal computer (Intel Pentium Dual CPU E2160 @ 

1.80 GHz) for capturing the images of the workpiece profile. Uniform diffused 

backlighting illumination was obtained by using a high-frequency fluorescent light 
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(Edmund Optics Pte. Ltd., Singapore) to capture the contour of the workpiece. 

Backlighting is the suitable type of illumination for this application because only 

contour of the workpiece surface is needed.  

 Figure 3.10 shows the in-process image acquisition setup used to capture the 

images of the workpiece profile during turning operation. When capturing the images 

of workpiece profile, the intensity of light source and the lens aperture were adjusted 

to avoid the burnout in the images. The focusing ring on the camera was adjusted so 

that the edge of the workpiece is sharply in focus. The shutter speed of the DSLR 

camera was set to 1/4000 s to freeze the motion of the rotating workpiece in order to 

reduce motion blur in the workpiece images to a minimum. The images of the edge 

of workpiece were captured diametrically opposite the cutting side during machining 

as illustrated in Figure 3.11.  

 
 

Figure 3.10: Experiment setup for in-process image acquisition during turning 
operation 
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Figure 3.11: Close-up side view of the image acquisition configuration 

 The images of workpiece profile were captured after the cutting tool has 

turned the workpice, hence no chip obstruction problem occurred during image 

acquisition as the chips and cutting tool were beyond the field-of-view. All the 

images of workpiece were captured using the Canon EOS Utility remote capture 

software installed in the computer. For each pass of the tool a sequence of six images 

was capture automatically during each trigger.  A sample image of the edge of the 

workpiece at 950 rpm is shown in Figure 3.12.  

                                                     

 

Figure 3.12: Image of the edge of the workpiece captured by DSLR camera 
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 At a spindle speed of 950 rpm the workpiece rotation angle between 

successive images, β is approximately 60o. The workpiece rotation angles between 

successive images was determined using Equation 3.8.  

( )[ ]RR nn int360 −=β          (3.8) 

where Rn  is the number of rotations between the successive images of the workpiece 

profile  and Rn  is defined in Equation 3.9. 

60

SV
nR

×=           (3.9) 

where V is the spindle rotational speed in rpm (rotation per minute) and S (S = 0.2 s) 

is the capturing time between the successive images (known as frames per second).  

 As seen in Figure 3.13, when the first edge of the workpiece profile is 

captured at point Q, the workpiece continues to rotate and the location of P reaches 

point Q at a rotational angle of β for the next frame.  

 

 

      

 
Figure 3.13: Workpiece rotation angle determination 
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 After completion of the image acquisition and analysis of the profile the 

cutting tool tip was observed under a SEM (Hitachi TM1000) after each pass in order 

to correlate the condition of cutting tool with the behaviour of each analysis. Alicona 

Infinite Focus (Alicona GmBH Ltd., Austria) was used to obtain 3-D surface of the 

cutting edge which allows a good visualization of chipping on cutting edge region. 

The experiment was repeated in order to verify the results to increase the reliability 

of the proposed method. 

3.2.5 Scaling factor determination 

 The horizontal (x-direction) and vertical (y-direction) scaling factors for 

converting the image coordinates in pixels to real world coordinates in metric units 

were determined using standard Mitutoyo pin gages of known diameters, i.e. 0.25 

mm, 0.725 mm and 0.895 mm. The pin gage was positioned at the same level as the 

axis of the workpiece so that the scaling factors can be determined at a position that 

corresponds to the location of the workpiece edge. The pin gage was positioned 

horizontally and vertically relative to workpiece in order to determine the 

corresponding scaling factor in vertical and horizontal direction respectively.  

 Figure 3.14(a) shows the example of image of pin gage which captured 

vertically relative to workpiece. The cropped out image of the region of interest (ROI) 

is shown in Figure 3.14(b). The ROI of pin gage was cropped from the centre of pin 

gage (e.g. 250 pixels×250 pixels) and the scaling factor is a pre-determined value 

and is applied in MATLAB once for all analysis. The cropped pin gage was binarized 

to separate the pin gage from the background using Otsu’s thresholding method 

(Otsu, 1979). Firstly, the images of the pin gage was converted from the original 
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RGB image into digitized gray-scale using command 'rgb2gray'. After that, the 

graythresh based on Otsu's methods was applied to compute a threshold value to 

convert the gray-scale image to a binary image using command 'im2bw'. The Otsu's 

method is the default thresholding method available in MATLAB. Binarization 

changes the original 8-bit gray scale image into a 2-bit binary image. The binary 

image of the pin gage is comprised of white pixels (bit value 1) for the background 

and the black pixels (bit value 0) for the pin gage. This work focuses on tool 

chipping detection rather than measurement, thus scaling factor determination in 

pixel level using Otsu's thresholding method was sufficient. The number of pixels 

occupied by the standard pin gage (e.g. between point a and b)  was calculated and 

the scaling factor for converting from pixels to micrometers was determined by:  

�������	
����
 =
��������	��	���	����

������	��	����� 	�!!����"	�#	"�������	��	���	����
   (3.10) 

 

                            

Figure 3.14: (a) Image of pin gage captured vertically, and (b) binarization of 
cropped ROI to determine the scaling factor 

 Once the scaling factor in x-direction and y-direction were defined, the field-

of-view can be determined by multiplying the number of pixels of the image in 

horizontal and vertical direction with the x-direction and y-direction scaling factor 

respectively.  
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3.2.6 Distortion assessment 

 When the camera was fitted with a closed-up lens, it may introduce some 

errors in the measurement due to the effect of distortion in the images. The distortion 

in the images was assessed by using Ronchi ruling (200 lines/4 inches, Edmund 

Optics Pte. Ltd.). The Ronchi ruling was located in the same level of the edge of 

workpiece and the image of the ruling was captured vertically and horizontally. 

 The image of the Ronchi ruling in RGB format was binarized to separate the 

strips from background using Otsu’s thresholding method. The binary image of the 

Ronchi ruling is comprised of the black pixels (bit value 0) for the strips and white 

pixels (bit value 1) for the background. After that, the distortion of the images was 

assessed directly from the image by determining the distances between the points as 

shown in Figure 3.15.  

  

                    

                                                                

 

Figure 3.15: Images of Ronchi ruling (a) vertical, and (b) horizontal 
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 The number of pixels between measurement points is tabulated in the Table 

3.1. It was found that the maximum deviation in vertical direction and horizontal 

direction were 5 pixels (0.15%) and 3 pixels (0.06%) respectively. Since the 

deviation is small, this assures that the image distortion is negligible. 

Table 3.1: Number of pixels between measurement points 
 

Points Number of pixels between the points 

a-b 3313 

c-d 3308 

e-f 3313 

g-h 5031 

p-q 5028 

r-s 5031 

 

3.2.7 Description of workpiece profile detection algorithm in sub-pixel level 

accuracy edge detection using invariant moment method 

The workpiece profile extraction process is the most important step because it 

determines the accuracy of the subsequent output. Numerous edge detection methods 

have been developed in the past and generally can be divided into pixel or sub-pixel 

level method. In order to improve the accuracy of the edge detection, sub-pixel level 

techniques can be applied to solve the problem of edge detection precision. In this 

study, an algorithm was developed to extract the workpiece profile with sub-pixel 

accuracy as illustrated in Figure 3.16 .  
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Figure 3.16: Flow chart of algorithm for surface profile detection 
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Firstly, the captured image was read as a RGB image and was converted to 

gray-scale using MATLAB command 'rgb2gray'. The workpiece profile in gray-scale 

is composed of pixel intensity values that range from 0 (black) to 255 (white) bits. 

The image was then pre-processed to remove noise by using Wiener filtering. Wiener 

filtering was applied to enhance the image because it allows one to keep the details 

of the image and remove the effect of the noise in the image. 

In the next step, the invariant moment method proposed by Tabatabai and 

Mitchell (1984) was applied to locate the edge of workpiece profile to sub-pixel 

accuracy. In the invariant moment method a scan line across a step edge in the 

absence of noise is characterized by a set of pixel intensity
zx where z = 1, 2, 3 …, n, 

which are either monotonically non-decreasing or non-increasing. The edge is 

defined as a sequence of brightness h1 followed by a sequence of brightness h2 as 

illustrated in Figure 3.17, where K denotes the edge location of the workpiece and n 

is the number of input data. The first three moments 1m , 2m  and 3m  of the input 

data sequence in the gray scale image were calculated using a threshold independent 

method based on invariant moment equation:   

( )∑
=

=
n

z

i
zi x

n
m

1

1
        (3.11)                                              

where i=1, 2, 3 

n = total number of pixel in column i 

xz= intensity of the pixel in gray scale images 
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Figure 3.17: Invariant moment method 

The first three moments between input data sequence can be solved by: 
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The solutions of the edge are calculated by: 
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where 1p  and 2p  are the densities of the gray level brightness value. s is equal to 

skewness of the input data sequence which is defined in the Equation 3.16. 

Position 

Step edge (subpixel location) 

Low intensity pixel 

ℎ% 

ℎ& 

Gray level 

'&� ( = '%� 

High intensity 
pixel 



72 

3

2131 32

α
mmmm

s
−+=        (3.16) 

where α is sample variance given by:  

2
12 mm −=α         (3.17) 

The densities of the gray level brightness value are related by: 

21 1 pp −=          (3.18) 

Thus, the edge location of the workpiece up to sub-pixel accuracy is determined by: 

npK 1=          (3.19) 

In the next step, the contour of surface roughness profile was detected using 

orthogonal scanning as illustrated in Figure 3.18(a). The scanning starts from the first 

point of the first row to locate the sub-pixel profile of K value on the workpiece 

profile which is determined from Equation 3.19. The scanning continues to search 

the second column to find the second sub-pixel location. The interval along each pair 

of adjacent scan lines is one pixel apart. This process is repeated to detect all the sub-

pixels that lie on the profile thus producing the contour of surface roughness. As seen 

in Figure 3.18(b), the application of the invariant moment method in sub-pixel edge 

detection allows more precise edge location.  
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 After that, a best fit line (mean line) of the contour of the surface was 

determined using least squares fitting. Any tilt that appear in the workpiece profile is 

removed by subtracting each point on the detected profile from the mean line.  

Because the profile of the workpiece is in pixel units the roughness profile is 

converted from pixel unit to metric unit (micrometer) using the scaling factor which 

is obtained in Section 3.2.5. 

 
 

 
 

 
 
 
 
 

 

 

Figure 3.18: Workpiece profile extraction (a) orthogonal scanning, and (b) workpiece 
profile with sub-pixel edge location. 

 The surface profile shapes obtained from the abovementioned vision method 

is very similar when compared to the surface roughness profile measured from the 

mechanical stylus roughness tester (Mitutoyo SV3100) as shown in Figures 3.19. 

Three common roughness profile parameters: Ra (Equation 3.20), RMS roughness, 

Rq (Equation 3.7) and Rt (vertical distance between the highest peak to the lowest 

valley) were determined from surface profile data extracted from the images. The 

arithmetic average height of surface profile is given by: 

∑
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         (a)                   (b) 
 
Figure 3.19: Surface profile obtained from (a) vision method, and (b) stylus method. 

 Table 3.2 shows the results of surface roughness measurement (Ra, Rq and Rt) 

using the proposed machine vision method and the comparison with the surface 

roughness measurement obtained from mechanical stylus method. It can be found 

that, the comparison of the Ra, Rq and Rt roughness parameters shows an error of 

only 2.07%, 1.93% and 1.96%, respectively. An acceptable error range depends on 

the application (e.g. 5-10% error). An error with 0-5% exceptionally good. The 

comparison shows the error is small (less than 5%) and thus the proposed machine 

vision method is able to provide a reliable workpiece profile to be used for analysis. 

Table 3.2: Validation of the roughness values (Ra, Rq and Rt) obtained from vision 
method by comparing the roughness values(Ra, Rq and Rt) obtained from stylus 

method 
 

Roughness 

parameter 

(µm) 

Stylus method Vision method 
Error 

(%) 1 2 3 Average 1 2 3 Average 

Ra 4.99 4.95 5.06 5.00 4.86 4.85 4.98 4.90 2.07 

Rq 5.67 5.63 5.72 5.67 5.53 5.51 5.66 5.56 1.93 

Rt 21.50 20.89 19.77 20.72 20.25 21.12 22.05 21.14 1.96 
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3.2.8 Motion blurring effect 

 Motion blurring can occur when capturing a rotating workpiece. The motion 

blurring effect can be eliminated by maximizing the shutter speed in order to keep

the edge of workpiece profile sharp.

to 1/4000 s to freeze the motion of the rotating workpiece in order to reduce motion 

blur in the workpiece images to a minimum. The surface profile detection in sub

pixel accuracy level algorithm presented in Section 3.2.7 was used to extract the 

workpiece profile. After that, the command '

locate the peak between the wavelength of the workpiece profile. The 

blurring effect in the rotating image was determined by comparing the number of 

pixels between the wavelength of the workpiece profile under various spindle 

rotational speeds with the number of pixels between the wavelength of the static 

workpiece profile as illustrated in Figure 3.20. 

                                                                           

Figure 3.20:  Motion blurring assessment by comparing the number of 
between the wavelength of workpiece profile

 The number of the pixels between the wavelength of the workpiece profile 

under various spindle rotational speed is tabulated in Table 3.3. The maximum 

Peaks between 
wavelength of profile
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Motion blurring effect assessment 

Motion blurring can occur when capturing a rotating workpiece. The motion 

blurring effect can be eliminated by maximizing the shutter speed in order to keep

the edge of workpiece profile sharp. The shutter speed of the DSLR camera was set 

to 1/4000 s to freeze the motion of the rotating workpiece in order to reduce motion 

blur in the workpiece images to a minimum. The surface profile detection in sub

curacy level algorithm presented in Section 3.2.7 was used to extract the 

workpiece profile. After that, the command 'findpeaks' in MATLAB

locate the peak between the wavelength of the workpiece profile. The 

blurring effect in the rotating image was determined by comparing the number of 

pixels between the wavelength of the workpiece profile under various spindle 

rotational speeds with the number of pixels between the wavelength of the static 

rofile as illustrated in Figure 3.20.  

                                                                           

 

Figure 3.20:  Motion blurring assessment by comparing the number of 
between the wavelength of workpiece profile 
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Motion blurring can occur when capturing a rotating workpiece. The motion 

blurring effect can be eliminated by maximizing the shutter speed in order to keep 

The shutter speed of the DSLR camera was set 

to 1/4000 s to freeze the motion of the rotating workpiece in order to reduce motion 

blur in the workpiece images to a minimum. The surface profile detection in sub-

curacy level algorithm presented in Section 3.2.7 was used to extract the 

MATLAB was applied to 

locate the peak between the wavelength of the workpiece profile. The motion 

blurring effect in the rotating image was determined by comparing the number of 

pixels between the wavelength of the workpiece profile under various spindle 

rotational speeds with the number of pixels between the wavelength of the static 

 

Figure 3.20:  Motion blurring assessment by comparing the number of pixels 
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deviation of the number of pixels between the wavelength for the static and rotating 

images was found to be only 3.4%, thus the motion blurring effect could be 

neglected. 

Table 3.3: Number of pixels between the wavelength 
 

Rotational Speed Number of pixels between the wavelength 

RPM d1 d2 d3 

0 65 66 66 

625 66 66 68 

1150 66 66 67 

1750 66 67 67 

  

3.3 Detection of tool chipping in ceramic cutting insert from the workpiece 

profile signature using FFT 

 This section is divided into five sub-section. Section 3.3.1 explains the 

simulation work on tool chipping detection from the 2-D workpiece profile signature 

using FFT by considering the geometry changes of the tool nose due to wear and 

chipping while an offline experimental work used to validate the simulation work is 

presented in Section 3.3.2. Simulation work on detection of tool chipping based on 

workpiece profile by considering the presence of tool-workpiece vibration resulting 

from wear and chipping is outlined in the following section. In-process experiment 

setup to capture the images of the actual workpiece profile simultaneously with 

measurement of tool-workpiece vibration using accelerometer is presented in Section 

3.3.4. In order to further assess the applicability of FFT method in onset tool 
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chipping detection, sub-window FFT method was proposed  aims to resolve the time 

resolution of the FFT and the drawback of STFT is presented in Section 3.3.5. 

3.3.1 Simulation work on detection of tool chipping from surface profile 

signature using FFT by considering the geometry changes of the tool nose 

 The surface profile of the turned workpiece is the imprint of the cutting tool 

nose profile replicated on the machined surface and each imprint is a periodic pattern 

separated by the feed distance f as a result of the feed motion as illustrated in Figure 

3.21(a). Thus, the interaction between the cutting tool tip and the workpiece clearly 

shows that the tool nose region plays an important role in shaping the surface profile. 

If the cutting tool is used in finish turning, whereby the depth-of-cut is smaller than 

radius of cutting insert εr , the cutting process occurs in the nose radius of the cutting 

tool between points P to Q as shown in Figure 3.21(b).  

  

        

    
    
   (a)     (b) 
 
Figure 3.21: (a) Schematic representation of interaction between the cutting tool tip 
and the formed surface, and (b) formation of tool wear by increasing the radius in 

minor axis. 
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 Gradual wear occurs from the outer point P to the inner point Q due to the 

loss of material from the cutting tool tip caused by abrasion between the tool and the 

workpiece. Consequently, the radius εr  increases. This gradual wear was simulated 

by generating an ellipse on the contact edge between cutting insert tip and workpiece. 

The gradual wear was approximated by increasing the radius of the minor axis of the 

ellipse as shown in Figure 3.21(b). Figure 3.22 shows examples of the gradual wear 

generated on the cutting tool by increasing the nose radius εr . The black shaded 

region indicate the loss of tool material due to the abrasion between the cutting tool 

and the workpiece during machining.  

                         
   (a)                   (b)                   (c)  
 

                     
   (d)                               (e)                    (f) 

 

              
               (g)                    (h) 

  
Figure 3.22: Simulated cutting tool (a) unworn, (b) gradual wear by increase 1% of rε 
in the minor axis, (c) gradual wear by increase 2% of rε in the minor axis, (d) gradual 
wear by increase 3% of rε in the minor axis, (e) gradual wear by increase 4% of rε in 
the minor axis, (f) gradual wear by increase 5% of rε in the minor axis, (g) gradual 

wear by increase 6% of rε in the minor axis, and (h) gradual wear by increase 7% of 
rε in the minor axis 
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 Figure 3.23 shows the simulated workpiece profile corresponding to the 

simulated worn tool generated in Figure 3.22. The simulated worn cutting tools and 

their surface profiles were constructed using AUTOCAD (Version 2013). For the 

fresh cut shown in Figure 3.23(a) the turned surface profile similar to a very fine 

circular thread was observed. As the 'tool wear' increases it was observed that the 

peaks of the thread generated by the tool feed tend to become higher. This is because 

the steep groove on the tool nose due to the gradual wear leads to the sharp peaks on 

the workpiece profile signalled by the higher value of Rt which is illustrated in Figure 

3.24. This behaviour is in agreement with the evolution of the tool wear and explains 

the significant increase of the maximum peak-to-valley height (Rt) of surface profile 

(Pavel et al., 2005; Nabil and Mabrouk, 2006). 

       

                    (a)       (b)        (c)  

       

         (d)                                        (e)                             (f) 

    

         (g)       (h) 

 
Figure 3.23: Simulated workpiece profile corresponding to the simulated worn tool 

in Figure 3.22 
 
 
 



80 

 

 
 

Figure 3.24: Tool nose area showing the maximum peak-to-valley height Rt of 
workpiece profile generated from worn and unworn tool profile. 

 

Chipping of cutting inserts was simulated by generating a cavity or 

depression on the cutting tool tip. Figure 3.25 demonstrates the generation of the 

chipping on the tool nose region. The tool nose has a radius εr  between the points P 

and Q, which lie at the ends of the major cutting edge. The simulation of chipping 

was carried out by forming an irregularly shaped cavity manually and randomly on 

the nose region cutting tool and the chipping is demonstrated by removing a cavity or 

depression (chipped area of A mm2) from the sector subtending an angle θ at the 

center. The successive simulated worn tools by chipping were obtained by enlarging 

the chipped area of A mm2. Figure 3.26 shows the simulated chipped tool where the 

chipping occurred at the early stage of cutting operation. The size of chipping is 

enlarged for the successive chipped tool from Figure 3.26(a) to Figure 3.26(h). The 

corresponding simulated workpiece profile is shown in Figure 3.27.  
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Figure 3.25:  Formation of chipping by removing a cavity from tool nose region.  

 

                    

      (a)       (b)                         (c) 

 

                     

     (d)       (e)               (f) 

 

         

  (g)     (h) 

 
 

Figure 3.26: Simulated worn tool for chipping 
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         (a)       (b)       (c)  

      

          (d)         (e)        (f) 

   

          (g)           (h) 

Figure 3.27: Simulated workpiece profile corresponding to the simulated 
chipped tool in Figure 3.26 

 Figure 3.28 shows examples of replicated simulated worn tools by wear 

(Figure 3.28(a)-(c)) and chipping (Figure 3.28(d)-(h)) which demonstrated the 

evolution of the simulated worn tool from gradual wear to chipping and their 

corresponding workpiece profiles are presented in Figure 3.29. To produce the 

corresponding simulated workpiece profile resulted from gradual wear and chipping 

(Figure 3.23, Figure 3.27 and Figure 3.29), the procedure of Stage 2 to Stage 6 

shown in Figure 3.2 were repeated. The simulated workpiece profiles were generated 

by replicating the nose profile of simulated worn cutting tool by a feed distance of 

0.4 mm for a length of 4 mm. The simulated workpiece profiles created by 

AUTOCAD were exported to JPEG format and converted from RGB to gray-scale in 

MATLAB. The simulated workpiece profile in gray-scale image was detected when 

the intensity values changes from 255 to 0 using vertical scanning algorithm written 

in MATLAB. The algorithm start scanning from the first pixel of the first column. If 

Simulated workpiece 1 Simulated workpiece 2 Simulated workpiece 3 

Simulated workpiece 4 Simulated workpiece 5 Simulated workpiece 6 

Simulated workpiece 7 Simulated workpiece 8 
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the first pixel value is 0 the scanning begins at the second column. This operation is 

repeated for all the columns to detect the contour of the surface profile.  

                                 
   (a)                           (b)                      (c) 

                                     
   (d)               (e)           (f) 

                                    
    (g)               (h)            (i) 

Figure 3.28: Simulated worn tool from evolution of gradual wear to chipped tool 

       
         (a)        (b)                  (c)  
 

            
        (d)         (e)                              (f) 
 

      
        (g)                    (h)                               (i) 
 

Figure 3.29: Simulated workpiece profile corresponding to the simulated worn tool  
in Figure 3.28        
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 The extracted simulated workpiece profile was expressed as a function of 

position along the simulated workpiece distance. By vertical scanning along the 

column (x-coordinate), the y-coordinate of the surface profile G(x) was obtained by 

extracting the y-coordinate of the pixel that has 0 value in each column. The x-

coordinate of surface profile G(x) correspond to the scanned column. The simulated 

workpiece profile in the spatial domain was then converted into the frequency 

domain using FFT. Since the surface profile of the turned part is essentially periodic 

it can be expressed as a Fourier series given by: 
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where )(xG  is the workpiece profile height as a function of distance x, n is an integer, 

ω  is the angular frequency, na  and nb  are the coefficients of the cosine and sine 

terms respectively. Thus , a finite Fourier transform can be written as: 
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 The resulting transformed workpiece profile gives an expression of the 

frequency components that contribute to the workpiece profile when a spectrum plot 

of amplitude versus frequency is constructed. The amplitude of )(ωY is the 

magnitude of the complex number in the frequency domain and is represented by the 

vertical axis. The workpiece profile was extracted at discrete points over a finite 

length interval, L. For data taken at discrete points over a finite length interval the 

spectrum amplitude of the roughness profile is determined by the discrete Fourier 
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transform (DFT). The amplitude of the spectrum of workpiece profile Y(Vn) at spatial 

frequency of Vn is given by (Wheeler and Ganji, 2010): 

∑
−
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
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

 −

=
1

0
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)()(
N

n

x
L

jn

nn

n

exGVY
π

 n = 0, 1, 2, 3, …, N-1    (3.23) 

where j is a complex number defined by 1−=j  and Vn represents a discrete spatial 

frequency of the workpiece profile which expresses the number of roughness 

wavelengths within a unit of length xn.  Vn is given by: 

L

n

x
V

n
n == 1

         (3.24) 

 The workpiece profile extracted from the 2-D image of workpiece was read 

as RGB image when it was imported to MATLAB and was converted into digitized 

gray-scale image in spatial coordinates of x and y. Thus, the workpiece profile data 

set consists of N values of )(xG measured at equal intervals of ∆x within a total 

length of workpiece profile, L, i.e.: 

nn xx

L

x

L
N

−
=

∆
=

+1

        (3.25) 

The fundamental feed frequency Vf (mm-1) represented in the spectrum analysis is 

determined by 
f

1
 (Equation 3.3). 
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The discrete surface profile data extracted from vertical scanning was loaded 

into MATLAB. The FFT algorithm in the MATLAB was used to compute the DFT of 

the surface profile G(x). MATLAB uses the fft command to determine the amplitude 

of each spatial frequency components of a discrete workpiece profile. The effects of 

tool wear and chipping on the amplitude of fundamental feed frequency and its 

harmonic was investigated. 

3.3.2 Offline experimental work 

Preliminary study on tool chipping detection was carried out offline whereby 

the workpiece was removed from the turning machine for image acquisition. The 

image of the edge of workpiece was captured offline after machining. Figure 3.30 

shows the offline image acquisition configuration. The DSLR camera was positioned 

overhead to capture the edge profile clearly with the aid of the backlighting system. 

The camera was mounted on a linear translation stage and tracks in order to move the 

camera along the workpiece to capture the images continuously.  

Machining experiments were carried on 50 mm diameter SUS304 stainless 

steel workpiece of length 255 mm. An in-house fabricated cutting inserts made from 

zirconia-toughened alumina (ZTA) + magnesium oxide (MgO) was used to turn the 

workpiece. The ceramic inserts consists of 79.2 wt. % aluminium oxide, 19.7 wt. % 

yttria stabilized zirconia and 1.1 wt. % of magnesium oxide (Azhar et al., 2010). A 

commercially available carbide tool (TNMG 160404 MF – Sandvik Ltd.) was used 

because carbide insert has better fracture toughness than ceramic to prevent chipping 

which could be used for studying the effect of gradual wear on the amplitude of 

fundamental feed frequency and its harmonics in a separate experiment. Stainless 
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steel was used instead of tool steel because carbide insert was not suitable for cutting 

tool steel as tool steel is harder compare to SUS304 stainless steel (Tsao, 2002). The 

machining was conducted using a Pinocho S90 conventional lathe machine under dry 

cutting. Spindle rotational speed of 625 rpm, feed rate of 0.4 mm/rev and 0.5 mm 

depth of cut were used in the machining experiments. Observation on the cutting tool 

tips were carried out by means of a SEM (Hitachi TM1000).  

 

 
Figure 3.30: Offline image acquisition configuration. 

3.3.3 Simulation work on detection of tool chipping from surface profile 

signature using FFT by considering the presence of tool-workpiece vibration 

The generation of the simulated workpiece profile in Section 3.3.1 only 

considered the effects of tool nose geometry changes due to tool wear and chipping 

on the amplitude of fundamental feed frequency and its harmonic. Tool-workpiece 
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vibration was not taken into consideration. However, in fact various factors affect the 

surface profile of turned workpiece. The dominant factors are the tool geometry, feed 

rate and chatter vibration. Thus, investigation on detection of tool chipping from the 

simulated surface profile in the presence of the tool-workpiece vibration results from 

wear and chipping using FFT was carried out. The simulated workpiece profile 

generated in Section 3.2.1 was applied in this simulation. In Section 3.3.1, only the 

amplitude of fundamental feed frequency and its harmonics were used to correlate to 

the cutting tool condition while other spatial frequencies were excluded. Thus, an in-

process investigation on tool chipping detection from the distribution of the spatial 

frequencies along the workpiece profile signature was carried out.   

3.3.4 In-process experimental work 

 The experimental setup (image acquisition system configuration during 

turning operation) was same in the Section 3.2.2 but with the addition of tool-

workpiece vibration measurement. Accelerometer sensors (Dytran 3055B2T) were 

mounted on the cutting tool holder in the axial, radial and tangential direction as 

shown in Figure 3.31 in order to measure the tool-workpiece vibration during turning 

operation. The main interest of the study is not on the vibration signal. The purpose 

of the tool-workpiece vibration measurement is to observe the effect of tool chipping 

on the vibration signal between the tool and the workpiece as well as how does the 

tool-workpiece vibration affects the surface profile.  

 A turning machine (Pinocho S90) was used to perform finish turning 

experiments on AISI 01 Arne oil hardening tool steel using aluminium oxide based 

ceramic cutting insert with added zirconia (CNGA120408T02520 CC620, Sandvik 
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Coromant Ltd., Sweden). The cutting condition including the spindle rotational speed, 

feed rate and depth of cut were set as 950 rpm, 0.4 mm/rev and 0.8 mm, respectively. 

To obtain the actual surface profile from the images of turned workpiece in both 

offline and in-process experiments, steps in Section 3.2.5 and Section 3.2.7 were 

repeated before applying FFT analysis as summarized in the Figure 3.32. 

 

 

                     

 
 
 
 

 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 3.31: In-process experiment setup with vibration measurement 
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Figure 3.32: Flow chart for FFT analysis of actual workpiece profile for offline and 
in-process tool chipping detection in ceramic cutting tool 
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was not our main concern in the study. The study focus on the tool chipping 

detection method during turning and the developed tool chipping detection method 

could be applied no matter what cutting parameters used in machining. 

3.3.5 In-process detection of tool chipping from surface profile signature using 

sub-window FFT 

 The major drawback of STFT is that analysis result is highly dependent on 

window function. The attenuation effect in the window function cause a loss in 

spectral estimate. Therefore, in this study, a novel sub-window FFT method that 

independent of window function is proposed. Similar to STFT, sub-window FFT 

uses small time-shifted window to approximate the time-frequency information, 

providing bands of frequencies over time increments. The procedure for computing 

the sub-window FFT of a workpiece profile waveform is to divide a longer 

workpiece profile waveform into shorter segments equal to the evaluation length of 

4.0 mm according to ASME B46.1 (2009) standard and then to compute the FFT of 

the workpiece profile separately on each shorter segment. The time resolution of sub-

window FFT was determined by: 

Sub-window time resolution = 
fV

w
      (3.26) 

where w is the length of the window, f is feed rate and V is spindle rotational speed. 

 Statistical features from the sub-window FFT of workpiece profile was 

extracted. Only amplitude of spatial frequency in a particular spatial frequency 

component provide information pertaining to failure of cutting tool. Average of 
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amplitude spectrum in a specific spatial frequency band, γ  which is defined as 

(Binsaeid et al., 2009):  

∫=
2

2

)(
1

F

F

nVY
n

γ          (3.27) 

where )( nVY  is spectrum amplitude at a specific spatial frequency components and 

1F , 2F is the frequency range.  

3.4 In-process detection of tool chipping from workpiece profile signature 

using  CWT 

 The actual workpiece profile obtained from experiment in Section 3.3 was 

further analysed using CWT. This is because one drawback of FFT is that it is not 

possible to simultaneously examine time (or spatial) and frequency. That is, the 

analysed surface profile can only be observed over time (or spatial), or over 

frequency. Sub-window FFT was proposed to solve the time resolution problem. 

However, the determination of window size is difficult and the time domain 

resolution is highly dependent on the size of the window and machining parameters. 

For this reason, wavelet transform was applied in this work.  

 CWT allows for analyzing and displaying the characteristics of signal 

waveform that are dependent on time and scale. Therefore, CWT is potentially a 

useful tool to detect the workpiece waveform with exotic spectral contents and 

transient information content due to tool failure. Furthermore, FFT is more 

appropriate to be applied to stationary signals whereas CWT allows the components 

of a non-stationary waveform to be analyzed.   
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 Figure 3.33 shows the flow chart for CWT algorithm written in MATLAB 

applied in this study. Before a transform can be performed an appropriate wavelet 

function must be selected. The shape of the wavelet function is one of the most 

important considerations in the selection of a basis. Generally, the shape of the 

wavelet function should show similar characteristics to the signal being analyzed.  

     

 

 

 

 

 

 

 

 

 

Figure 3.33: Flow chart for CWT algorithm 
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 Several wavelets have been applied in previous works to study the surface 

roughness characterization including Morlet (Josso et al., 2002; Grzesik and Brol, 

2009), Mexican hat (Grzesik and Brol, 2009), Daubechies (Chen et al., 1999) etc. In 

this study, the Morlet wavelet was chosen which is excellent in frequency 

distribution analysis. Further, the Morlet wavelet has been consistently used in the 

previous work for surface profile analysis, thus making it appropriate for interpreting 

the surface profile result. 

 In the next stage, the inner product of wavelet and the workpiece profile 

waveform was computed. The wavelet transform performs decomposition of a 

waveform into a wavelet of functions localized in both time and frequency, defined 

by Leavey et al. (2003): 

∫
∞

∞−

∗= dtttGbaCWT ab )()(),( ,ψ        (3.28) 

where ),( baCWT  is the wavelet coefficient, )(tG  is the workpiece profile in time 

domain, )(, tabψ is the wavelet basis, a and b are denoted as dilation (scaling) and 

translation (time) factors, respectively, and ∗  represents the complex conjugation. 

The translation and scaling operations on mother wavelet )(tψ  constructs a family of 

function as: 

 






 −=
a

bt

a
tab

ψψ )(,          (3.29)  

 The analysing wavelet applied in this study, i.e. Morlet wavelet is shown in 

Figure 3.34(a). The scaling or dilation controls the width of the wavelet while the 

translation parameter controls the location of the wavelet. The interpretation of 
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Equation 3.29 is that the size of the wavelet function )(, tabψ  varies with the dilation 

or scaling. Wavelet transform usually starts by using low scale wavelet functions 

progressing to higher scales. When the scale increases the wavelet is stretched in the 

horizontal x-axis direction while it is squashed in the vertical y-axis direction as 

shown in Figure 3.34(b).  

 

 

                       

                                                                                                                   

                

 

Figure 3.34: (a) Morlet wavelet, and (b) wavelet analysis overview 
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 The analyzing wavelet is placed at the beginning of the signal (t=0). The 

wavelet is then moved by a small increment of pixel in the positive time direction. 

The wavelet is multiplied by the workpiece profile waveform and integrated to 

calculate a new wavelet coefficient. This process is continued until the end of the 

workpiece profile is reached. At this point the scale is increased, the wavelet being 

stretched and dilated, and the wavelet is returned to the starting point of the 

workpiece profile waveform to calculate the new wavelet coefficient.  

 This transformation is repeated until the workpiece profile waveform has 

been analyzed for all the scales to produce the squares of the CWT coefficients and 

form a scalogram as illustrated in Figure 3.35. The scales over which to compute the 

CWT could be any real positive numbers. For DWT the scale are sampled in power 

of two (dyadic sampling). In this study, the determination of scale range in the CWT 

is based on the dyadic sampling (21, 22, 23,... etc). 
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 The CWT allows the localization of frequency components in the analyzed 

workpiece profile. The CWT performs a comparison of the wavelet to the workpiece 

profile waveform. Large CWT coefficients at that translation and scale indicate that 

high degree of similarity exists between the wavelet function and workpiece profile 

waveform. If the wavelet function and workpiece profile are dissimilar, small CWT 

coefficients are found. Therefore, the wavelet transform is a measure of how much 

the workpiece profile waveform resembles the wavelet at a particular position and 

scale.  

 The scale is usually correlated to the frequency of the wavelet function. Scale 

is inversely proportional to the frequency. Low scale is usually associated with the 

most tightly packed wavelet (high frequency) and vice versa. This wavelet transform 

process provides an indication of the frequency contents of the workpiece profile 

waveform. A large CWT coefficients at a particular scale implies the presence of a 

particular frequency because an approximate relationship exists between the scale 

and the frequency.  

3.5 Chapter summary 

 In this chapter, the simulation method and experimental method to detect tool 

chipping in ceramic cutting inserts based on the 2-D images of workpiece profile in 

turning are outlined. The simulated workpiece profiles with the presence of the 

vibration due to wear and chipping were generated in order to demonstrate the 

application of ACF in detection of tool chipping based on the workpiece profile 

signature. In-process experiment was conducted to investigate the capability of the 

proposed ACF method for detecting the tool chipping in ceramic cutting insert from 
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the workpiece profile signature. The results obtained from experiments was used to 

compare the results from simulations which are presented in the next chapter. 

 Simulation work was conducted to investigate the capability of the FFT 

method in tool chipping detection based on the workpiece profile signature. An 

offline preliminary experimental work was carried out to investigate how amplitude 

of fundamental feed frequency of the workpiece profile and its harmonics could be 

used to correlate with the tool chipping while other spatial frequencies were ignored. 

An in-process experiment on tool chipping detection was conducted to investigate 

the effect of tool chipping on the distribution of spatial frequencies of workpiece 

profile when the workpiece profile in spatial domain was transformed into frequency 

domain. The results of experiments and simulations were discussed in the next 

chapter.  

 The sub-window FFT method was introduced to resolve the limitation in 

STFT which is highly dependent of window function. CWT method was applied to 

overcome the limitation of the sub-window FFT method as CWT allows to 

decompose the workpiece profile in time domain and frequency domain 

simultaneously. The results and discussions as well as the comparison for both 

methods are detailed out as well in the next chapter.  
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CHAPTER FOUR 

 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

 The results and discussions of the research work are presented in this chapter. 

Section 4.2 presents the results of simulation on the detection of tool chipping from 

workpiece profile signature using ACF followed by a discussion of the results 

obtained from an in-process experiment. The analysis of the effect of the tool 

chipping on the workpiece surface using ACF is discussed. The findings obtained 

from the simulation and experiments are compared.  

 Section 4.3 discusses the results of the simulation works on detection of the 

tool chipping from the workpiece profile signature using FFT are compared with the 

findings obtained from the experiments. The effect of tool chipping on the amplitude 

of spatial frequencies of workpiece profile is explained. In addition, the results on 

detection of onset tool chipping in ceramic cutting insert using proposed sub-window 

FFT is also discussed.  

 In Section 4.4, discussions on the capability of the CWT for detecting the tool 

chipping in ceramic cutting insert based on the workpiece profile signature is 

presented. Tool chipping detection methods by using sub-window FFT and CWT are 

compared so that a better method in terms of the ability of detecting the onset tool 

failure by chipping can be determined. Finally, the chapter summary is presented in 

the Section 4.5. 



100 

4.2 In-process detection of chipping in ceramic cutting insert based on the 

surface profile signature using ACF  

 In this section, the outcomes of simulation (Section 4.2.1) and experimental 

work (Section 4.2.2) on the detection of tool chipping from workpiece profile 

signature using ACF are discussed in details. The comparison for results obtained 

from simulation and experimental work were made and the effect of the tool 

chipping on the workpiece profile using ACF is also discussed. 

4.2.1 Simulation results  

 Simulated workpiece profiles were used to demonstrate how the ACF can be 

applied to identify subtle changes in the turned workpiece profile caused by tool 

chipping. Figure 4.1(a)(i) shows the simulated ideal workpiece profile generated at 

tool nose radius of 0.8 mm and a feed rate of 0.4 mm per revolution. The peak of the 

ACF decreases uniformly and linearly as the lag distance increases due to the 

periodic workpiece profile as shown in Figure 4.1(a)(ii). When the cutting tool 

undergoes gradual wear, the peak of ACF show a slight deviation from the ideal plot 

(without vibration) and the deviation increases as shown in Figure 4.1(b)(ii) and 

Figure 4.1(c)(ii). This is because the amplitude of dislocation in workpiece results 

from the tool and workpiece vibration generated during machining increases.   

 When a tool has chipped the peaks of the ACF decrease rapidly as the lag 

distance increases as shown in Figures 4.1(d)(ii)-(e)(ii). The plot of the peaks also 

deviates significantly from the envelope of the autocorrelation peaks for a surface 

produced by an ideal simulated (chipping-free) tool. This behavior is due to the 
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random variation in the workpiece profile that results from the increased vibration 

after tool chipping. When the randomness of the surface profile increases the 

deviation becomes more prominent. Figure 4.1(f)(ii) shows a rapid decline in the 

peak of ACF as the lag distance increases due to the presence of waviness in the 

surface profile. The undulations of the surface waviness in the simulated workpiece 

profile leads to the profile is lack of autocorrelation with increasing lag distance. 

         
 
 

              

      
Figure 4.1: (a)(i) Ideal workpiece profile and (ii) corresponding peak of ACF plot; 

(b)(i) simulated surface profile with increasing vibration amplitudes by 5% peak-to-
valley height of simulated ideal workpiece profile and (ii) corresponding peak of 

ACF plot; (c)(i) simulated surface profile with increasing vibration amplitudes by 10% 
peak-to-valley profile height of simulated ideal workpiece profile and (ii) 

corresponding peak of ACF plot (ii); (d)(i) simulated surface profile with random 
vibration with 5 times higher magnitude as in (b) and (ii) corresponding peak of ACF 

plot; (e)(i) simulated surface profile with random vibration with 10 times higher 
magnitude as in (b) and (ii) corresponding peak of ACF plot; and (f) simulated 

surface profile with presence of waviness due to the tool-workpiece vibration by 10 
times higher vibration magnitude as in (b) and (ii) corresponding peak of ACF plot 

(Continued) 
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Figure 4.1: (continued) 
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4.2.2 Experimental results  

 Figures 4.2 shows the peaks of the ACF against the lag distance at different 

rotational angles of the workpiece. Based on the experiment results in the Figures 

4.2(a) and Figure 4.2(b), it can be noticed that the envelope of the peaks of ACF 

decreased gradually with the lag distance along the workpiece profile. The trends of 

the peak of the ACF are almost the same at different rotation angles of the workpiece. 

Figure 4.2(c), however, shows a rapid decrease in the peak of ACF between lag 

distances of 0 mm to 8 mm for the cutting interval between 11.1 s to 16.5 s. In 

Figures 4.2(d) to Figure 4.2(f), the envelopes of the peak of ACF for workpiece 

profile at different rotational angles deviate significantly from one another. 

Simulation and experiment results show that ACF is capable of detecting the random 

features buried in the surface profile by determining the correlation coefficient 

between the pairs of shifted and un-shifted surface profile at a separation distance 

called lag distance (each lag is equivalent to 1 pixel value) regardless of the total 

length of workpiece profile.    

 Figures 4.3(a) and Figure 4.3(b) show the SEM images of the cutting inserts 

after the machining operation for the peak of ACF plot in Figure 4.2(b) and Figure 

4.2(c), respectively. As seen in Figures 4.3(a), abrasion grooves are formed on the 

flank face of the cutting insert due to the tool and workpiece abrasion in the early 

machining time interval of 5.6 s to 11.0 s. Figure 4.3(b) shows chipping that 

appeared on the cutting edge of the ceramic inserts after machining time duration of 

16.5 s. Figure 4.4 shows a 3-D view of the cutting edge using Alicona InfiniteFocus 

where the chipping is clearly visible. The chipping in Figure 4.4 occurred on the nose 

area which falls in the flank wear land as shown in Figure 2.3.  
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            (a) Cutting time interval: 0-5.5 s            (b) Cutting time interval: 5.6-11.0 s  
 
 

  
 (c) Cutting time interval: 11.1-16.5 s         (d) Cutting time interval: 16.6-22.0 s  
 
 

       
 (e) Cutting time interval: 22.1-27.5 s       (f) Cutting time interval: 27.6-33.0 s 
 

Figure 4.2: ACF plot of workpiece profile generated by aluminium oxide ceramic 
cutting insert at different rotational angles within cutting time interval of (a) 0-5.5 s, 

(b) 5.6-11.0 s, (c) 11.1-16.5 s, (d) 16.6-22.0 s, (e) 22.1-27.5 s, and (f) 27.6-33.0 s 
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Figure 4.3: SEM micrographs of aluminium oxide ceramic 

machining (a) before chipping,

     

Figure 4.4: 3-D observation of the 

 In the early machining stage the 

profile with almost constant wavelength along the workpiece. The peak

height of the surface roughness profile is approximately constant up to a machining 

time of 11 s (at various rotati

Groove ridges 
due to abrasion
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(a)                                          

: SEM micrographs of aluminium oxide ceramic cutting insert after 
machining (a) before chipping, and (b) after chipping.

 

       

 

D observation of the chipping on the cutting edge by 
Focus. 

n the early machining stage the ceramic cutting insert produces a periodic 

profile with almost constant wavelength along the workpiece. The peak

height of the surface roughness profile is approximately constant up to a machining 

time of 11 s (at various rotation angles) as shown in Figure 4.5 and Figure 4.6

Groove ridges 
due to abrasion 

Chipping on the 
cutting edge

Chipping on the cutting edge

  

                                    (b)  

cutting insert after 
(b) after chipping. 

 

the cutting edge by Alicona Infinite 

ceramic cutting insert produces a periodic 

profile with almost constant wavelength along the workpiece. The peak-to-valley 

height of the surface roughness profile is approximately constant up to a machining 

n in Figure 4.5 and Figure 4.6.  

Chipping on the 
cutting edge 

Chipping on the cutting edge 
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Figure 4.5: Extracted surface roughness profile from 2-D workpiece images at 
different rotational angles (a) 0o, (b) 60o, (c) 120o, (d) 180o, (e) 240o, and (f) 300o in 

cutting time interval of 0-5.5 s. 
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Figure 4.6: Extracted surface roughness profile from 2-D workpiece images at 
different rotational angles (a) 0o, (b) 60o, (c) 120o, (d) 180o, (e) 240o, and (f) 300o in 

cutting time interval of 5.6-11.0 s. 

 

  

0 5 10 15
-50

-25

0

25

50

Distance along the profile (mm)

P
ro

fil
e 

h
ei

g
h

t 
(µm

)

0 5 10 15
-50

-25

0

25

50

Distance along the profile (mm)

P
ro

fil
e 

h
ei

g
h

t 
(µm

)

0 5 10 15
-50

-25

0

25

50

Distance along the profile (mm)

P
ro

fil
e 

h
ei

g
h

t 
(µm

)

0 5 10 15
-50

-25

0

25

50

Distance along the profile (mm)

P
ro

fil
e 

h
ei

g
h

t 
(µm

)

0 5 10 15
-50

-25

0

25

50

Distance along the profile (mm)

P
ro

fil
e 

h
ei

g
h

t 
(µm

)

0 5 10 15
-50

-25

0

25

50

Distance along the profile (mm)

P
ro

fil
e 

h
ei

g
h

t 
(µm

)

(a) (b) 

(c) (d) 

(e) (f) 



 Figure 4.7 show

corresponding surface roughness profiles before

for a workpiece profile generated from an unworn or progressiv

decreases gradually as a function of lag distance and are almost identical at different 

rotational angles as shown in Figure 4.2(a) and Figure 4.2

uniform and repeatable profile which shows good replication of t

profiles as the lag distance increases.

 

      

Figure 4.7: Zoomed view of 2
corresponding extracted surface roughness profile before tool chipping
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Figure 4.7 shows the zoomed in 2-D workpiece profiles and their 

face roughness profiles before tool chipping. The peaks of the 

for a workpiece profile generated from an unworn or progressively worn cutting tool 

decreases gradually as a function of lag distance and are almost identical at different 

onal angles as shown in Figure 4.2(a) and Figure 4.2(b). This is due to the 

uniform and repeatable profile which shows good replication of t

profiles as the lag distance increases. 

      

 

Figure 4.7: Zoomed view of 2-D images of the workpiece profile and the
corresponding extracted surface roughness profile before tool chipping

Figure 4.8 to Figure 4.11 show the surface profiles at selected cutting 

intervals of time and corresponding workpiece profile to the peak of ACF plot in 

Figure 4.2(c) to Figure 4.2(f) respectively. The sharp decrease and the significant 
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Figure 4.2(c) to Figure 4.2(f) are attributed to the variation in the workpiece profile 
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caused by the tool chipping. Figure 4.12 illustrates the zoomed view of 2-D images 

of the workpiece profile and their corresponding extracted surface roughness profile 

after tool chipping. After tool chipping the surface roughness profiles do not repeat 

periodically compared to the profiles at the initial cutting stages. The peak-to-valley 

heights of the surface roughness profile change irregularly.  

 When the turning of workpiece was continued by using the chipped cutting 

insert this could lead to continuous failure of the cutting insert by tool chipping 

because the workpiece profile generated in the subsequent passes show significant 

and distinct undulations of the surface waviness at different rotational angles 

observed in Figure 4.8 to Figure 4.11. As the ceramic tool material is brittle and once 

it has been chipped or broken, the bonding between the grains are weakened due to 

the mis-orientation of the neighbouring grains abutting chipping. Continuous tool 

chipping could be the result of propagation of chipping initiated at the edge of the 

cutting insert under the action of cyclic load due to the instability of cutting process 

caused by the tool-chip abrasion.  

 When the cutting tool has chipped or continue to chip its effects on the 

cutting force variation can sometime cause severe vibration during machining. This 

is because the chipped cutting tool and workpiece contact area increases and this 

causes the cutting force to increase and in turn excite the tool and workpiece to 

vibrate during machining. Consequently, the vibration between the chipped cutting 

tool and the workpiece leads to the tool movement with respect to the workpiece 

which become unstable during cutting operation. 
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Figure 4.8: Extracted surface roughness profile from 2-D workpiece images at 
different rotational angles (a) 0o, (b) 60o, (c) 120o, (d) 180o, (e) 240o, and (f) 300o in 

cutting time interval of  11.1-16.5 s 
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Figure 4.9: Extracted surface roughness profile from 2-D workpiece images at 
different rotational angles (a) 0o, (b) 60o, (c) 120o, (d) 180o, (e) 240o, and (f) 300o in 

cutting time interval of  16.6-22.0 s 
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Figure 4.10: Extracted surface roughness profile from 2-D workpiece images at 
different rotational angles (a) 0o, (b) 60o, (c) 120o, (d) 180o, (e) 240o, and (f) 300o in 

cutting time interval of 22.1-27.5 s 
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Figure 4.11: Extracted surface roughness profile from 2-D workpiece images at 
different rotational angles (a) 0o, (b) 60o, (c) 120o, (d) 180o, (e) 240o, and (f) 300o in 

cutting time interval of 27.6-33.0 s 
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Figure 4.12: Zoomed view of 2
corresponding extracted surface roughness profile after tool chipping.
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: Zoomed view of 2-D images of the workpiece profile and the 
corresponding extracted surface roughness profile after tool chipping.
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workpiece profiles and the workpiece profile differ from one another at various 

rotation angles as observed in Figure 4.8 to Figure 4.11. Due to this reason, the sharp 

decrease and the significant deviation in the peaks of the ACF plots at different 

rotational angles were observed. The trends of the peak of ACF obtained from the 

experiments before and after tool chipping are consistent with the results from the 

simulation study. The peaks of ACF obtained in the experiments (Figure 4.2(c)-(f)) 

decrease rapidly in the presence of tool-workpice vibration and explicit surface 

waviness appear after tool chipping as observed in the simulation.  

 The sum square of deviation (SSD) from the peak of ACF of the ideal 

workpiece profile for each workpiece rotation angle was determined to correlate with 

the tool condition. Figure 4.13 shows the ACF for a simulated ideal workpiece 

profile with a feed of 0.4 mm and length equal to the actual length of image of the 

workpiece profile. As seen in Figure 4.13, the ACF is maximum and equal to 1 for 

zero spatial separation (τ = 0) and then decays gradually with increase in the lag 

distance. As the lag distance increases the correlation diminishes because the original 

profile and shifted profile have increasingly smaller overlapping areas. The slope and 

the rate of decrement of the peak of ACF plot are known as indicators of randomness 

of the surface. The ACF attains a peak when the lag is a multiple of wavelength 

which means that the surface replicates itself at a spatial separation of wavelength. 

  The peak of ACF and the lag distance were correlated using Pearson’s r value 

in linear regression. Pearson's r is a measure of the strength of the linear relationship 

between two variables. Pearson's r of approximately -1 indicates that a perfect but 

negative linear relationship exists between the peak of ACF and lag distance. The 

residual sum-of-square for the regression was used to determine the coefficient of 
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determination (R2). A high value of adjusted R2 shows a significant linear 

relationship between the peaks of ACF and lag distance. The linear relationship 

between the peak of ACF and distance is used as datum to estimate the tool state by 

determining the SSD from the peak of ACF of ideal workpiece profiles as shown in 

Figure 4.1(d) to Figure 4.1(f). 

 

 

Figure 4.13: Peak of ACF of the simulated ideal workpiece profile against with the 
lag distance. 

  A 3-D plot of the SSD from ideal workpiece profiles at different workpiece 

rotation angles within different cutting interval is presented in Figure 4.14. As seen 

in this figure there is no obvious change in the SSD value before cutting time of 11.1 

s. This indicates that the machined profiles have good replication and are highly 

correlated at different rotational angles of the workpiece. The SSD increased sharply 

after tool chipping at cutting time interval of 11.1 s to 16.5 s. This is due to the non-
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uniform and abrupt changes in the workpiece profile generated at different workpiece 

rotation angles.   

 

 

   

 

Figure 4.14:  3-D bar plot of SSD from the ACF peak for the ideal workpiece 
profile:(a) front view, and (b) back view. 

(a) 

(b) 
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 A small SSD value was again observed at cutting time interval of 16.6-22.0 s. 

This is because when the chipped cutting tool is repositioned and continues to move 

it touches the workpiece again thus closing the gap to continue the cutting. However, 

the SSD value is generally high after tool chipping and has significant fluctuation at 

different cutting time intervals. The SSD of the peak of ACF of the workpiece profile 

with different workpiece rotation angles also show significant fluctuation at the onset 

of cutting time of 11.1 s. It seems reasonable to expect the fluctuation as the surface 

roughness profiles shown in Figure 4.8 to Figure 4.11 change in various ways as the 

dislocation profile resulting from the tool-workpiece vibration generated during 

machining when the tool chipping or more severe chipping of tool insert occurs. 

When the experiment was repeated similar results were found as shown in 

Figure 4.15. Once again, the envelope of the peaks of the ACF was found to deviate 

significantly from one another at different angles when the tool has chipped as 

evident in Figure 4.15(b). 

 

     

 

Figure 4.15: ACF plot of workpiece profile generated by aluminium oxide ceramic 
cutting insert at different rotational angles for repeat experiment (a) before tool 

chipping, and (b) after tool chipping 
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4.3 Detection of tool chipping in ceramic cutting insert from the surface 

profile signature using FFT 

 In this section, the results of using FFT method to analyze the surface profile 

to detect tool chipping are presented. Two simulation works on detection of tool 

chipping from surface profile signature using FFT by considering (i) the changes of 

the tool nose, and (ii) the presence of the tool-workpiece vibration were conducted. 

The results of each simulation work is presented and followed by the results obtained 

from the experiments. The effect of tool chipping on the amplitude of spatial 

frequencies of the workpiece profile is discussed. The results on detection of onset 

tool chipping in ceramic cutting insert using proposed sub-window FFT method is 

presented in the final part of this section. 

4.3.1 Simulation results on detection of tool chipping from surface profile 

signature using FFT by considering the changes of the tool nose 

 Figure 4.16 presents the example of the spectrum analysis of the simulated 

ideal surface profile with feed rate of 0.4 mm/rev. As seen in the figure a strong 

fundamental feed frequency (Vf) of 2.5 mm-1 (1/0.4 mm) appears at a wavelength 

equal to the feed. Under ideal conditions the surface roughness profile is generated 

by the repetition of the tool tip profile at intervals of feed per revolution. This is 

based on the assumption that the tool is ideally positioned relative to the workpiece. 

Since the ideal surface produced by the tool nose is periodic several harmonics given 

by mVf where m = 2, 3, 4…. appear together with the fundamental feed frequency Vf . 

As seen in Figure 4.16 the fundamental feed frequency and its harmonics are 
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prominent. Thus, the amplitude of the fundamental feed frequency and its harmonics 

were extracted to correlate with the cutting tool condition. 

  
  

 
   

Figure 4.16: (a) Simulated ideal workpiece profile, and (b) FFT analysis for 
simulated ideal workpiece profile 

 
 

Figure 4.17 illustrates the evolution of amplitude of the fundamental feed 

frequency and its harmonics for the simulated gradual wear on cutting tool in Figure 

3.23 (represented by % increase of nose radius in minor axis length). It was noted 

that the amplitude of fundamental feed frequency increases with the increase of 

gradual wear. The second and third harmonics of fundamental feed frequency did not 

show any significant trend.   
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Figure 4.17:  Variation of the amplitude of fundamental feed frequency, second 
harmonic and third harmonic of the simulated surface profile for gradual wear 

  

 Figure 4.18 shows simulation results where the chipping occurred at the early 

stage of cutting operation as shown in Figure 3.27. It can be noted from Figure 4.18 

the spectrum amplitude of fundamental feed frequency start fluctuating from 

beginning of the simulated chipped cutting tool. Again, the second and third 

harmonics of fundamental feed frequency did not show any significant trend. Since 

the fundamental feed frequency is predominant with tool geometry in the FFT 

analysis, the fundamental feed frequency was employed to correlate with the cutting 

tool condition. Figure 4.19 presents the evolution of the amplitude of the 

fundamental feed frequency for the corresponding simulated workpiece profile due 

to gradual wear and chipping on cutting tool shown in Figure 3.29. As seen in Figure 

4.19 the amplitude of the fundamental feed frequency increased uniformly during 

gradual wear and starts fluctuating once chipping occurred. 
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Figure 4.18:  Variation of the amplitude of fundamental feed frequency, second 
harmonic and third harmonic of simulated surface profile for chipping 

  

Figure 4.19: Variation of the amplitude of fundamental feed frequency of the 
simulated surface profile from gradual wear to chipping 

 As shown in Figure 4.20, when the cutting tool has chipped, it was observed 

that the Rt decreased due to the depth of cut reduced. When the cutting tool 
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significant fluctuations of the Rt of surface profile and consequently leads to the 

fluctuations in amplitude of the fundamental feed frequency.  

 

 

Figure 4.20: Tool nose area showing the maximum peak-to-valley height Rt of 
workpiece profile generated from unworn and chipped tool profile 

 

4.3.2 Results of offline experiment  

 An offline preliminary study on detecting the tool chipping in ceramic insert 

was conducted. A commercially available carbide cutting tool (TNMG 160404 MF – 

Sandvik Ltd.) was used for studying the effect of gradual wear on the amplitude of 

fundamental feed frequency and its harmonics in a separate experiment. The carbide 

cutting insert was observed using a SEM after machining as shown in Figure 4.21. It 

can be seen that there was no chipping or breakage on the edge of cutting insert after 

eight minutes of machining. Thus, the wear pattern on the carbide insert can be 

considered as gradual wear which mainly due to the abrasion.  

 

 

Rt generated by 
continuous chipped tool 

 

Rt generated by 
unworn tool 

 

Rt generated by 
chipped tool 

 

Profile of tool 

Workpiece 

Feed direction 



Figure 4.21: SEM observation of 

  Figure 4.22 

frequency and its harmonics as a function of cutting time for 

insert. Figure 4.22(a) shows the amplitude of the fundamental feed frequency is 

constant as the cutting tool undergoes minimum wear within a short cutting duration 

of 76.3 seconds. Gradual wear progresses slowly, therefore to demonstrate the 

of gradual wear on the

the workpiece profile images were captured at the end of each cutting interval of 2 

minutes. The result in Figure 4.22(b) shows that the

increased gradually w

Figure 4.22, there was no distinctive trend observed in the harmonics of

fundamental frequency. 

study shown in the Figure 4.17
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Before machining 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After machining (8 mins) 

 
 
 

(a)    (b) 

Figure 4.21: SEM observation of carbide cutting insert before and after machining
 (a) isometric view, and (b) top view. 

 shows the evolution of the amplitude of

frequency and its harmonics as a function of cutting time for 

Figure 4.22(a) shows the amplitude of the fundamental feed frequency is 

constant as the cutting tool undergoes minimum wear within a short cutting duration 

of 76.3 seconds. Gradual wear progresses slowly, therefore to demonstrate the 

on the amplitude of fundamental feed frequency and its harmonics 

the workpiece profile images were captured at the end of each cutting interval of 2 

in Figure 4.22(b) shows that the amplitude of 

increased gradually with tool wear for a cutting duration of 8 minutes. As seen in 

here was no distinctive trend observed in the harmonics of

fundamental frequency. These results agree closely with those from the simulation 

study shown in the Figure 4.17. 

Wear region 

 

 

carbide cutting insert before and after machining 

on of the amplitude of fundamental feed 

frequency and its harmonics as a function of cutting time for the carbide cutting 

Figure 4.22(a) shows the amplitude of the fundamental feed frequency is 

constant as the cutting tool undergoes minimum wear within a short cutting duration 

of 76.3 seconds. Gradual wear progresses slowly, therefore to demonstrate the effect 

requency and its harmonics 

the workpiece profile images were captured at the end of each cutting interval of 2 

amplitude of the feed frequency 

for a cutting duration of 8 minutes. As seen in 

here was no distinctive trend observed in the harmonics of the feed 

These results agree closely with those from the simulation 
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Figure 4.22: Variation of the amplitude of fundamental feed frequency, second 
harmonic and third harmonic of actual surface profile from turning stainless steel 

work piece using carbide insert in (a) cutting time duration of 76.3 s, and (b) cutting 
time duration of 8 minutes 

Figure 4.23 shows an example of zoomed in spectrum analysis for actual 

surface profile obtained from experiment using carbide cutting insert. It can be found 

that the amplitude spectrum for the workpiece surface machined using the carbide 

insert exhibits a strong fundamental feed frequency of 2.538 mm-1 and frequencies 

that are nearly multiplies of the fundamental feed frequency, i.e. harmonics. There is 
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always a constant fundamental feed frequency for any cutting conditions because the 

surface profile along the axis of the workpiece is generated by the tool geometry 

forming one feed groove for each rotation of the workpiece. The fundamental feed 

frequency Vf  is represented in FFT analysis as described in Equation 3.3, where f is 

the tool feed. Since the feed used in this experiment was 0.4 mm a fundamental feed 

frequency of 2.5 mm-1 in an ideal workpiece profile is expected as seen in Figure 

4.16. The deviation between the theoretical fundamental feed frequency (2.5 mm-1) 

and the actual (2.538 mm-1) is due to the inconstancies in tool movement per object 

rotation or uneven movement of the tool feed system in the lathe.   

 

Figure 4.23: Example of FFT analysis for actual surface profile obtained from  
the experiment using carbide cutting insert 

 
 

The profile of the turned surface was analyzed further to better understand 

increase in surface roughness is due to the increase of tool wear. Figure 4.24 shows 

the images of workpiece profile and the roughness profile extracted from the 2-D 

images of the edge of workpiece. From the figure, it was observed that for fresh tool 

the workpiece profile of the turned surface closely resembles the ideal geometrical 

shape of the tool as in the simulated turning process. As seen in the figure, the 
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surface roughness profile is repeatin

cycle (wavelength) is nearly equal to the machining feed per revolution (0.4

 (a) Cutting time: 0.14 min

 
 
 (b) Cutting time: 4 min

 
 
(c) Cutting time: 8 min

 
Figure 4.24: 2-D images of the workpiece profile from turning with carbide cutting 

insert and their corresponding surface roughness profile
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surface roughness profile is repeating periodically as expected and the length of each 

is nearly equal to the machining feed per revolution (0.4

(a) Cutting time: 0.14 min 

b) Cutting time: 4 min 

(c) Cutting time: 8 min 

D images of the workpiece profile from turning with carbide cutting 
their corresponding surface roughness profile at cutting time duration of (a) 

8.5 s, (b) 50.9 s, and (c) 84.8 s 
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g periodically as expected and the length of each 

is nearly equal to the machining feed per revolution (0.4 mm). 

 

 

 

D images of the workpiece profile from turning with carbide cutting 
at cutting time duration of (a) 
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The maximum peak-to-valley height of the surface profile (Rt), which is the 

vertical distance between the highest peak and the lowest valley within the 

evaluation length, was determined from the images of the workpiece profile. The 

changes in Rt for the roughness profile are shown in Figure 4.25. The amplitude of 

peak-to-valley of the surface profile at the initial cutting stage is lower and increased 

with cutting time. Grzesik and Zalisz (2008) and Penalva et al. (2002) reported 

similar findings that when tool wear increases, i.e. the maximum peak-to-valley of 

the roughness profile also increased. They explained that the increase of Rt is due to 

the peak of the workpiece profile tend to be higher (maximum height of the surface 

profile peak (Rp) increases)  as the tool wear increases. 

 
 

Figure 4.25: Peak-to-valley roughness parameter (Rt) as a function of cutting time for 
carbide insert  

 An in-housed fabricated ceramic cutting insert (zirconia-toughened alumina 

(ZTA) + magnesium oxide (MgO)) was used for studying the effect of chipping on 

the amplitude of fundamental feed frequency of workpiece profile and its harmonics. 

From the SEM images shown in Figure 4.26, it was observed that the ceramic cutting 
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insert chipped severely 

ceramic is a brittle material

premature tool failure by chipping

failure modes in ceramic cutting insert is important since chipping may occur 

during the turning.  

   
 

Figure 4.26: SEM o
machining (a) i

 According to the result shown in Figure 4.27, it can be seen that

drop to nearly 14.1% in amplitude of fundamental fed frequency  and was remained 

stable from 17.0 s to 42.4 s. After 42.4 s. the amplitude of fundamental feed 

frequency fluctuated significantly, the trend was clearly upward and downward in 

between 19.7% and 27.9%.

at selected intervals of 

Chipping
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insert chipped severely on the rake face at the end of the turning process. Since 

ceramic is a brittle material, friction between the tool-workpiece interfaces caused 

failure by chipping instead of gradual wear. The detection of these 

failure modes in ceramic cutting insert is important since chipping may occur 

Before machining 

 
After machining 

 

 (a)    (b) 

SEM observation of the ceramic cutting insert before and after 
machining (a) isometric view, and (b) top view

 

to the result shown in Figure 4.27, it can be seen that

drop to nearly 14.1% in amplitude of fundamental fed frequency  and was remained 

stable from 17.0 s to 42.4 s. After 42.4 s. the amplitude of fundamental feed 

frequency fluctuated significantly, the trend was clearly upward and downward in 

nd 27.9%. Figure 4.28 shows the 2-D images of workpiece profile 

at selected intervals of cutting time and their corresponding roughness profile plots. 

Chipping 

at the end of the turning process. Since 

workpiece interfaces caused 

wear. The detection of these 

failure modes in ceramic cutting insert is important since chipping may occur early 

 

 

before and after 
(b) top view 

to the result shown in Figure 4.27, it can be seen that there was a 

drop to nearly 14.1% in amplitude of fundamental fed frequency  and was remained 

stable from 17.0 s to 42.4 s. After 42.4 s. the amplitude of fundamental feed 

frequency fluctuated significantly, the trend was clearly upward and downward in 

D images of workpiece profile 

time and their corresponding roughness profile plots. 
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It can be observed that the workpiece profile at the end of cutting process (cutting 

time of 84.8 s) has irregular peak-to-valley heights compared to the profile from the 

fresh cut at cutting time of 8.5 s due to the severe chipping of the cutting tool edge. 

Figure 4.28(a) shows that the surface profile was close to the theoretical profile at the 

initial cutting stage at 8.5 s. However, when severe chipping has taken place the 

amplitude of roughness profile is not uniform but fluctuates as seen in Figure 4.28(c). 

 Figure 4.29 shows that there is significant fluctuation in the peak-to-valley 

height of surface profile which explains the fluctuation in the amplitude of 

fundamental feed frequency in cutting time interval of 42.4 s to 84.8 s was observed. 

Ideally, when the cutting tool edge is still intact the surface profile of the workpiece 

is predominantly affected by the feed. When the edge of cutting insert has been 

damaged by chipping the surface of workpiece will not be affected by the tool nose 

and the feed only but many other influencing factors will be introduced. 

  
 

Figure 4.27: Variation of the amplitude of fundamental feed frequency, second 
harmonic and third harmonic of actual surface profile from turning stainless steel 

workpiece using ceramic insert. 
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  (a) Cutting time: 8.5 s
 

 
(b) Cutting time: 50.9 s
 

 
 (c) Cutting time: 84.8 s
 

Figure 4.28: 2-D images of the edge of workpiece from turning with ceramic cutting 
insert and their corresponding surface roughness profile
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(a) Cutting time: 8.5 s 

(b) Cutting time: 50.9 s 

(c) Cutting time: 84.8 s 

 
D images of the edge of workpiece from turning with ceramic cutting 

insert and their corresponding surface roughness profile at cutting time duration of (a) 
8.5 s, (b) 50.9 s, and (c) 84.8 s 
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D images of the edge of workpiece from turning with ceramic cutting 
at cutting time duration of (a) 
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Figure 4.29: Peak-to-valley roughness parameter (Rt) as a function of cutting time for 
ceramic insert. 

 Previous experimental work (Lan & Dornfeld, 1984) showed that cutting 

forces increase suddenly due to tool fragments being squeezed between the tool and 

workpiece when tool is chipped, and subsequently decline. The level of cutting force 

may increase or decrease due to chipping of the cutting tool depending on the degree 

and type of chipping. The force level change after the cutting tool chipped off  is 

caused by a loss of the depth of cut and accompanying decrease in the chip load on 

the tool. Thus the machining process become unstable as the cutting forces excites 

the tool and workpiece to vibrate significantly when the cutting tool has chipped. The 

effect of the relative tool and workpiece vibration leads to instability in the 

machining process  and determine whether the tool cuts deeper or shallower from the 

surface of workpiece. Consequently the peak-to-valley height of the workpiece 

profile fluctuates. Oraby and Alaskari (2008) also reported that consistent correlation 

was found between surface roughness and cutting force. When the cutting forces 

fluctuate the surface roughness of the work material also fluctuated, thus leading to a 

sudden drop and increase in the amplitude of the fundamental feed frequency.  
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4.3.3 Simulation results on detection of tool chipping from surface profile 

signature using FFT by considering the presence of tool-workpiece vibration 

 Results of simulation study on the detection of tool chipping from surface 

profile signature in Section 4.3.1 only considered the change on the tool nose profile 

due to gradual wear and chipping. Vibration between the tool and the workpiece was 

excluded. Since the simulated workpiece profile produced by the worn and chipped 

tool are periodic, the fundamental feed frequency is predominant and is accompanied 

with small amplitude spatial frequencies at harmonics of the fundamental feed 

frequency. Thus, the offline study only considered the amplitude of fundamental feed 

frequencies and its harmonics, while the amplitudes in other frequencies were not 

investigated. 

 When the workpiece profile was turned with a worn cutting tool caused by 

gradual wear, a new spatial frequency of around 16 mm-1 was found as shown in 

Figure 4.30(a)(ii)-(b)(ii). This is due to the presence of irregularities in the workpiece 

profile due to a regular vibration between the cutting tool and the workpiece. When a 

tool has chipped the surface profile is accompanied by random dislocation of 

vibration as shown in Figure 4.30(c)(i)-(d)(i). From the corresponding FFT plot 

shown in Figure 4.30(c)(ii)-(d)(ii) little ripples in frequencies was observed due to 

the sudden changes from one frequency component to another due to the randomness 

of the dislocation in surface profile. Presence of the waviness in surface profile as 

shown in Figure 4.30(e)(i) results in a conspicuous low spatial frequency as shown in 

Figure 4.30(e)(ii).  

 The amplitude of fundamental feed frequency are almost equal because the 

periodic simulated workpiece profile with wavelength of 0.4 mm contributes a strong 

fundamental feed frequency of 2.5 mm-1. There was no obvious impact of the 
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dislocation of workpiece profile due to vibration on periodic ideal surface profile at 

wavelength of feed. Therefore, the amplitude of the fundamental feed frequency was 

approximately same. The dislocation in workpiece profile due to regular and random 

tool-workpiece vibration with the wavelength that not equal to feed distance excites 

other spatial frequencies that beyond the fundamental feed frequency.   

 

      
 

      
      
Figure 4.30: (a)(i) Simulated surface profile with increasing vibration amplitudes by 
5% peak-to-valley height of simulated ideal workpiece profile and (ii) corresponding 
FFT plot; (b)(i) simulated surface profile with increasing vibration amplitudes by 10% 

peak-to-valley height of simulated ideal workpiece profile and (ii) corresponding 
FFT plot (ii); (c)(i) simulated surface profile with random vibration with 5 times 

higher vibration magnitude as in (a) and (ii) corresponding FFT plot; (d)(i) simulated 
surface profile with random vibration with 10 times higher vibration magnitude as in 
(a) and (ii) corresponding FFT plot; and (e) simulated surface profile with presence 

of waviness due to the tool-workpiece vibration by 10 times higher vibration 
magnitude as in (a) and (ii) corresponding FFT plot (Continued) 
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Figure 4.30: continued 

4.3.4 Results of in-process experiment 

 The offline results have shown that the fundamental feed frequency extracted 

from the FFT of the workpiece profile can be used to detect the tool chipping in 

ceramic insert. The experimental work was conducted in-process to detect the tool 

chipping during turning of AISI 01 oil hardening tool steel using a commercial 

aluminium oxide based ceramic insert by investigating the distribution of the spatial 

frequencies along the workpiece profile. Figure 4.31 to Figure 4.34 show the zoomed 
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actual workpiece profile captured during turning for each pass and their 

corresponding extracted sub-pixel profile at six workpiece rotation angles. Figures 

4.35(a)(i)-(d)(i) show the FFT for the actual workpiece profile obtained from the 

experiment (Figure 4.31 to Figure 4.34) after each pass for different workpiece 

rotation angles. It should be pointed out that the rotation angles of the workpiece at 

different cutting durations do not correspond to one another since the start of 

capturing of the profiles is random during the turning. The corresponding cutting 

inserts for each pass are shown in Figures 4.35(a)(ii)-(d)(ii).  

 Before tool chipping the amplitude of the fundamental feed frequency 

approximates to 2.5 mm-1 at various rotation angles of the workpiece is predominant 

as seen in Figures 4.35(a)(i), Figure 4.35(b)(i) and Figure 4.35(c)(i). This observation 

agrees with the FFT of the simulated ideal workpiece profile. When the machining 

process is stable the tool produces a periodic profile with almost constant wavelength 

at various rotation angles of the workpiece (Figure 4.31 to Figure 4.33). After a 

machining duration of 22.0 s severe chipping on the cutting edge of the ceramic 

inserts was observed (Figure 4.35(d)(ii)). Since ceramic is brittle, friction between 

the tool-workpiece interfaces causes premature tool failure by chipping instead of 

gradual wear. After the cutting insert has chipped the amplitude of the spatial 

frequencies lower than fundamental feed frequency increased sharply for all 

workpiece rotation angles as seen in Figure 4.35(d)(i). Figures 4.36 shows examples 

of zoomed-in FFT plot at workpiece rotation angles of 60o before and after tool 

chipping. The results of experiment consistent with results of simulation, because of 

irregular surface profile introduced other spatial frequencies due to the random 

features exist in the surface profile after tool has chipped. Low spatial frequencies 

was observed was due to presence of the waviness.  
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Figure 4.31: Zoomed in actual workpiece profile at different rotation angles (a) 0o, (b) 
60o, (c) 120o, (d) 180o, (e) 240o, (f) 300o  and their corresponding extracted sub-pixel 

profile at cutting duration of 5.5 s 
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Figure 4.32: Zoomed in actual workpiece profile at different rotation angles (a) 0
60o, (c) 120o, (d) 180

(a) (i) 

(b) (i) 

(c) (i) 

(d) (i) 

(e) (i) 

(f) (i) 
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Figure 4.32: Zoomed in actual workpiece profile at different rotation angles (a) 0
, (d) 180o, (e) 240o, (f) 300o  and their corresponding extracted sub

profile at cutting duration of 5.6-11.0 s 
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Figure 4.32: Zoomed in actual workpiece profile at different rotation angles (a) 0o, (b) 
and their corresponding extracted sub-pixel 
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Figure 4.33: Zoomed in actual workpiece profile at different rotation angles (a) 0
60o, (c) 120o, (d) 180
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Figure 4.33: Zoomed in actual workpiece profile at different rotation angles (a) 0
, (d) 180o, (e) 240o, (f) 300o  and their corresponding extracted sub

profile at cutting duration of 11.1-16.5 s 
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Figure 4.33: Zoomed in actual workpiece profile at different rotation angles (a) 0o, (b) 
and their corresponding extracted sub-pixel 
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Figure 4.34: Zoomed in actual 
60o, (c) 120o, (d) 180
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Figure 4.34: Zoomed in actual workpiece profile at different rotation angles (a) 0
, (d) 180o, (e) 240o, (f) 300o  and their corresponding extracted sub

profile at cutting duration of 16.6-22.0 s 
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Figure 4.35: FFT of the actual workpiece profile for each pass and their 
corresponding cutting tool condition at cutting time duration of (a) 5.5 s, (b) 11.0 s, 

(c) 16.5 s, and (d) 22.0 s   
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Figure 4.36: Examples of  zoomed in FFT plot  (a) before, and (b) after tool chipping 

 Figure 4.37 shows the variation in the amplitude of the fundamental feed 

frequency of the workpiece profile with cutting duration. The amplitude of the 

fundamental feed frequency remained almost constant with minimum gradual wear 

within a cutting duration of 16.5 s but decreased abruptly after the tool insert has 

chipped (Figure 4.37). This repeated result shows that the result obtained from 

offline and in-process experiments are in agreement which confirmed that the 

amplitude of fundamental feed frequency could be used to detect the tool chipping.  

                     

Figure 4.37: Variation in the amplitude of the fundamental feed frequency of the 
workpiece profile with cutting duration at various workpiece rotation angles. 

  

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

Spatial Frequency (1/mm)

A
m

p
lit

u
de

 (µ
m

)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

Spatial Frequency (1/mm)

A
m

p
lit

ud
e 

(µ m
)

(a) (b) 

Constant amplitude of fundamental feed 
frequency of the workpiece profile due to small 

gradual wear 

Abrupt decrease in the amplitude of 
the fundamental feed frequency due 

to tool chipping 

Workpiece rotation angle 



143 

4.3.5 Results of in-process onset detection of tool chipping from surface profile 

signature using sub-window FFT 

 As STFT analysis is highly dependent on window function and selection of 

window function is difficult as it affect accuracy due to attenuation effect in the 

window function cause a loss in spectral estimate. For this reason, attempt has been 

made to solve the problem by sub-window FFT that independent of window function. 

Figure 4.38 to Figure 4.40 show the sub-window of the FFT along the workpiece 

profile at different rotational angles for cutting duration of 16.5 s where the cutting 

tool undergoes gradual wear. As seen in Figure 4.38(a)(i)-(c)(i) to Figure 4.40(a)(i)-

(c)(i), the sub-window of FFT for each workpiece  profile shows a constant dominant 

peak appearing at the fundamental feed frequency of around 2.45 mm-1 which is 

approximately equal to the fundamental feed frequency of the ideal workpiece profile 

(reciprocal of the feed rate of  1/0.4 =2.5 mm-1). In addition, the spectrum amplitude 

of each FFT window along the workpiece profile is similar to one another. This is 

because a periodic profile with almost constant wavelength along the workpiece was 

produced as shown in Figure 4.38(a)(ii)-(c)(ii) to Figure 4.40(a)(ii)-(c)(ii) at different 

rotational angles of the workpiece.  

 Figure 4.41(a)-(c) shows the sub-window and their corresponding workpiece 

profile for the subsequent pass at the time interval of 16.5 s to 22.0 s. The workpiece 

profile is divided into smaller length's window viz 4 mm equally for 5 sub sections 

and each of the sub window length's interval duration is 0.63 s. As seen in Figure 

4.35 when the tool has chipped severely after a cutting duration of 22.0 s, the 

amplitudes at spatial frequencies lower than the fundamental feed frequency increase 

sharply starting from the first FFT sub-window for all rotation angles which was 
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thereafter cutting time duration of 16.5 s. Since each sub-window approximate to 

0.63 s increment along the workpiece profile it can be concluded that the cutting tool 

chipped at cutting time of approximately 17.13 s.  

  

 

 

 

 

 

 

 

Figure 4.38:  Sub-window of the FFT along the workpiece profile at different 
rotational angles (a) 0o, (b) 120o, and (c) 240o in cutting time duration of 0-5.5 s  
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Figure 4.39:  Sub-window of the FFT along the workpiece profile at different 
rotational angles (a) 0o, (b) 120o, and (c) 240o in cutting time duration of 5.6-11.0 s  
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Figure 4.40: Sub-window of the FFT along the workpiece profile at different 
rotational angles (a) 0o, (b) 120o, and (c) 240o in cutting time duration of 11.1-16.5 s  
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Figure 4.41: Sub-window of the FFT along the workpiece profile at different 
rotational angles (a) 0o, (b) 120o, and (c) 240o in cutting time duration of 16.5-22.0 s 
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  Figures 4.41(a)(ii)-(c)(ii) display the fact that after tool chipping the peak-to-

peak distance is not always equal to the feed and the peak-to-valley heights of the 

surface roughness profile changes irregularly and fluctuate significantly, thus 

introducing other spatial frequencies and reducing the amplitude contributed by the 

feed wavelength. This is because when the cutting tool has chipped its effects on the 

cutting force variation can cause severe vibration between the tool and the workpiece 

during machining. 

 Figure 4.42 shows the tool-workpiece vibration in the axial, radial and 

tangential directions, respectively, during the turning at various cutting durations. In 

Figure 4.42(a) to Figure 4.42(c), small amplitudes of the tool-workpiece vibration in 

the axial, radial and tangential directions within cutting time duration of 16.5 s were 

observed as the cutting tool edge is still intact and the cutting process is steady and 

stable. Thus, only a very small amplitude of spatial frequency beyond the 

fundamental feed frequency appear due to the small chatter excited during the 

turning process when the cutting tool is still new is observed. 

 Measurements of the tool vibration have confirmed that the tool vibrates 

significantly during cutting time duration between 16.5 s to 22 s as large amplitudes 

of the tool-workpiece vibration in three directions was found after the tool has 

chipped (Figure 4.42(d)). Babouri et al. (2016) also found that when the cutting 

insert undergoes accelerated wear caused by chipping is accompanied by an increase 

in vibration. The machining process becomes unstable as the vibration between the 

tool-workpiece interfaces increased significantly when the tool edge has failed. As a 

result the vibration between the chipped tool and workpiece leads to unstable cutting 

and to the random fluctuations in the workpiece profile (Boryczko, 2011).  
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Figure 4.42: Vibration measurement within cutting time duration of  
(a) 5.5 s, (b) 11.0 s, (c) 16.5 s, and (d) 22.0 s 

 The tool-workpiece vibration also causes waviness in both the cutting and the 
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undulation of the surface waviness. Therefore, it was evident that the spatial 

frequencies lower than the fundamental feed frequency in the workpiece profile is 

mainly due to tool-workpiece vibration which caused by the tool chipping.  The past 

research work by Cheung and Lee (2000) also have shown that the chatter vibration 

and rotational spindle error could be identified in the low spatial frequencies from the 

result of the spectrum analysis of the surface profile. 

 Figure 4.43 shows the one of example of zoomed sub-window FFT plot to 

show spatial frequencies around the fundamental feed frequency before and after tool 

chipping. When the cutting tool has chipped, the amplitudes of the spatial 

frequencies lower than the fundamental feed frequency increase for different rotation 

angles of the workpiece. FFT allows to identify certain spatial frequency components 

of interest to correlate to tool chipping. Therefore, the average of the amplitude of 

the spatial frequencies lower than the fundamental feed frequency in each sub-

window was calculated as an indicator of tool chipping and are tabulated in Table 4.1.  

 

      

 
Figure 4.43: Zoomed sub-window of FFT of the workpiece profile for 

(a) before tool chipping, and (b) after tool chipping 
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Table 4.1: Average of spectrum amplitude at spatial frequencies lower than the 
fundamental feed frequency. 

Duration 
(s) 

Rotational 
angle 

Sub-window 
1 2 3 4 5 

5.5 0 0.6993 0.7620 0.9144 0.8930 0.9601 
60 0.7751 0.7421 0.6497 0.7042 0.6739 
120 0.6212 0.7000 0.7947 0.8801 0.8147 
180 0.7857 0.7578 1.6125 0.7039 0.7489 
240 0.6830 0.5847 0.6349 0.7844 0.7275 
300 0.6297 0.6698 0.6663 0.6850 0.7741 

11.0 0 0.9892 0.8445 0.5525 0.7122 0.9083 
60 0.8955 0.7825 0.8669 0.8264 1.0742 
120 0.8423 0.9315 0.9108 0.6753 0.7733 
180 0.9858 0.7850 0.7332 0.9580 1.0510 
240 1.0574 1.1974 0.8707 0.6070 0.9996 
300 0.8263 0.8401 0.7943 0.8098 1.1629 

16.5 0 0.8266 0.8098 0.7362 0.6675 0.7671 
60 1.2783 0.6537 0.6612 0.8959 1.2237 
120 1.0443 1.2350 0.7487 0.7610 1.1360 
180 0.7167 0.7907 0.6748 0.9815 1.2032 
240 0.9475 0.6158 0.7018 0.7897 1.2136 
300 1.1428 0.8482 0.5136 0.8340 0.9094 

22.0 0 4.6717 9.0307 9.1889 11.3930 14.8924 
60 3.2714 8.2668 16.9896 19.0731 22.6823 
120 4.0822 4.5554 9.1238 16.8191 13.5248 
180 5.5554 6.4563 6.7220 10.4054 9.8891 
240 5.5554 6.4563 6.7220 10.4054 9.8891 
300 4.2321 5.3848 7.8268 8.8003 6.7615 

 

 Low average values of the sub-window amplitude at spatial frequencies lower 

than the fundamental feed frequency were observed before tool chipping. The 

standard deviation of the average amplitude for each sub-window for various 

rotational angles in Table 4.1 is presented in Figure 4.44. The low standard deviation 

in the average sub-window amplitude at spatial frequencies lower than the 

fundamental feed frequency indicates that the workpiece profiles at different 

rotational angles are highly similar to one another before tool chipping. However, the 

standard deviation of the average sub-window amplitude at the spatial frequencies 

lower than the fundamental feed frequency for various workpiece rotational angle 

increased sharply at cutting duration of approximate to 17.13 s due to the non-
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uniform workpiece profile generated at different rotational angle when the severe 

chipping has taken place.  

 

Figure 4.44: Standard deviation of the amplitude of FFT for each sub-window at 
various rotational workpiece angle. 

4.4 Results of in-process onset detection of chipping in ceramic cutting tools 

based on the surface profile signature using CWT 

 Although the sub-window FFT of the workpiece profile was successfully 

applied to detect the tool chipping at cutting time duration of 17.13 s, the accuracy of 

the sub-window method is highly dependent upon the size of the window. Moreover, 

the FFT method is designed for the use with stationary signal. Since the waveform of 

the workpiece is non-stationary the wavelet analysis was applied to overcome the 

limitations of FFT (Josso et al., 2002; Grzesik and Brol, 2009). 

 Figure 4.45 shows the scalogram for the simulated ideal workpiece profile. 
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determined based on the dyadic sampling (21, 22, 23,... etc) which is used in DWT. 

As shown in CWT of ideal profile, scale corresponding to feed frequency is ranging 

in between 60 to 80 (nearest power of two is 26). Higher scale should be used to 

detect the lower frequencies, thus the scale of 120 ( approximate to 27) was applied 

to localize the lower frequencies. Figures 4.46 to Figure 4.48 show the corresponding 

scalograms for workpiece profile in Figures 4.38(a)(ii)-(c)(ii) to Figures 4.40(a)(ii)-

(c)(ii) using Morlet wavelet at the cutting duration of 16.5 s where the ceramic 

cutting tool undergoes gradual wear. It can be seen that before the cutting tool has 

chipped, smooth and periodic workpiece profile waveform features are visible in 

Figures 4.38(a)(ii)-(c)(ii) to Figures 4.40(a)(ii)-(c)(ii) at various rotational angles. 

Their corresponding scalograms in Figure 4.46 to Figure 4.48 show that the highest 

magnitude of the CWT coefficients display an oscillatory pattern at scales between 

60-80 (within the same spatial frequency band) where the oscillation in the wavelet 

correlates best with the wavelet feature. The highest CWT coefficient values oscillate 

within the same scale band (frequency band) are associated with the regular feed of 

the workpiece profile which show an agreement with the result of scalogram for 

simulated ideal workpiece profile.   

 

Figure 4.45: (a) simulated workpiece profile, and (b) scalogram for simulated ideal 
workpiece profile 
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Figure 4.46: Scalograms corresponding to the workpiece profile in  

Figure 4.38(a)(ii)-(c)(ii) 

                    

                    

                    
Figure 4.47: Scalograms corresponding to the workpiece profile in  

Figure 4.39(a)(ii)-(c)(ii) 
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Figure 4.48: Scalograms corresponding to the workpiece profile in  

Figure 4.40(a)(ii)-(c)(ii) 

 Figure 4.49 shows the CWT of workpiece profile for the subsequent pass in 

Figure 4.48 at the time interval of 16.5 s to 22.0 s. When the cutting tool has chipped 

changes in the higher range of CWT coefficients at high scales are very distinct as 

seen in the Figures 4.49. A distinct transition of the largest CWT coefficient from 

lower scale range of around 70 (Figure 4.48) to higher scale range of around 110 was 

observed from the beginning of the scalograms of workpiece profile. In addition, the 

CWT coefficient at higher scale band of 100 to 120 appears to vary within the profile 

length. Thus, it can be concluded that the cutting tool starts to chip when it enters  the 

workpiece profile at cutting duration of 16.5 s. Application of the Morlet wavelet in 

this study allows separation of the different frequencies of the workpiece profile. As 

the scale increases the transform start to detect the lower frequency components from 

the workpiece profile. The apparent lower frequencies are mainly due to the tool-

workpiece vibration thus causing the formation of longer wavelength waviness along 

the tool feed direction.  
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Figure 4.49: Scalograms corresponding to the workpiece profile in 
Figure 4.41(a)(ii)-(c)(ii) 

 In order to further extract from the CWT to correlate the tool wear condition, 

the RMS of CWT coefficient at low, medium and high scales for different cutting 

duration at various rotational angles was calculated. RMS of CWT coefficients in 

each scale was determined by: 
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has chipped. Figure 4.50(d) shows the maximum deviation of RMS values of CWT 

coefficients for the various rotation workpiece angles. As seen in Figure 4.50(d), 

maximum deviation of the RMS values of CWT coefficients at all scales is low 

during turning with unworn cutting tool. In contrast, high maximum deviation of the 

RMS values of the CWT coefficient is found after tool chipping. Low RMS values of 

CWT coefficients is obtained at higher scales and it increased sharply after tool has 

chipped. It has also been found that compared to other RMS of the CWT coefficients 

for different scales, the maximum deviation of the RMS of CWT coefficients in scale 

of 100 is relatively large, indicating that the RMS of CWT coefficient at higher scale 

is more sensitive to the tool chipping which can be employed as an important 

indicator to detect the failure of cutting tool.  

           

     

Figure 4.50: RMS of CWT coefficient at different scales (a) 20,  (b) 60, (c) 100, and 
(d) comparison of maximum deviation of RMS of CWT coefficients 

(a) (b) 

(c) (d) 
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 Finally, Figure 4.51 shows comparison between the sub-window FFT and 

CWT method in onset tool chipping detection. In order to demonstrate the 

advantages of the CWT over the FFT analysis, a periodic workpiece profile 

generated by unworn cutting tool was jointed with workpiece profile generated by a 

chipped cutting tool as shown in Figure 4.51(b). The amplitude of spatial frequencies 

lower than fundamental feed frequencies was found to start to increase significantly 

within the cutting duration of 1.26-1.89 s as illustrated in Figure 4.51(a). Large CWT 

coefficients were found in higher scales due to irregular peak-to-peak feed distance 

peak-to-valley height of workpiece profile as well as presence of significant 

undulation of surface as shown in Figure 4.51(c). As seen in Figure 4.51(c), CWT 

method is more effective in detecting the onset tool chipping approximately to 1.6 s 

instead of 1.89 s using sub-window FFT method. 

 

 

Figure 4.51: Comparison of the sub-window FFT and CWT in onset tool chipping 
detection (a) sub-window FFT analysis, (b) workpiece profile, and (c) CWT analysis 
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4.4.1 Results of  repeat experiment 

 Figure 4.52 shows the example of zoomed-in FFT plot while Figure 4.53 

shows sub-window of the FFT for the workpiece profile before and after tool 

chipping at workpiece rotation angle of 120o for the repeat experiment with the 

following cutting condition: rotational speed 950 rpm, feed rate 0.4 mm/rev and 

depth-of-cut 0.5 mm (Appendix A and Appendix B). The repeat results is consistent 

with the results aforementioned. The amplitude of spatial frequencies lower than 

fundamental feed frequencies was found to increase significantly when the tool has 

chipped as illustrated in Figure 4.52(b) and Figure 4.53(b)(i). Figure 4.54 shows the 

scalograms corresponding to the workpiece profile in Figure 4.53(a)(ii) and Figure 

4.53(b)(ii) respectively (Appendix C). As illustrated in Figure 4.54(b), when tool 

chipping occurred, large CWT coefficients were found in higher scales due to 

presence of waviness due to tool-workpiece vibration (low frequency). Once again, 

Figure 4.55 shows the RMS of CWT coefficient at higher scale is more sensitive to 

detect the tool chipping.  

 

 

 
Figure 4.52: Examples of zoomed-in FFT plot (a) before, and (b) after tool chipping 

at workpiece rotation angle of 120o for repeat experiment 
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Figure 4.53:  Sub-window of the FFT along the workpiece (a) before, and (b) after 
tool chipping at workpiece rotation angle of 120o for repeat experiment 

 

 

 

 
Figure 4.54: Scalograms corresponding to the workpiece profile in Figure 4.53(a)(ii) 

and Figure 4.53(b)(ii) 
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Figure 4.55: Comparison of maximum deviation of RMS of CWT coefficients (a) 

before, and (b) after tool chipping at scales of 20, 60 and 100 for various workpiece 
rotation angles 

 

4.5 Chapter summary 

 This chapter presented the simulation and experimental results for the 

detection of tool chipping in ceramic cutting insert based on the workpiece profile 

signature using machine vision during turning process. Detail analysis and 

discussions for the obtained results were presented. 

 In the first part, the ACF was applied to detect the randomness features in the 

workpiece profile to predict the occurrence of tool chipping during turning operation. 

ACF method enabled the effects of the failure in ceramic insert on the workpiece 

profile to be observed by examining the peak of the ACF of the workpiece profile.  

 The application of FFT to detect tool chipping from turned workpiece profile 

was discussed in second part. As the tool chips, significant changes occurs in the 
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amplitude of spatial frequencies of the workpiece profile. The tool chipping can be 

detected by using the amplitude of fundamental feed frequency and  the amplitude of 

spatial frequencies lower than the fundamental feed frequency. An attempt to solve 

the window function problem in STFT has been made through the development of  a 

novel sub-window FFT method. From the result in this chapter, it can be concluded 

that the proposed sub-window FFT is capable of detecting the tool chipping around a 

cutting time of 17.13 s based on the statistical features of spatial frequencies lower 

than fundamental feed frequency in each sub-window.  

 The accuracy of the time resolution in sub-window FFT method is, however, 

highly dependent of the size of the window and the cutting process parameter. Thus 

the application of the CWT analysis method was chosen to be extended in onset tool 

chipping detection. From the detailed discussion, it can be concluded that the CWT 

method has shown its applicability over the sub-window FFT method in detecting the 

onset of chipping in ceramic inserts from the workpiece profile signature.  
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CHAPTER FIVE 

 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

5.1 Introduction 

 This chapter concludes the study with highlight of the main contributions 

made in this research and the objectives achieved. The chapter ends with the future 

research recommendations. 

5.2 Conclusions 

 The following conclusions can be drawn from the present study: 

i. A machine vision system consists of DSLR camera with aid of backlighting 

for capturing the images of the workpiece profile during turning is developed. 

The developed in-process tool chipping detection method using machine 

vision is shown to be effective in detecting the tool chipping based on 

workpiece profile signature in ceramic cutting tools during turning of 

difficult-to-cut materials.  

ii.  The effect of tool chipping in ceramic cutting insert on the surface profile 

using ACF and FFT is studied. The peaks of ACF of the workpiece profile 

generated by the ceramic cutting insert decreased rapidly as the lag distance 

increased when the tool has chipped. The envelope of the peaks of the ACF 

was found to deviate significantly from one another at different workpiece 

rotation angles when the tool has chipped. Chipping has significantly 

influence the amplitude of fundamental feed frequency of workpiece profile 
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and the amplitude of spatial frequencies lower than fundamental feed 

frequency. The amplitude of the fundamental feed frequency increased 

gradually as the tool wear (gradual) increased. When tool chipping occurred, 

the amplitude of fundamental feed frequency shows significant random 

fluctuations with the cutting time. In addition, the FFT plots of the workpiece 

profile clearly showed the appearance of significant spatial frequencies lower 

than the fundamental feed frequency after chipping. This is because the tool-

workpiece vibration causes waviness in both the cutting and the tool feed 

directions. Presence of the long wavelength of waviness along the tool feed 

direction leads to existence of the  sharp peak in the spectrum at lower spatial 

frequencies due to tool-workpiece vibration when the tool has chipped. ACF 

allows to represent the spatial variation over entire length of workpiece to 

find the random features buried in periodic surface profile while FFT allows 

to identify certain spatial frequency components of interest to associate with 

the tool chipping. 

iii.  Detection of onset tool chipping from the workpiece profile signature is 

accomplished by using sub-window FFT and CWT. The proposed sub-

window FFT method based on the statistical features of spatial frequencies 

lower than fundamental feed frequency enable tool chipping to be detected 

from the workpiece signature around a cutting time of 17.13 s. CWT method 

was found to be more effective in detecting the exact onset of chipping of the 

cutting tool. Significant changes in the CWT coefficients at the larger scale 

band were observed at cutting time of 16.5 s. The larger CWT coefficient at 

higher scales band (low frequencies) is due to the long wavelengths of the 

waviness of the workpiece profile caused by tool chipping. The large 
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deviation in the RMS of CWT coefficients for scale of 100 shows that the 

RMS of CWT coefficient at higher scale are sensitive to tool chipping and 

can be potentially used as an important indicator for detecting the onset of 

chipping in the ceramic cutting tool insert. 

5.3 Contributions of the study 

 The main contribution of this study is a novel in-process tool chipping 

detection method in ceramic cutting insert based on the 2-D images of the edge of the 

workpiece using machine vision method. This research provides a new algorithms to 

process 2-D digital images of workpiece profile to detect the occurrence of tool 

chipping by distinguishing the sign of chipping in workpiece profile from those 

originating from tool wear. The study has gone some way towards enhancing the 

understanding of the effect of tool chipping on workpiece profile. 

 The findings show that features such as the amplitude of the FFT of 

fundamental feed frequency, the amplitude of spatial frequencies lower than 

fundamental feed frequency and the CWT coefficients at higher scale are useful to 

identify the occurrence of tool chipping. These indicators would be a great help as an 

important input for pattern recognition techniques in a future tool chipping 

monitoring system. 

5.4 Future recommendations 

 From the investigations conducted in this research work, a number of 

possible avenues for future work can be suggested. The biggest obstacle facing the 
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implementation of in-process tool condition monitoring is the need for 

experimentation to determine threshold values to develop direct quantitative 

relationship which relates to tool state to implement effective tool changing strategies 

in unmanned manufacturing. More research work is needed for advances in pattern 

recognition and machine learning techniques to overcome this obstacles.  

 The use of machine vision for in-process tool condition monitoring has not 

yet been explored in micromachining as it rotates at a very high speed which requires 

a high shutter speed or speed frame grabber camera. This kind of cameras usually 

work at low illumination but require high light intensity which can damage the 

CMOS sensor in the camera (Mandal, 2014). A future study investigating the 

application of vision-based method on in-process tool condition detection in 

micromachining would be very interesting.  
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APPENDICES 

APPENDIX A: REPEATED EXPERIMENTAL RESULTS OF FFT 

  

Repeat experiment with cutting condition: spindle speed 950 rpm, feed rate 0.4 

mm/rev, depth of cut 0.5 mm 

FFT plot for before tool chipping (a, b) and after tool chipping (c) at various 
workpiece rotation angles 

 
       

 

        

(a) (b) 

(c) 



APPENDIX B: REPEATED EXPERIMENTAL RESULTS OF SUB-WINDOW 
FFT  

Sub-window FFT along the workpiece profile at different rotational angles (a) 0o, (b) 
120o, (c) 240o in cutting time duration of 5.5 s corresponding to Appendix A 
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Sub-window FFT along the workpiece profile at different rotational angles (a) 0o, (b) 
120o, (c) 240o in cutting time duration of 5.5-11.0 s corresponding to Appendix A 
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Sub-window FFT along the workpiece profile at different rotational angles (a) 0o, (b) 
120o, (c) 240o in cutting time duration of 11.0-16.5 s corresponding to Appendix A 
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APPENDIX C: REPEATED EXPERIMENTAL RESULTS OF CWT 

 

Corresponding CWT to sub-window FFT along the workpiece profile at different 
rotational angles (a) 0o, (b) 120o, (c) 240o in cutting time duration of 5.5 s 
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Corresponding CWT to sub-window FFT along the workpiece profile at different 
rotational angles (a) 0o, (b) 120o, (c) 240o in cutting time duration of 5.5-11.0 s 

 

Corresponding CWT to sub-window FFT along the workpiece profile at different 
rotational angles (a) 0o, (b) 120o, (c) 240o in cutting time duration of 11.0-16.5 s 
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