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PENGESANAN SERPIHAN PADA MATA ALAT SERAMIK DARIPADA
TANDA PENGENALAN PROFIL BAHAN KERJA SEMASA PROSES
PELARIKAN MENGGUNAKAN PENGLIHATAN MESIN

ABSTRAK

Mata alat seramik lebih cenderung kepada kegagaianjadi serpihan
bukannya kehausan berterusan disebabkan olehaeh&ntamannya yang rendah.
Mata alat menjadi serpihan akan menyebabkan kyaditmukaan dan ketepatan
dimensi merosot. Oleh itu, pengesanan dalam picsgagalan tersebut pada mata
alat seramik amat penting terutamanya dalam perdjandoemesinan tidak berjaga.
Kaedah pengesanan kegagalan mata alat dalam mlesgan menggunakan isyarat
penderia yang wujud mempunyai had keupayaanny& unéngesan serpihan mata
alat. Pengawasan malat alat daripada profil bahema kdengan menggunakan
penglihatan mesin mempunyai potensi yang tinggiumigian semasa proses
pemesinan, tetapi tiada percubaan dibuat untuk esamgkegagalan serpihan mata
alat. Dalam kerja ini, kaedah penglihatan mesinamgunkan untuk mengesan
kegagalan serpihan mata alat seramik daripada taedgenalan profil 2-D bahan
kerja. Profil permukaan bahan kerja bertentangangale mata alat dirakam semasa
pelarikan dengan menggunakan kamera DSLR. Profimpeaan bahan kerja
diekstrak kepada ketepatan sub-piksel dengan meaggon kaedah momen
ketakvarianan. Kesan serpihan mata alat seramila padda pengenalan profil
permukaan bahan kerja disiasat dengan menggunakgsi fautokorelasi (ACF) dan
transformasi Fourier cepat (FFT). Pengesanan ké&gagarpihan dijalankan dengan
sub-tetingkap FFT dan transformasi gelombang sald@WT). Kegaglan serpihan
mata alat seramik menyebabkan puncak ACF profilabakerja merosot cepat
apabila jarak susul meningkat dan melencong dengata pada sudut putaran bahan
kerja yang berlainan. Amplitud frekuensi suapansasamakin meningkat dengan

masa apabila kehausan mata alat berlaku. Akani tetaplitud frekuensi suapan

XXi



turun naik dengan nyata selepas mata alat gagaljadieserpihan. Proses
pemotongan yang stokastik selepas mata alat mergagiihan menyebabkan
amplitud frekuensi ruangan yang lebih rendah ddap#&ekuensi suapan asas
meningkat dengan meruncing. Kaedah CWT didapatin lefektif untuk mengesan
permulaan serpihan mata alat dengan tepat padalasa berbanding 17.13 s yang
diperolehi daripada sub-tetingkap FFT. Punca maskudua pekali CWT bagi profil
bahan kerja pada skala yang lebih tinggi didaghihl peka bagi mengesan serpihan
mata alat seramik dan seterusnya boleh digunaksgaepetunjuk untuk mengesan

kejadian kegagalan serpihan mata alat seramik.
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DETECTION OF CHIPPING IN CERAMIC CUTTING INSERTSFROM
WORKPIECE PROFILE SIGNATURE DURING TURNING PROCESS
USING MACHINE VISION

ABSTRACT

Ceramic tools are prone to chipping due to thmir impact toughness. Tool
chipping significantly decreases the surface firgshlity and dimensional accuracy
of the workpiece. Thus, in-process detection ofppimg in ceramic tools is
important especially in unattended machining. Hxgstin-process tool failure
detection methods using sensor signals have limnsitin detecting tool chipping.
The monitoring of tool wear from the workpiece piefusing machine vision has
great potential to be applied in-process, howeweattempt has been made to detect
tool chipping. In this work, a vision-based apptod@as been developed to detect
tool chipping in ceramic insert from 2-D workpiegmofile signature. The profile of
the workpiece surface was captured using a DSLReanThe surface profile was
extracted to sub-pixel accuracy using invariant raoimmethod. The effect of
chipping in the ceramic cutting tools on the wodga profile was investigated using
autocorrelation function (ACF) and fast Fouriemsform (FFT). Detection of onset
tool chipping was conducted by using the sub-winddW and continuous wavelet
transform (CWT). Chipping in the ceramic tool wasrid to cause the peaks of ACF
of the workpiece profile to decrease rapidly as kg distance increased and
deviated significantly from one another at diffdrerorkpiece rotation angles. From
FFT analysis the amplitude of the fundamental feeguency increases steadily with
cutting duration during gradual wear, however, ihates significantly after tool has
chipped. The stochastic behaviour of the cuttiragess after tool chipping leads to a
sharp increase in the amplitude of spatial freqesnbelow the fundamental feed
frequency. CWT method was found more effective &tedt the onset of tool
chipping at 16.5 s instead of 17.13 s by sub-win&®W. Root mean square of CWT

coefficients for the workpiece profile at higherakc band was found to be more
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sensitive to chipping and thus can be used asdicaitor to detect the occurrence of

the tool chipping in ceramic inserts.
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CHAPTER ONE

INTRODUCTION

1.1  Background of the study

Tool condition monitoring plays a significant role machining process
because the worn out cutting tool can be identiéind replaced in time to avoid the
deterioration in the surface quality and dimensameuracy of the machined part.
Flank wear is often selected as the tool life aotein the tool wear monitoring and
is accomplished by direct and indirect methodse@irtool condition monitoring
method is usually performed by means of opticalickss such as toolmaker’s
microscope, scanning electron microscope (SEM)@@DO (charge coupled device)
camera. Toolmaker's microscope and the SEM arentis¢ popular devices used to
measure the flank wear in the past. However, tdese&es have severe limitation as
they can only be used in offline measurement winkzfuires the cutting tool to be
removed from the machine for inspection and measemé Numerous previous
works have been conducted to measure the flank wsag CCD camera without
the need of dismantling the worn tool from machidewever, this method can only
be applied between the cutting operations (Lanz2@@l; Wang et al., 2006; Zhang

et al., 2012; Chethan et al., 2015).

One major prerequisite of an automated manufagursystem is
uninterrupted machining to achieve maximum proditgtiwhich require continuous
monitoring of the cutting process and cutting toohdition. Most of the in-process

tool condition monitoring is conducted by indireoiethods. Indirect methods of



monitoring the tool condition depend upon the measent of sensor signals, which
are indirectly related to the condition of the mgt tool edge. With recent
advancement in signal processing technology, e lagnber of indirect methods
have been attempted to achieve the in-processaeal monitoring based on sensor
signal features associated with the tool condisach as cutting force, vibration,
acoustic emission (AE) and tool temperature (Relebral., 2005; Teti et al., 2010).
Many researchers have even combined several setasarenitor the multitude of
information available during machining to assess thol condition such as the
combination of AE and cutting force (Jemielniakagt 2011a), cutting force and
vibration (Kalvoda & Hwang, 2010), AE and vibrati(Bhuiyan et al., 2014), cutting
forces, vibration and AE (Jemielniak et al., 20114 and cutting sound (Zhang et

al., 2015).

The acquired sensor signal obtained from the maaipiprocess has been
correlated with flank wear by extracting the sigfedtures from any time domain
signal using statistical parameters such as thenmeahue, the root mean square
(RMS), kurtosis and skewness. Sensor signals aretednsformed into frequency
domain and time-frequency domain. The signal festsuch as the amplitude of the
dominant spectral peaks and wavelet coefficientaektd from these transform are
used to correlate to the flank wear (Yesilyurt, @0Rious et al., 2010; Fang et al.,
2011). Other methods such as statistical regressgthod, neural network, artificial
intelligence and pattern recognition have also bemlely explored to establish the

correlation between the sensor signal and flank \{&addhpura & Paurobally, 2013).

The detection of the tool failure by chipping Hascome more important

recently since hard tools such as ceramic cuttigstare commonly used in the



cutting of difficult-to-cut materials such as siass steel (Lin, 2008Sobiyi et al.,
2015) superalloy Bushlya et al., 2013}ool steel and hardened tool steetél et al.,
2005; Ozel et al., 2007veddour et al., 2015). Although advances in ceramic
processing technology has resulted in high perfon@atools by improving the
toughness, fracture strength and shock resistanakechipping and fracture are still
serious issues when machining difficult-to-cut miateusing ceramic cutting tool
(Yin et al., 2015). Failure by chipping has morgese effect on the surface finish
compared to progressive wear because the cuttirgddfluctuates and increases
(Liao & Stephenson, 2010). Thus, in-process toopmihg detection as early as
possible in ceramic cutting is considered importanbrder to stop the machine tool

before a catastrophic failure occurs.

Tool chipping occurs when a small piece tool matdireaks away from the
cutting edge of the tool. The chipped pieces frtwn ¢utting edge may vary from
microchipping to macrochipping. Breakage of a agttiool can lead to the total loss
of contact between the cutting tool and the worgpieChipping and breakage are
different from wear which is a gradual process.pphig and breakage usually occur
abruptly resulting in a sudden loss of tool matedize to mechanical shocks. The
onset of chipping or fracture in a cutting tooluks in a change in the contact
characteristics between the tool and the workpiéldgs in turn results in a

significant change in the sensor signals.

Cutting force signal monitoring is one of the m@sbmising methods to
detect the precise moment of tool failure. Cuttingces was found to be more
effective to detect tool failure than other sensignals (Li & Mathew,1990). The

measurement of cutting force is usually performgdising a dynamometer. When



the tool breaks the cutting force increases skghbove the pre-set threshold and
then drops sharply because of the loss of conttetden the tool and the workpiece
(Cakir & Isik, 2005). However, chipping can alscusa failure of a cutting edge
without decreasing the cutting force significantliien turning of carbon steel using
ceramic insert (Jemielniak, 1992). In addition,| tckipping has been reported to be
more difficult to detect using cutting force as tragiation of cutting force due to tool

chipping may not exceed the threshold limits (Shbifady, 2007).

Previous researchers have reported that AE coalduded effectively in
detecting tool tip chipping. The AE intensity inases as the tool wear increase and a
burst AE signal is produced when the cutting taad bhipped (Jemielniak & Othman,
1998; Wang et al., 2003; Belgassim & Jemielniakl 130 Strong burst in AE was
found after tool fracture because of the sudderease in the contact area between
the workpiece and the chipped cutting tool (Lan &rifeld, 1984; Wang et al.,
2003). However, these results were contradictethdyecent work of NesluSan et al.
(2015) who considered that conventional processingE signals does not enable
the different phases of the tool wear be cleartpgaised during turning of bearing
steel using ceramic insert. Besides, most AE senisave been designed for non-
destructive testing and are not suitable for toelamwmonitoring as they cannot
withstand extreme conditions at the cutting pointhsas high cutting temperatures

and impacts from the chip.

The use of sensors fusion allows more reliabld tatdure by chipping
detection. Sensor signals from different sourcesimstegrated to provide extended
information for tool chipping detection such as twmbination of AE and motor

power (Wang et al., 2003) and AE and cutting fdB&lsamo et al., 2016). However,



previous study have reported that multiple sensgmats used together produced
results a little worse than using a single sengpras during turning of Inconel 625

using ceramic cutting tool (Jemielniak et al., 28)11

Direct monitoring methods such as vision and eptapproaches have been
utilized for tool chipping observation on ceramidtng tool (Patil & Tilekar, 2014).
However, this method is only feasible for in-cyoleintermittent observation which
requires the machine to be stopped because théngous contact between the
cutting tool and the workpiece does not allow thetare of images of the cutting
tool tip during turning. In order to overcome thmitations of the in-process direct
observation on cutting tool, identifying the cuttiriool condition by analyzing
surface texture of machined surface using digitelge processing methods from the

images of machined surface has been attemptee ipaist.

The surface texture of machined surface imageaamntinformation about
the interaction between the tool and the workpegash as machining conditions (e.g.
feed rate, machining speed), waviness, roughnedsation and chatter. The
machined surface image also carries the informatlmyut the cutting tool condition
by tool imprint on the workpiece. The surface teatof turned workpiece changes
remarkably due to the changes in the cutting tgolbar and chipping. For example,
previous study has reported that the groves ara awd straight with clear ridge
lines when the cutting tool is sharp but the groappear uneven and ridge lines
become disjoint when the cutting tool is dull (Kasst al., 2007). However, the
images of workpiece surface were captured betwadmg operation using a CCD

camera.



Several attempts have been made to evaluate ahedndition by extracting
the surface finish descriptors from the imagedeffteshly machined surface texture
to be correlated with the flank wear (Datta et 2013; Dutta et al., 2015). The
textural analysis methods showed some potentiaitépret the tool condition, but
they are subject to the changes in illuminationdition and the contamination of the
dirt and cutting fluid. In addition, their work wa®nducted offline and no attempt
was made to investigate the correlation betweerextiacted textures features with

tool chipping.

According to machining theory, the surface protfea turned workpiece is
formed by the repetition of the nose radius ofdhting insert at a regular interval of
feed rate. Thus, nose radius has direct effecherstirface profile of the workpiece
and all predominant tool wear such as the flankrwaeal notch wear can have
significant influence on the surface roughnessefworkpiece (Penalva et al., 2002;
Grzesik, 2008b). An attempt has been made to deterthe nose wear and the flank
wear from the silhouette of the workpiece profisptred using CCD camera with
the aids of backlighting (Shahabi & Ratnam, 2008hahabi & Ratnam, 2009b).

However, the work was carried out in-cycle, i.ebatween cutting process.

The development of an effective in-process tooldition monitoring method
to detect the onset of tool chipping has not bd&mgpted by previous researches.
The case of tool chipping detection in ceramicingttool has not been given great

attention by the researchers in the past andgtifeel motivation of the present study.



1.2 Problem statement

Although the vision method has the advantages agfturing the actual
geometric changes arising from the wear and chgppinthe cutting tool, the direct
assessment of the cutting tool using machine vigomot possible during turning.
This is because the cutting area is inaccessil@aalthe continuous contact between
the tool and the workpiece as well as presenceoolanot and obstruction by chips

during turning operation.

In-process tool chipping monitoring is usually fpemed by using indirect
method based on various sensor signals. Howevenrder of previous studies have
shown that tool chipping is hardly detected usiagser signals due to the significant
contradictory findings (Jemielniak, 1992; Wang &t 2003; Cakir & Isik, 2005;
Belgassim & Jemielniak, 2011; NesluSan et al., 20TBus, there still exists a need

to develop a more reliable in-process tool chippimanitoring method.

Previous studies show that with the advancemenimage processing
technology, the features extracted from the imaifete machined surface texture
could be used to correlate well with the cuttingl trondition. However, this method
requires the machine to be stopped before the isnaigilhe machined surface can be

captured (Datta et al., 2013; Dutta et al., 2015).

Since the cutting tool tip is directly in contadth the workpiece during the
turning operation, an imprint of the cutting toesbfle is replicated on the machined
surface (Kassim et al., 2007). Therefore, the wede profile of turned part is

directly dependent on the geometry of the cuttiogl tip. As the tool chips, the



contact geometry changes, thus affecting the smirfaeing machined. Two
dimensional (2-D) image of the surface profile bé tturned workpiece has been
successfully used for in-cycle nose wear and flaglar measurement in the past

(Shahabi & Ratnam, 2009b).

It should be noted from the abovementioned ingatittns that existing in-
process tool condition monitoring method using sersgnals have limitations in
detecting tool chipping. The monitoring of tool wdeom the turned profile using
machine vision shows great potential to be apphegrocess. However, to date, no
attempt has been made to explore the potentidieoRtD images of the workpiece
profile for in-process tool chipping detection ierramic cutting tool and this has

motivated the present study.

1.3  Objectives

The objectives of this research are as follows:

i.  To develop a novel approach of in-process toolmhip detection in ceramic
cutting insert based on the workpiece profile sigreausing machine vision.
ii.  To investigate the effect of the tool chipping gramic cutting inserts on the
workpiece profile using autocorrelation functionGPR) and fast Fourier
transform (FFT).
iii. To detect the onset of tool chipping by extractihg features from the
workpiece profile using sub-window FFT and continsiavavelet transform

(CWT).



1.4  Research approach

The approaches of this study are as follows:

i. A 2-D machine vision system consisting of a dig#iaigle lens reflex (DSLR)
camera and backlighting was developed to captwentiages of the edge of
the turned workpiece.

ii.  Experiments were carried out using aluminium oxXidsed ceramic cutting
insert and the workpiece materials were AISI 016Aoil hardening tool steel
and SUS 304 stainless steel with diameter of 50 mm.

iii.  The condition of the cutting insert was evaluatsihg the SEM.
iv.  Invariant moment method was used to extract thé&pvece profile.
v. ACF, FFT and CWT were utilised to extract the feasufrom the 2-D

workpiece profile that correlate to tool chipping.

15  Scopeof study

The scopes of this research are as follows:
i.  Proposed tool chipping detection method only caersiéh turning process.
ii.  This study focuses on the tool chipping detectiorthe aluminium oxide
based ceramic cutting insert.
iii.  This study distinguishes the sign of tool chippiragn gradual wear using 2-

D images of turned workpiece.

1.6  Organization of thesis

This thesis is organized into five chapters. Theraew of the research is

presented in the Chapter One. The background ofrékearch and the existing



problems in similar studies are addressed. Thecobgs, research approach and the
scopes of the research are listed. Chapter Twbadstahe literature review focusing
on the in-process tool condition monitoring methodse advantages and limitations
of the existing in-process tool condition monitgrimethods are discussed in detailed.
Literature reviews reveal that an effective in-@e&tool chipping detection methods

in ceramic cutting insert has not been thoroughestigated.

The methodology for in-process detection of tailfe by chipping from the
2-D workpiece profile signature using machine wisinethod is outlined in Chapter
Three. The proposed vision system using high résoludigital camera at high
shutter speed has been used in this study for Gagtthe images of the workpiece
profile during turning operation is presented. Methworkpiece profile extraction
method from 2-D images of the workpiece up to sixelpaccuracy is described in
this chapter. Finally, analysis of the 2-D workgiguofile to detect the tool chipping
is discussed. The specific procedures in detectidool chipping in ceramic cutting
insert based on the 2-D surface profile extractedhfthe images of the edge of

turned workpiece using ACF, FFT and CWT are disedss

The results of the simulations and experimentslaseribed in Chapter Four.
The effects of the tool chipping on the workpiecegface are discussed. The results
on detection of tool chipping in ceramic cuttingsent from workpiece profile
signature using vision method is presented. FinaBhapter Five provides
conclusion of the thesis and recommendations fluréuwork. The contributions of

the proposed method in the field of tool chippimgedtion are also presented.
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CHAPTER TWO

LITERATURE REVIEW

21 Introduction

A review of previous research works that are dlosalated to the studies on
the tool failure monitoring in a turning processpresented in this chapter. Firstly,
types of tool failure are presented. Previous meseaorks related to the monitoring
of tool failure by gradual wear and premature falby chipping are reviewed in the
next section. Emphasis is placed on the in-prodegsction of the tool chipping for
ceramic cutting tool. A summary of the literatusview is presented at the end of

the chapter.

2.2  Typesof tool failure

The turning process is widely used in industryfioish machining of a wide
range of components. Tool failure monitoring inning is essential to achieve not
only optimum productivity by reducing machine doimmg and unnecessary tool
changes, but also to obtain high surface quality dimensional accuracy as well as

minimize the damage to the workpiece or machiné too

Tool failure can be classified into two groups e&wear and fracture. Wear
is generally the removal of material from a cuttiogl and is a result of the relative
motion between the tool and workpiece. Flank weédnefront edge of the tool flank
face and crater wear at the tool rake face arentb&t typical modes of tool wear in

turning (Figure 2.1). Flank wear is mainly causedthe abrasion between the

11



workpiece and the cutting tool. Crater wear isftivenation of a groove on the tool

rake face where the chips rubs the tool surface.

(@) (b)

RAKE FACE Crater wear

CHIP

FLANK FACE

L

> 4
Flank wea
WORKPIECE

Cratervveg/ ToOL Flank wea

Figure 2.1: (a) Tool-workpiece interaction, and|@i@ation of crater wear and flank
wear Ozel & Davim, 2009)

Directly measured dimensional features of a typiear pattern have been
applied in the past to assess cutting tool's pexoce which are standardized in
International Organization for Standardization (J]9093). Compared to crater wear,
flank wear is often used as a criterion to defime ¢énd of effective tool life as the

wear progresses gradually as shown in Figure Z2kars can be easily monitored.

Flank wea

A Initial wear

! region I
/ |
I

i

Steady wear region

Accelerated wear

i
[
[ region
i

—p Time

Figure 2.2: Typical flank wear versus time curveafW & Gao, 2006)
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Flank wear appears in the wear land and is definyethe width of the wear
land VB as shown in the Figure 2.3. According te I8O (1993), the cutting tool is
considered to have failed if the average flank w@@g) and the maximum flank

wear (VBnay exceeds some critical value such as¥B.3 mm and VBae 0.6 mm.

Flank wear land

Notch wea

Figure 2.3: Typical wear pattern according to 13O93)

Tool fracture is the damage on the cutting edgat thrange from
microchipping to gross chipping. Premature toolufa by chipping refers to the
breaking away of small piece from the edge of dimyttool in micro-scale to
massive chipping of cutting edge as shown in Figkea) and Figure 2.4(b)
respectively. Tool breakage, on the other handhesbreaking of the entire insert
that leads to a total loss of contact between titeéng edge and workpiece as shown
in Figure 2.4(c). Chipping of a tool is differembin wear, which is a gradual process,
premature tool failure by chipping and breakage timosccur as a sudden and
unpredictable breaking away of tool material frohe tcutting edge. The main
reasons for chipping and breakage include britleimre of the cutting tool materials,
the rapid growth of the crater wear, pre-exispogential cracks on the cutting edge,

inclusions in the workpiece profile leading to macital shocks and impact loading

13



resulting from the sudden engagement of the cuttobinto the workpiece (Grzesik,

2008a).
(@) Micro-chipping (b) (c)
(small breaking of Chipping/ fracture (large
cutting edge) breaking of cutting edge)

o
Wi Iy

Breakage (breaking of enti
insert)

Figure 2.4: Tool failure by chipping and breakaGezesik, 2008a)
2.3  Monitoring of gradual wear

Monitoring of gradual wear generally can be diddato two types: direct
and indirect method which is explained in Sectio3.2 and Section 2.3.2,

respectively.
2.3.1 Monitoring of gradual wear using direct method

Extensive efforts have been focused on tool weanitoring using optical
methods which is conducted by directly analysirgy¢hange in the geometry of the
cutting tool. Toolmaker's microscope is the mospysar device used to measure
wear of cutting tools (Grzesik, 20082erce et al., 2015). SEM with magnification in
the range of several hundred to several thousanmost often used for micro
examination. More advanced measuring techniquesh sas white light

interferometry and confocal microscope can be tdrast when the analysis in the

14



nano-scale range is necessary and is useful fteroreear measurement (Devillez et
al., 2004; Dawson & Kurfess, 2005). However, thevamentioned direct methods
have one main limitation, which is they can onlyused for offline measurement.
For the offline measurement, the cutting tool ltabd dismantled from the machine
tool for inspection and this causes interruptiorthte cutting process as well as is
time consuming. Atomic force microscopes (AFM) posverful tools for 3-D profile

measurement with a very high resolution. Howevels ivery difficult and time

consuming to accurately align the AFM cantilevesl@ with respect to the cutting

edge (Cazaux, 2004; Mazzeo et al., 2009).

The past decades has seen the rapid developmiga abndition monitoring
using machine vision coupled with image processautpniques as direct method in
flank wear measurement. In this method, a CCD camaéth appropriate lighting
reflected in the plane of wear surface is usedctuiae the image of the cutting tool.
Kurada and Bradley (1997) carried out pioneeringkwiom direct tool condition
monitoring by capturing images of flank wear usiwg fibre optic guided lights and
CCD camera. Lanzetta (2001) recognized the typedetdcts of cutting tool and
simultaneously measured the flank wear using a C&bera equipped with an auto-
focus zoom lens for different sizes of cutting toblowever, their study was

performed offline.

Pfeifer and Weigers (2000) captured images of tfoskrts using CCD
camera with a ring light in different angles ofiohence for controlled illumination.
But there still remain the problem of accuracy lmseathe measurement of flank
wear using digital image processing method is lyigldpendent on the quality of

captured images as it is vary considerably althotlgdre is a small variation in
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illumination. This leads to error in dimensional asarements. Sortino (2003)
developed an automated flank wear measurement aeftly using statistical
filtering method from a colour image. However, thigasurement method is limited

for small flank wear width.

Jurkovic et al. (2005) proposed a vision systenickvizomprised of a CCD
camera, laser diod with linear projection as atjiffmme grabber for capturing and a
personal computer as direct means in flank wear @ater wear measurement.
Castepn et al. (2007) and Barreiro et al. (2008) appligathine vision to determine
flank wear by means of the discriminant analysiseldaon geometrical descriptors.
The main advantages of their methods is the infaomaabout the condition of
cutting tool can be obtained without having to remdhe cutting inserts from the
tool holders. However, the proposed wear measureteehniques using machine
vision method were performed between the cuttingragoon such as in-cycle or
intermittent, which requires the machine tool tosbepped. Fadare and Oni (2009)
used Canny edge operator to detect significantedfehe worn area of a cutting
tool in order to determine the flank wear and notaar. Although this method is
very useful for flank wear determination, but thethod is very much sensitive to

the fluctuation of ambient light.

Nose wear measurement has also gained attentitdreinecent years since
the machined surface is mainly formed by the taadenin finish turning. The nose
wear can be measured by subtracting the 2-D imbgenvorn tool from the image of
an unworn tool. Kwon and Fischer (2003) determitfeinose wear by subtracting
the worn tool image from a template after spateistration of these images. A

similar method was also carried out by ShahabiRaitham (2009a). The nose wear

16



was determined by subtracting the 2-D image of anwool from the image of
unworn tool. The subtraction method can effectivaty accurately determine the
nose wear, but it requires two images that areatigprecisely before the subtraction.
To overcome the limitation, a new approach was gsed by Mook et al. (2009) for
measuring nose wear using a single worn cuttingitnage. However, this method

is not feasible to implement in-process.

In a recent workCerée et al. (2015) developed an intermittent 3-D oagtti
tool wear measurement system using a 2-D profgerlaisplacement sensor. With
movement of the laser displacement sensor acrassutting insert, the sensor
measured the distance from the measurement hei fooints projected onto the
cutting insert and the profile data of cutting iisgere grabbed in a matrix form for
further evaluation. The depth of flank wear is digaisible from the comparison of
the new and worn cutting inserts cross-sectionfilpso Nose wear and crater wear
can also be determined by calculating tool weauw@. However, the disadvantage
of this method is that it is sensitive to contamisasuch as coolant, chips and dust
that may remain on the cutting inserts to be measwhich can cause error in the
measurement. Chethan et al. (2015) used digitaleca with a halogen light to
capture the images of cutting insert. The wearomegf the cutting insert was
estimated using Blob analysis in order to extr&et teatures such as wear area,
perimeter and compactness to correlate with thekflaear. However, this method

was carried out offline.
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2.3.2 Monitoring of gradual wear using indirect method

In-process tool wear monitoring is gaining consadde importance in the
manufacturing industry. This can be attributed toe ttransformation of
manufacturing systems from manually operated pribailucmachines to highly
automated machining centres. In-process tool camditmonitoring implies
identifying the cutting tool conditions without @rtupting the machining process.
The direct tool wear evaluation on cutting toolngsmachine vision system is very
simple and accurate, but this method only can b@lemented in between cutting

operations when the cutting tool is not in contaith the workpiece.

In-process monitoring of tool wear is usually penfied by indirect methods
that depend upon the measurement of sensor sighatt are indirectly correlated
to the condition of the cutting tool during the rixng operation. Commonly used
sensor signal in previous studies including cutforge, AE, vibration, temperature,

motor current and power consumption.

Cutting force has been proven to be the one o$it@ficant indicator of tool
wear as gradual increase in tool wear during mafpinauses the cutting force to
increase (Gao et al., 2015). The cutting forceseg®ly increases with flank wear
because an increase in contact area of the wedmidah the workpiece. The use of
dynamometer is the most popular method for measemewt cutting forces. It was
reported that cutting force currently is the maaliable method employed in in-
process tool wear monitoring because cutting fascemore sensitive to tool wear

than AE and vibration. Thus, many studies have lmmucted in the past using
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cutting forces to establish the relationship wita flank wear (Sikdar & Chen, 2002;

Sick, 2002; Oraby et al., 2005).

Dimla and Lister (2000) used three perpendiculdtiregy forces to correlate
with the flank wear through time series and FFTeylheported that the tangential
cutting force is the most sensitive to flank wedilevLi (2005) reported that the feed
and radial forces are more sensitive to flank vikan tangential cutting force. Fang
et al. (2011) concluded that feed force was monsisee to flank wear. Salgado and
Alonso (2007) also found that feed force was maitable to be applied in tool wear
monitoring system because the radial force andetatig force showed greater error
in flank wear estimation which reduce the succese and can cause false alarm.
Zhou et al. (2003) indicated that the radial fosb@ewed a significant increase when
the flank wear increase to 0.2 mm. Penedo et @llZRalso suggested the radial
cutting force to monitor the flank wear by usindigbrid incremental model. In a
recent work, Liao et al. (2016) developed a nopgiraach for flank wear monitoring
which is based on the multi-scale hybrid hidden hdarmodel analysis of cutting
force signal. In their study, the instantaneousiltast forces was taken into account
because the authors indicated that resultant faigeal provides multi-scale

information of different directions.

Cutting forces are often used to monitor the flar@ar because cutting forces
are easy to measure and they have a clear phentogieadb relationship with flank
wear. However, there is no agreement to which rayittorce component has more
closer relationship with tool wear. In additionahbiet al. (2016) reported that the

high temperature in tool tip and fast tool matelsing rate always result in rapid
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tool wear and large fluctuation of cutting forceridg machining of difficult-to-cut

materials.

Ren et al. (2011) applied cutting forces in a Ta&ugeno-Kang (TSK)
fuzzy approach for tool wear monitoring. Liu et gd013a) used several statistical
parameters such as average value, RMS, kurtosislkewiness extracted from the
cutting forces as input of back-propagation neoetvork and adaptive neuro-fuzzy
inference system for in-process flank wear momiigriin a recent work, Gao et al.
(2015) proposed a data driven modeling frameworkflemk wear monitoring in
turning which is based on statistical processinguifing force wavelet transform by
a hidden Markov tree model. The drawback of thesethods is greater
computational burden in training phase as a langmber of observation samples
were used as training data with different machirgogditions to build the model to

estimate the flank wear.

Ghani et al. (2009) presented a tool wear momigpmethod from the cutting
forces and cutting parameters using the regresaitel to predict the flank wear.
Camargo et al. (2014) developed a mathematical hieded on multiple regression
analysis to estimate tool wear during turning c8AD6 hardened steel using PCBN
cutting insert. Although the developed regressiamdeh accurately determined the
flank wear, the regression based method cannoxktiepelated to different range of

cutting condition and to other workpiece and cugttiool materials.

Monitoring cutting tool wear via AE signal analysias long been practiced.
AE can be defined as the transient elastic wavergéed by the sudden release of

energy in a material. There are several sourcésEo$ignal during machining such
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as (i) friction contact between the flank face ofting tool and workpiece resulting
in flank wear, (ii) plastic deformation of cuttirigol, (iii) chipping and tool fracture
(Li, 2002). The main benefit in the use of AE sigimatool wear monitoring is that
the frequency range of the AE signal is much higtem that of the machine

vibrations and environmental noises.

Bhaskaran et al. (2012) used skewness and kudb#ie RMS value of AE
signal to monitor flank wear. The kurtosis of RM&8ue of AE signal increased as
the flank wear increased. High skewness of the Risl8e of AE signal was found
when the flank wear land reached the critical valDempared to the conventional
data processing method, Chen and Li (2007) repdtiatl the wavelet resolution
coefficient norm of AE signal is more reliable andeful to estimate tool wear.
However, low magnitude of AE signal was generateldenv the cutting tool
undergoes gradual wear compared to the higher maigniof AE signhals which
accompanies tool failure by plastic deformationtasl chipping. Thus, AE is not
suitable for use as tool wear indicator in graduear monitoring applications, but
could be used to detect the end of tool life whentool has deformed due to the

excessive weatr.

Maia et al. (2015) reported that monitoring theltawear through the AE
signal processed using the average power spe@nsitg (PSD) is sensitive to the
wear rate, responding with the high magnitude Adghal value at the beginning of
tool life and followed by a decrease at the midufi¢ool life and increase at the end
of the tool life when the wear rate becomes hightowever, monitoring of tool
wear using AE signal was difficult because eaclkhefmild wear and severe wear

excited a different frequency band (Hase et all220
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During machining, the workpiece and chips rub asfathe worn tool and
produce vibrations which can be used in varioussnfay tool wear monitoring.
Accelerometers are often used to acquire the witratesponse. Dimla (2002)
reported that vibration increased with flank wead #he vibration signal in the feed
and tangential direction were the most sensitivllaiok wear. The results showed
that time domain analysis of vibration signal torbere sensitive to cutting condition
than tool wear, whereas sum total power of vibrasmnal correlated well with the
flank wear. However, the author found that vibnatgignal can only give better
estimation of flank wear in low feed rate because vibration signal is noisier in

higher feed rate.

Chen et al. (2011) monitored flank wear in turnibgsed on logistic
regression model by using vibration signals. Thevehet package transform was
used to decompose the original vibration signafind out the frequency bands
which well correlated to flank wear and applied ¢x¢racted most related features of
vibration signals into the logistic regression mademonitor the cutting tool wear.
Alonso and Salgado (2008) proposed tool wear mongdased on longitudinal and
transverse vibration signal using singular spectamalysis (SSA) to decompose the
acquired vibration signal. The RMS and variancetttg decomposed vibration
signals were extracted and the corresponding guttomdition parameters were fed
into a back-propagation neural network to deterntheeflank wear. However, not all
the decomposed vibration signals correlated welthwihe flank wear. The
information in the decomposed vibration signals wbftank wear is contained
mostly in the high frequency components. Alonso Saffjado (2008) indicated that

the range of frequencies most correlated with dloé wear changes with the cutting
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tool condition and tool wear. For this reason, iempéntation of the tool condition
monitoring based on vibration signal becomes diffibecause the frequency range

that correlated with the tool wear was difficulttte identified.

Temperature has also been used as a parametenofatoring tool wear
because heat generation is unavoidable in all maghprocess and it will damage
the cutting tool tip due to the effect of diffusi@md plastic deformation. Several
attempts have been made to monitor the wear oinguttbol based on temperature
monitoring. To measure the temperature in the tgmd, thermocouples are the
commonly used sensors (O'Sullivan & Cotterell, 20Aoudhury & Bartarya, 2003;
Korkut et al., 2011). However, due to the narrowahband, chips obstruction and
the contact phenomenon between tool and workpleeeneasurement of the cutting
temperatures closed to tool tip becomes much difficin addition, since the
temperature varies during machining and cannotridguely described by discrete
values at a point this can cause error in the waedr estimation (Sivasakthivel &
Sudhakaran, 2013). Infrared thermal cameras haee beplied to overcome the
limitation of the thermocouple (O'Sullivan & Cottdly 2001; Davoodi &
Hosseinzadeh, 2012). However, the major drawbad¢keofnfrared sensor is due the
coolant and the chip that may come between theosemsd the surface to be

measured thereby causing errors in measurement.

Application of microphone to measure the sounchaidgor tool condition
monitoring has also been attempted in the pastinéeland Yesilyurt (2004) used
sound signal to assess the flank wear, built ugeedadii of chip curl and surface
roughness. Salgado and Alonso (2007) estimatek fla@ar progression by the

emitted sound using singular spectrum analysianninng of AISI 1040 steel. Samraj
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et al. (2011) used singular value decompositioaxtpact the information regarding
flank wear from the emitted sound during turningorMoring of flank wear using
sound signal has been proven possible, howeveméikod is difficult to implement
in the real industry because the noise from adjaceachines and motors can

influence the signals.

The use of current and power signal has also Ipeeposed in tool wear
monitoring, either from spindle motor or from fegwtor. This is because a worn
cutting tool require more cutting forces than awam cutting tool, thus resulting in
more power and current. The major advantage ofgusimrent and power signals is
its simple hardware implementation that does nt#riare with the cutting process.
However, current and power signals are not as themsio flank wear when
compared to cutting forces, AE and vibration sigikaye et al., 1995; Silva et al.,

1998; Fu & Hope, 2006; Lee et al., 2007).

The need for a more reliable and accurate tootlitiom monitoring system
over a wide range of industrial application is drg/the research works towards a
multiple sensor approach (known as sensor fusidris is because signals from a
single type of sensor are typically insufficienfpimvide enough information for tool
wear monitoring. The use of several sensors atm@ifit locations simultaneously has
been proposed for data acquisition in the pasmdsgfrom different sensors are
integrated to give the maximum information neededua the tool wear such as the
combination of cutting force and vibration (Chellaa et al., 2008; Chen et al., 2010;
Fang et al., 2011), AE and cutting force (Younlgti®94; Jemielniak et al., 2011a),
AE and vibration (Bhuiyan et al., 2014), cuttingdes, vibration and AE (Jemielniak

et al., 2011b; Gajate et al., 2012), AE and cuttiagnd (Zhang et al., 2015).
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The strategy of integrating the information fronvariety of sensors will
increase the accuracy and reliability by resolvthg ambiguities about the tool
condition. Thus, the most significant advantageefsor fusion is that sensor fusion
enrich information for feature extraction and dexismaking strategy to correspond
to the tool wear. However, this requires complegtriiment and extensive data
processing makes this method difficult to implemémta real manufacturing
environment. Although indirect methods based onioua sensor signals have
gained a wide interest among researchers in toal wenitoring, the extraction of
the tool condition from the acquired signal islsilchallenging task as the detected
signals contain noise and other uncertainties ¢avala et al., 1990; Nakao &

Dornfeld, 2003; Abellan-Nebot & Subin, 2010).

2.4  Detection of tool failure by chipping

While tool wear is a slow and progressive process, failure by chipping
and breakage is a sudden and mostly unexpected edech requires immediate
reaction. Tool chipping is a major cause of unsalext] stoppage in a machining
operation. It was reported that an average up % 280downtime of machine tools
resulted from tool failure. Tool failure by chipgimn the cutting edge can also cause
substantial damages to the workpiece and machateTtbus, the ability to detect the
occurrence of a tool failure by chipping during miamg is much needed and the
detection of tool failure must be reliable so asltminate machine downtime due to

false alarm (Rehorn et al., 2005).

Several signal variables have been reported ad mglicators of tool failure

by chipping. Among these, cutting force, AE, vilomatand motor current have been
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investigated intensively in the past for their séviy to tool chipping. The effect of
the tool chipping on the measured signals mustrigue to be distinguishable so
that other process irregularities such as hardigich in workpiece materials will not

be confused with tool chipping.

The use of the cutting force in detecting thd tdopping and breakage has
been applied widely in turning process. The efigicthe tool chipping is usually
revealed from an abrupt change in the signals medsmn excess of a threshold
value (Kim & Choi, 1996). Cakir and Isik (2005) dseutting forces to detect the
precise moment of tool breakage. They found thagnw tool breaks the tangential
cutting force increases slightly above the pretsegshold and then drops sharply.
This was due to the loss of contact between thiealod the workpiece. The finding
is consistent with the findings of past study byakw(2006). Cakir and Isik (2005)
also reported that cutting force is more sensitvetool chipping instead of the
vibration and motor current. However, tool chippiogn also cause failure of a
cutting edge without decreasing the cutting foigai§cantly (Jemielniak, 1992; Shi

& Gindy, 2007).

A number of studies have also found that monitpwh AE signal to be an
effective method to monitor tool chipping. Someviweas studies have shown that
the level of the RMS of AE signal increases asimgttime and significant burst of
AE energy is generated at the instant of tool dhigpgJemielniak & Szafarczyk,
1992; Jemielniak & Othman, 1998; Li et al., 1998)Jang et al (2003) used time-
frequency analysis to process different AE sigraistted from cutting process to
estimate the tool state in turning. They found thdiurst AE signal in frequency

domain was observed after tool chipping becaus¢hefsudden increase in the
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contact area between the workpiece and the chippdting tool. However,
contradictory finding was reported by other reskars whereby when tool chipped
on a large scale the AE signal reduced due to ¢laeedse in the depth of cut (Li &

Mathew, 1990).

Belgassim and Jemielniak (2011) applied statistiegthod to analyse the AE
signal to detect tool failure. They investigated thistribution moments of the AE
signal at a predetermined sampling and used thersss and kurtosis of the
distribution to detect tool chipping. They reportbdt conventional data processing
of AE signal features does not enable the diffepdraises of tool wear to be clearly

recognised for the detection of tool chipping.

The use of the FFT has been attempted by sevesahrchers in order to
detect unusual changes in vibration frequenciegauear and chipping (Jiang et al.,
1987; Colgan et al., 1994). However, the main dakbin the use of vibration
signal is their susceptibility to noise and the ategency of the vibration
characteristics on combination of machine, tool aodckpiece (Wang & Gao, 2006).
In addition, as spikes in vibration signals areoatgenerated by hard spots in

materials, this can be confused with the spikeeigegad by chipping.

Tool chipping detection from a single signal vhle may lead to
misinterpretation of the data due to the compldatlynamic characteristic of
machining process. To improve the reliability oblt@hipping signature, efforts on
integration of multiple sensor signals measurententletect tool chipping using
various pattern classification techniques have lmre. Colgan et al. (1994) used

multi-valued influence matrix (MVIM) method to deteine tool chipping from
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vibration and feed motor current signals. Howewubrs detection method result
indicated that vibration and feed motor currenhalgn MVIM were less sensitive to
its training environment compared to the neuraivoek. Wang et al. (2003) applied
unsupervised neural network to detect tool chippirggn AE and motor power
signal during turning. However, the ability of naunetwork method to form a
reliable tool chipping signature depends strongbpru their structure and their
training inputs. In the case such as machining elaglequate data are not available
for comprehensive training, neural network may pemlfalse alarms. In a recent
work, statistical pattern classification has bedso gproposed for tool chipping
detection in turning using AE and cutting forcensij(Balsamo et al., 2016). The
authors reported that this method could not cdyretgtect the tool chipping instant
from the recorded signal due to a delay in theamstietection between AE and

cutting force signals.

In a recent work, a precision on-machine measunemmethod of chipping
on cutting tool edge which employed a diamond esfee edge as a measuring
artifact was developed based on a cutting forcea@eimtegrated with the fast tool
servo (Chen et al., 2016). The worn tool on the¢ t@sl servo was brought to scan
across the diamond reference edge based on theacttorce feedback control loop
applied to fast tool servo. The cutting force betwéehe cutting tool edge and the
reference edge was kept constant by controllingttieé displacement so that the
cutting tool edge contour can be traced by thereefe edge. But, this method is

strictly feasible for offline measurement only.
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25  Detection of tool failurein ceramic cutting tool

The use of aluminium oxide based ceramic cuttiaglst in turning of
difficult-to-cut materials is an attractive altetiva to replace grinding operation in
order to reduce manufacturing costs. Ceramic @uttols is useful in the cutting of
difficult-to-cut materials such as stainless st@eh, 2008 ; Sobiyi et al., 2015)
superalloy Bushlya et al., 2013}ool steel and hardened tool stgerél et al., 2005;

Ozel et al., 2007veddour et al., 2015).

Interest in ceramics cutting tools in turning affidult-to-cut material is
owing to its favourable materials properties sustnigh hot hardness, good abrasive
resistance and chemical stability. But, the mamititions of ceramic tool materials
are due to their low fracture toughness and poernthl shock resistance, thus
resulting in premature tool failure by chipping @atastrophic failure by breakage
instead of gradual wear. Continuous machining vaitichipped tool can severely
deteriorate the surface finish quality and dimemai@accuracy of the machined part.
Thus, in-process detection of the tool failure hypping in ceramic is important so
that the machine tool to be able stopped immedidtIprevent damages to the

workpiece and machine tool.

Direct methods using vision system has been atwanip monitor wear in
ceramic cutting tool in the past. Patil and Tilek2014) proposed an offline tool
wear assessment using digital camera and the eaptonrages of cutting tool were
processed iNMATLAB Cakan (2011) used a laser source that focusesh®n
workpiece and its reflected ray is captured in-psscusing a photodiode for accurate

measurement of the workpiece diameters to predecflank wear of alumina based
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ceramic cutting tools. The flank wear was indinggtionitored in response to the
increases in workpiece diameter. However, no attem@as made to monitor tool

chipping in ceramic cutting insert.

Indirect methods using cutting force signal inedéihg the tool chipping in
ceramic cutting tools have been attempted in trst. @utting forces are influenced
by the tool geometry, as the cutting tool weassge#ometry changes thus impacting
over the cutting forces. Jemielniak (1992) usedciliéing force in the time domain
to detect the tool chipping in ceramic cutting tocheir results showed that stepwise

increase of the average level of the cutting famckcated that tool has chipped.

Shi and Gindy (2007) developed an in-process raong method for hard
turning using three component force sensors. Exparis were performed for
machining Inconel 718 using ceramic tools. The aegucutting force signals was
subsequently processed using wavelet transform débhemposed signal allows one
to distinguish between the static and dynamic carmepts in the force signal and to
obtain features of tool malfunctions such as to@awmy tool chipping and tool
breakage. The authors found that the use of fageakto detect tool chipping is
more difficult compared to the detection of excesswear and tool breakage
because the variation of cutting force caused loy ¢bipping did not exceed the
threshold limit. This study was repeated using ipldtsensory signal such as power,
force and vibration. The features of each sengmasiwere extracted using statistical
parameters to correlate with the wear of the ceragniting tool. Shi and Gindy
(2007) concluded that the extracted statisticadupaters from different sensor signal
increased with tool wear. Power and force sensgmasiwere found to be more

sensitive in detecting the tool wear compared ¢éovibration sensor signal.
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NesluSan et al. (2015) used an AE method to ddébecfailure of ceramic
tools during hard turning of bearing steel. The hatg concluded that the
conventional processing of AE signals does not lendde different phases of tool
wear to be clearly recognised. It was possiblediea tool failure by chipping and
breakage only by recording and analysing the AEufea using two different AE

sensors at different frequency ranges.

Jemielniak et al. (2011a) applied sensor fusiartugiing vibration, cutting
force and AE to monitor the tool condition duringrrting of Inconel 625 using
ceramic cutting insert. The signal features welteaeied from time domain signals,
frequency domain and time-frequency domain. Cutforge was found to be the
most informative parameter for tool wear monitoroampared to the vibration and
AE. However, the authors reported that multiple seensignals used together

produced results a little worse than using a sisglesor signal.

2.6  Detection of thetool failurefrom the workpiece surface using machine

vision and image processing method

Surface quality has also been used to evaluateuttiag tool condition as the
cutting tool operates directly on the workpiece dhd machined surface carries
valuable information about the machining procesghVihe rapid development of
machine vision and image processing methods, rdse@ have started using
machine vision to investigate tool wear indirediBsed on the workpiece surface of
a machined part. Kassim et al. (2007) distinguighedsharp and dull tools based on
the surface texture of a turned workpiece. Theadrorkpiece was shaped by

cutting tool during machining process which causdgdes and groves formed on the
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surface of workpiece. The groves are even andgstravith clear ridge lines when
the cutting tool is sharp. When the cutting toadlisl, the groves appear uneven and
ridge lines become disjointed. However, the imagésvorkpiece surface were

captured in-cycle, thus interrupt the machining.

Several researchers have attempted to evaluatetatble condition by
extracting the surface finish descriptors from ithages of freshly machined surface
texture. Dutta et al. (2012) captured images of mmed surface in-cycle and
analysed them offline using grey level co-occureemaethod. The variation of
texture descriptors, namely contrast and homoggneiith machining time were
studied and successfully correlated with tool flaméar. However, no attempt was

made to investigate the effect of tool chippingloa texture descriptors.

Datta et al. (2013) successfully applied the cphoé Voronoi tessellation to
extract two texture features, namely the numbgrobfgons with zero cross moment
and the total void area of the Voronoi diagram friti@ machined surface images to
be correlated with the flank wear. Voronoi tessmla is a popular method for
clustering a set of points into an arrangement egfions defined by the local
neighbourhood of each of the points. Voronoi diagria used to create polygons
which provides a description of the neighbourhofmseach of the constituting
points. The geometric features of the Voronoi pohgdepend on the distribution of
points can be used to detect any underlying stractpattern in an image. Non-
uniform feed marks is formed in the machined s@$adue to the increase in tool
flank wear which results in non-uniform edges im tmachined surfaces. Thus,
Voronoi polygons becomes non-uniform with the imase in tool flank wear. Dutta

et al. (2016) applied texture analyses namely deael co-occurrence matrix
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(GLCM), Voronoi tessellation, and discrete waveleansform (DWT) based
methods to obtain information about the wavinessdfmarks, and roughness from
the turned surface images for predicting the tdemhlf wear using support vector
machine (SVM) based regression models. However;heomogeneous illumination
due to improper lighting and interference of ambidighting can affect the
reflectance of the workpiece surfaces adverselyg tiesulting in redundant features

from the images of the machined surface.

Recently, Li and An (2016) used machine visionthod to acquire the
cutting tool images and workpiece surface imagesukaneously to monitor tool
wear. The automatic focusing and segmentationeofwbar region of the cutting tool
was determined by using Markov Random Field alparitvhile the features of the
surface texture of the workpiece surface was obthirsing a GLCM to monitor tool
wear. Although this proposed method seems promisimgges of cutting tool and
workpiece only can be captured in between turnipgyration when the cutting tool is

not in contact with the workpiece.

Shahabi and Ratnam (2009b) have successfully eappdiacklighting to
capture the silhouette of workpiece profile to deiiee the nose wear and flank wear.
The proposed method can effectively determine theenvear by subtracting the
images of workpiece profile produced by worn andiamm tool. The maximum flank
wear, VBnax in the nose radius area can also be determinadaety from the 2-D
image of nose radius area of cutting tool usingpobordinate. However, their work

was conducted in-cycle and no attempt was madetextthe tool chipping.
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2.7  Signal processing method

The signal captured from the machining processeqgeired to be processed
and analyzed to obtain the important informatiorowbthe tool condition. The
extraction of signal features related to cuttingl toondition is a key issue in tool
condition monitoring system. For best performanéetoml condition monitoring
system, only those signal features which show & Bensitivity to tool condition
should be utilized to make the sensing system raffigient. Tool wear monitoring
based on sensor signal usually is evaluated threigytal processing methods that
comprise the steps shown in Figure 2.5. The stepgding choice of the measurable
sensor signal to be captured, feature extractiahfeature classification. The raw
sensor signals is processed to extract signifitsattires from the signal in the time
domain or frequency domain and to correlate théwaar or were further fed into a
model such as autoregression model, neural nettecgktimate the tool state (Lauro

et al., 2014).

Transformation into
frequency domain (e.g.
FFT, CWT)

Auto-regression model, Wear, chipping,
Neural network, HMM etc fracture

Sensor Feature Classifier/ Tool
signal extraction Estimation state

Figure 2.5: The framework of tool condition monitay using indirect method
(Lauro et al., 2014)

Time domain
signal
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2.7.1 Timedomain analysis

Signal features need to be derived so that camsbd to describe the signal
adequately and maintain the relevant informaticoualthe process or tool conditions.
The most common signal features that can be egttdobm any time domain signal
are the mean and RMS value of signal. Dimla andeLi€000), Sikdar and Chen
(2002), Cakir and Isik (2005), Sharma et al. (20083d time domain analysis for
force signals and they found that the time domagatures of cutting forces
correlated well with the tool wear. Guo and Amm{#05), Bhaskaran et al. (2012),
Hase et al. (2014) and NesluSan et al. (2015) tils®dRMS value of AE signals to
estimate the tool condition and found that goodetation exists between the RMS
of AE signals and tool wear. Other signal featusesh as kurtosis, skewness,
variance and standard deviation (Bhaskaran e2@l2; Liu et al., 2013a) are also
been adopted for tool condition monitoring. Thedidomain features have still been
widely used in tool condition monitoring as theyenfa great deal of simplicity in
terms of the extraction. However, these featuressaisceptible to disturbances so
they need to be supplemented with features fronerottomains (Siddhpura &

Paurobally, 2013).

Some previous works have discussed tool wear wramgt by the analysis of
surface roughness. The findings agreed that aranheelation between the surface
roughness and tool wear exists. This is becaussuitiace roughness of a workpiece
is influenced by the sharpness of the cutting t@loudhury and Bartarya (2003)
indicated that arithmetic average height of surfpogfile, R, decreased when the
flank wear increased. However, Lima et al. (20@&)nid that increased in the flank

wear resulted higher value Bf. Peak-to-valley height of profild is observed to
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decrease as the amount of the flank wear incre@aadbla et al., 1994). However,
the opposite finding was reported. Penalva et24102) and Grzesik (2008b) found
that R, becomes higher when the tool wear continued iserealthough the use of
single parameter of the surface roughness couldsbd to indicate a change in the
machining process, it is difficult to identify wkeethe changes in the machining have
been occurred. In addition, surface roughness peteamis also highly dependent on
cutting parameters such as cutting speed, feedarmtadepth of cut. Thus, it results

in different surface roughness when various cugiagmeters are adopted.

ACF is an important diagnosis tool which allowsitentify the possible
random and periodic features buried on generatddcguprofile. Roy et al. (2007)
segregated the relative contribution of the eldgtimdissolution and the mechanical
abrasion in electromechanical grinding by evalugatime surface profile using ACF.
In a recent work, characteristic of machining pescare investigated by extracting
the topographical features of electrical dischargachining machined surface

through the decomposition of ACF curves (Aich & Bgae, 2017).

The use of ACF has also been attempted for faatitaion and diagnosis.
Zubaydi et al. (2000) successfully applied ACFnalgze the vibration response of a
structure in order to identify the occurrence ofaliraracks in the side shell of ship
structures. The advantage of using the ACF isithatuld be easily obtained from
the random vibration response of the structureguairstatistical procedure. Rafiee
and Tse (2009) introduced ACF of continuous waveleefficient of vibration
signals as a feature for non-stationary signalgear fault diagnosis. The ACF plots
of synchronized vibration signals is found dies quickly as with the worn gear. It

should be noted from the above literature revie®@FAlas been successfully applied
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for machine surface assessment and machine faadjndsis. However, limited
studies are available on the use of ACF in toolrweanitoring. This has motivated

the detection of tool chipping from workpiece pl®fignature using ACF .

2.7.2 Frequency domain analysis

Frequency domain analysis is a tool of utmost irtget in signal processing
applications. While time domain analysis shows howignal changes over time,
frequency domain analysis shows how the signabsggnis distributed over a range
of frequencies. The information that cannot be itgagen in the time domain can be
seen in the frequency domain. For this purpose, BFihe standard method for
observing signals in the frequency domain and & haen widely used in tool
condition monitoring. The main advantage of frequyedomain analysis over time-
domain analysis is its ability to identify and iat& certain frequency components of
interest and thus extract the features from theasid-or example, Liu et al. (2013b)
discovered that the fundamental and third harmoaidsequency of cutting forces
are predominantly affected by tool eccentricitycaw®d harmonic of the frequency is

caused by the tool wear and fourth harmonic is@atad with the chip load.

The signal features extracted from frequency donaa¢ usually considered
the amplitude of dominant spectrum peaks and sigoaler in specific frequency
ranges (Teti et al., 2010). Dimla and Lister (2008gd frequency spectrum from
vibration and cutting forces signal to correlatehwivear. The amplitude of the
fundamental frequency peaks of sensor signal wasdfdo increase with tool wear
and very slight shift into lower frequency. Similegsults was also reported by

Kalvoda and Hwang (2010). Haddadi et al. (2008)ptetb FFT for vibration signal
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for tool condition monitoring in turning operatiomhe amplitude of the signal
spectrum in the range of 0-3.5 kHz was responsivtedl wear and the wear of the
cutting tool was accompanied by an increase irsgeztrum amplitude of vibration
signal in the range of 0-3.5 kHz. In addition, istat features of the band power
spectrum has also been utilized to assess thectowlition. Binsaeid et al. (2009)
used mean, variance, kurtosis and skewness of pEpeetrum in specific frequency
band as well as the frequency of maximum peak ol ppwer from multiple sensor

signals of force, vibration, AE and spindle poweestimate the wear level.

2.7.3 Time-frequency domain analysis

The band energy in frequency domain allows to iptedol wear, but the
main drawback on the use of FFT is lack of tim@infation for detecting transients
which include chipping, breakage, collision of dtitig tool. To solve this problem,
an attempts has been made through the developrhehbu time Fourier transform
(STFT), which is widely applied to tool conditionomtoring (Marinescu & Axinte,

2008; Marinescu & Axinte, 2009; Rad et al., 2014) .

In STFT method, the signal is divided into smadgment where these
segments of the signal is multiplied by a windowdiion to characterize the changes
of frequencies at different time intervals. Spdot@efficients are calculated for the
short length of data within the window functionetwindow function is then moved
to a new position and the calculation is repeafesti (et al., 2010) to reveal the
variation of the frequency content of signal witkive window function. The inherent
problem associated with STFT is the trade-off betwé¢he time and frequency,

which indicates that time and frequency cannotdsolved simultaneously due to
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Heisenberg's uncertainty principle (Zhu et al.,2deng et al., 2013). The choice of
the window function is found that directly affe¢kee time and frequency resolutions
of the analysis result (Gao & Yan, 2010). In additithe use of the window function
in STFT, a part of the window function is attenultd the boundaries which can

cause a loss of frequencies response in the baesdagions (Pampu, 2011).

In addition to STFT, wavelet transform has beeocsssfully applied and
became the most informative approach for time-feegy analysis of signals.
Wavelet theory has been developed in the late 1980sMallat (1989) and
Daubechies (1990) to fulfil the needs for adaptimee-frequency analysis, which
can overcome the resolution problem of the STFTvéMd transform has been
widely applied for tool condition monitoring as igeat potential in detecting the
abrupt changes of tool condition. Khraisheh e{E95) found that CWT is suitable
for analyzing the transient in vibration signalidgrturning process and the transient
boundary and the built-up edge were successfubntitied. Yesilyurt (2006) used
the mean frequency variation of scalogram of vibratsignal in end mill tooth
breakage detection under varying feed rates. It feasd that mean frequency

variation of scalogram is quite responsive to tresence of fault.

It was reported that discrete wavelet transformV{D is preferable in the
time-frequency analysis due to its ability of fastmputation. When tool failure
occurs, the signals often contain abrupt changessaidden shift to a different level,
which known as singularity points. Gong et al. (Zp@sed DWT of cutting forces to
monitor flank wear in turning process. Results shdvhat the fifth level wavelet
coefficient were more sensitive to the changeslartkf wear states under different

depth of cut. However, Kwak (2006) found differemciggesting that the fourth
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level approximation coefficient of the cutting fersignal increased sharply at onset

of tool failure.

Chen and Li (2007) applied DWT for singularity elgtion from AE signals
during turning and found that wavelet coefficienorm was reliable for
distinguishing between sharp tool and worn toohdat al. (2012) adopted wavelet
decomposition analysis to identify the changeshim vibration signals in different
frequency bands and found that third level of welebefficient of the vibration
signal was the most sensitive to dynamic tool-edgar. DWT utilises the sampling
of both time data and scale to produce faster dghgor Scale and time are sampled
in power of two (dyadic sampling) to cause someeaainin scale is loss. Therefore,

finest scale in CWT allows for localize the freqagrchange precisely.

28  Chapter summary

Several tool failure monitoring methods includihg methods that are still in
development progress as well as the commerciald®dces are reviewed. A
summary of the available methods and their linotadi are presented in Table 2.1.
From the literature reviewed, it is seen that maptical and vision methods for
direct wear assessment on the cutting tool have deeeloped in the past. Although
direct measurement using machine vision have thardadges of capturing the actual
geometric changes arising from the wear and chgpmh the cutting tool, this
methods cannot be applied in-process because ttiegcarea is inaccessible due to

the continuous contact between the tool and thé&pwece during machining.
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In-process tool failure monitoring is usually perhed by indirect method
based on various sensor signals. All the indireethmds reviewed in this chapter
have their advantages and disadvantages when cethfmaone another. A number
of studies show that a significant contradictonydfngs do exist. Thus, there still

exists a need to develop a more reliable in-proteddailure monitoring method.

Table 2.1: Summary of the methods and their linatest

Method Limitations

Tool maker's - Offline, intermittent or in-cycle
microscope, SEM, whit¢ monitoring

light interferometry,
confocal microscope,
AFM, CCD camera

Direct tool condition
monitoring method

Cutting forces - Highly affected by process
Vibration parameters, tool and workpiece
AE material

Indirect tool condition
monitoring method Sound
using sensor signal | Temperature

Current and Power

- Sensitive to noise

- Reliability of the sensor signal to
tool failure monitoring still has
contradictory findings

Sensor fusion - Require high computational load

- Intermittent or in-cycle
monitoring

- Subjected to illumination and
contaminants (e.qg. oils, dust)

- No attempt was made on tool
chipping detection

- Intermittent or in-cycle
monitoring on flank wear and

Workpiece profile nose wear

- No attempt made on tool chipping
detection

Surface Texture
Indirect tool condition
monitoring method
using workpiece
surface

The features extracted from the images of the meadhsurface texture
correlated well with the flank wear. However, thigthod requires the machine to be

stopped before the images of the machined surfacde captured. Previous studies
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show that the 2-D workpiece profile possesses atgpetential for the indirect

assessment of nose wear and flank wear duringngiadthough the previous studies
were conducted in-cycle. To date, no attempt han beade to detect the tool
chipping based on the workpiece profile in ceramitting insert. Thus, the focus of
this work is on the development of a novel in-psscenethod for detection of tool
failure by chipping from a 2-D workpiece profilegeature using machine vision

method.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter outlines the formulation of the melblogy to achieve the
objectives of the study. The research methodolsgdiscussed in Section 3.2 to

Section 3.4 and is summarized in Figure 3.1.

The methodology for in-process detection of tedufre by chipping from the
2-D workpiece profile signature using ACF is praseénn Section 3.2. The specific
procedures in generating the simulated workpieoéleris presented in the Section
3.2.1 which were used in simulation to demonsthate ACF method could be used
to investigate the effect of tool chipping on therkpiece profile. An experiment,
which was carried out to produce the actual workgierofile on turned part to
investigate the capability of the proposed methed&xplained in Section 3.2.2. In
Section 3.2.3 and Section 3.2.4, experimental settipa specific image acquisition
system for the in-process capturing the imageshef workpiece profile during
turning operation is presented. Calibration of itthage acquisition system such as
scaling factor determination (Section 3.2.5), distm assessment (Section 3.2.6)
and motion blurring assessment (Section 3.2.8akseoutlined. A detail description
of the workpiece profile detection algorithm in spikel level accuracy edge

detection using invariant moment method is explhineSection 3.2.7.
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Start

A 4

Section 3.2 Investigation on m-progess detgctlon of tool cimgp
from workpiece profile ACF

Investigation on offline detection of tool chippifrgm
workpiece profile using FFT (Preliminary study)

Section 3.3
Investigation on the in-process detection of tool
chipping from workpiece profile using FFT and
sub-window FFT
Section 3.4 Invgstlgatlon on the |n.-process. deteptlon of tool
chipping from workpiece profile using CWT

End

Figure 3.1: Flow of research methodology

Section 3.3 describes the methods for tool chgppietection from the 2-D
workpiece profile signature using FFT. The stepsganerating the simulated
workpiece profile by considering the changes ofttdw geometry due to the gradual
wear and chipping is presented in Section 3.3.1oflme preliminary experimental
work carried out to capture the images of the tdnverkpiece profile is presented in
Section 3.3.2. In Section 3.3.3, the simulation kwon detection of tool chipping
based on workpiece profile by considering the preseof tool-workpiece vibration

is discussed. In-process experiment to capturentiages of the workpiece profile
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simultaneously with measurement of tool vibrati@ing accelerometer is presented
in Section 3.3.4. To resolve the time resolutiorthef FFT and drawback of STFT,

sub-window FFT was proposed (Section 3.3.5).

Section 3.4 presents the methodology for the tleteof tool chipping from
workpiece profile using CWT. The reason for applyfFT and CWT is to compare
the methods so that a better method in terms dityabif detecting the onset tool
failure by chipping is determined. The last sectainthis chapter is the chapter

summary.

3.2 In-process tool chipping detection in ceramic cutting insert from the

wor kpiece profilesignatureusing ACF

Detailed procedure for the simulation work to desteate the use of ACF in
tool chipping detection based on the workpiece ifgafignature is explained in
Section 3.2.1 while an in-process experimental guace to investigate the
capability of the use of ACF method for detectimg ttool chipping in ceramic

cutting insert from the actual workpiece profilgigsented in Section 3.2.2.

3.2.1 Simulation work

In order to develop an approach capable of deigdtie sudden tool failure
by chipping in ceramic cutting tool, a simulationk was designed to investigate
the potential of ACF in tool chipping detectionritdhe simulated workpiece profile
signature. Figure 3.2 shows the specific stepsgtarerating the ideal workpiece

profile used in the simulation. In the stage 1,ithage of an ideal nose profile (nose
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radius,r,= 0.8 mm) of the cutting insert was created usdTOCAD software

(Version 2013). The created nose profile for simiafais shown in Figure 3.3. The
ideal nose profile was drawn according to the dedign of the cutting tools used in
this study (CNGN 120808 series). The ideal nosélens formed by a circular edge

and two straight lines which represent the majatirogiedge and minor cutting edge.

v

Stage Draw ideal nose profile in circular shape uskigTOCAD

v

Replicate the nose profile in horizontal directiith a
Stage 2 feed distance to generate workpiece profile
Stage 3 Export the drawing as an image
Stage 4 Import the image ttMATLAB
Stage 5 Extract the workpiece profile d_ata using vertical
orthogonal scanning
Stage 6 Determine best-fit line

End

Figure 3.2: The flow chart of the generation afatiworkpiece profile
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Minor cutting edge

Major cutting edge

Figure 3.3: Geometry of the nose profile createdgl8UTOCAD

In the stage 2, the nose profile was duplicatedzbotally along the feed
direction from the centre of the nose profi@ with a feed distancé= 0.4 mm as
illustrated in Figure 3.4. This is because in anituy process the workpiece is
revolved under a moving cutting tool resulting e ttool following a helical path
relative to the work surface. Thus, an imprint led hose profile of a cutting tool is
replicated on the machined surface and each imigrsgparated from the next by the
feed distancé as a result of the feed motion as shown in FiGu4e The elements of
the vectors that extend beyond the intersectiontpdfp) between the nose profile
and workpiece were trimmed off in order to prodtlee workpiece profile shown in

Figure 3.5.
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Cutting insert

Chips

!

Depth-of-cut

!

\\Norkpiece profile

3

<—>

feed,f
Feed direction Nose .profile (cpntact edgg bgtween
< workpiece profile and cutting insert)

Figure 3.4: Schematic representation of interadvetween the cutting tool tip and
the formed surface

In the stage 3, a 4 mm length of the simulatedliderkpiece profile was
created and exported as an image format. In thé stege, the simulated ideal
workpiece profile was read and imported as Red+«GBlae (RGB) image into
MATLAB The RGB image was converted into digitized greate level imagelys
encoded as a 2-D array of pixel in spatial coongimafx andy. The images of
simulated ideal workpiece profile is made up ottkland white colours therefore its

gray-scale level in each pixel value is either gk) or 255 (white) as shown in

Figure 3.5.

‘ pixel intensity = 255
X

pixel intensity =0

L=4.0 mm

Figure 3.5: Simulated ideal workpiece profile getted fromAUTOCAD
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In stage 5, workpiece profile detection algoritwritten in MATLAB was
applied to extract the surface profile of the siatedl ideal workpiece profile. By
vertical scanning along each column in the horiabdirection, they-coordinate of
the profile was obtained by searching theoordinate of the pixel that has the first
minimum gray-scale level in each column. Hheoordinate of the workpiece profile
are corresponding to the scanned column valuesaljwithms starts scanning the
first pixel of the first column of the image to det the coordinate of the first pixel
intensity of O (black colour) to form the surfaa®fe data. The scanning continues
to search the second column to find the second padee of 0. The contour of the
workpiece profile was determined by vertical scagnin each column from top to
bottom. This step is repeated to detect all thelpii all the columns that lie on the
workpiece profile which reveal the contour of sadaroughness of the simulated

workpiece profile.

The first pixels with intensity O in all columngvweal the contour of the
workpiece profile and the typical ideal surfacefpeois shown in Figure 3.6. The
detected surface profile is in pixels value, therefthe scaling factors were used to
convert the surface profile in pixels value to nostivalue. Since the known border
length of the simulated workpiece profile was cedatrom AUTOCAD thus the
scaling factor was determined by dividing the léngt the simulated workpiece
profile with the number of pixels of the images time horizontal and vertical
directions. After that, the best-fit line (known e®an line) of the detected contour
of the simulated workpiece was determined. Theaserfprofile can be determined

by subtracting the mean value of the roughnessilpréfom each point on the

49



contour. The coordinatgs, y;) data wheré=1,2,3, ..., N were stored into two row

vectors denoted asvector andy vector, respectively.

40
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Distance along the profile (mm)

Figure 3.6: Simulated ideal workpiece profile egteal from Figure 3.5 using
vertical orthogonal scanning

Unlike in the ideal case the characteristic of eal rsurface profile is
influenced by vibration that occurs during machgnifool vibration occurs because
one of the structural modes of the machine tool @odkpiece system is initially
excited by cutting forces which are caused by taiblire and corresponding system
instability in the machining process, characteribydunwanted excessive vibration
between the tool and the workpiece and consequeatlge poor quality surface
finish. The dynamic force related to the chip-tmeks variation acting on the cutting
tool is related to the amplitude of tool vibratiahresonance and to the variation of
the tool's natural frequency while machining (Thenea al., 1996). As a result tool
vibration generates the irregularities seen onniaehined surface. Previous work

show that the turned surface of a machined workpiscmainly composed of the
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cutting feed component and the vibration compori€ata et a] 1985). Thus, the

real surface profile can be expressed as:

G(x) =U ,(x) +u(x) (3.1)

whereUgs(X) Is the ideal surface profile amgx) is the dislocation in the workpiece

profile results from the vibration generated duringchining. Tool vibrates is
mainly as a one degree of freedom system (Thomad.,e1996). Therefore, the
motion equation of the vibrating system can be wdlesd as a simple harmonic
motion. During stable machining, the vibration sigroscillates with constant
frequency and amplitude and the dislocation of \wm&e profile due to tool-

workpiece vibration can be expressed as:
N -

u(x) => C,sin@nX +¢ n=1,2,3... (3.2)
n=1

where C, is the amplitude of dislocation in the workpieceofple, « is the

fundamental angular frequency agds the random dislocation of the workpiece

profile caused by severe tool chipping.

Since vibration increases as tool flank wear ineesadue to the increase in
the cutting force thus resulting in a periodic a#ian in depth of cut (Dimla, 2002),
the effect of tool wear on the simulated workpipoafile was done by increasing the
vibration amplitude. In the simulation, the dislboa in the workpiece profiles that

result from the relative tool and workpiece viboatiwas added into the ideal

workpiece profileU gs(x) :
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For gradual wear the dislocations in workpiecdif@@aused by vibration is
assumed to be low and stable. The random dislatafi@ibration is thus neglected.
Figure 3.7(a)-(b) shows the simulated workpiece filgroproduced from the
combination of the ideal workpiece profile and degltion vibration due to gradual
wear. The dislocation of vibration were increasgdb®% and 10% from the peak-to-
valley height of the surface profil&{, for a spatial frequency of 100 rirwhich is

equivalent to 49, whereV, is the fundamental feed frequency of the simulated

ideal surface profile. The fundamental feed freqyasy (mmi‘) is given by:
1 .
\2 :T wheref is the feed (mm). (3.3)

A spatial frequency of 100 mihwas used because previous work has shown
that tool wear excites high peaks of vibration algiat appear near a fundamental
frequency of 117 Hz in the normal wear stage (Jiengl., 1987). The maximum
peak-to-valley height was determined from the idaaface profile data which is
defined as the vertical distance between the highessk and the lowest valley along

the evaluation length of the surface profile.

Previous study has shown that when a ceramicctapped the amplitude of
vibration increases sharply reaching 10 times ashnas that in normal wear stage
(Jiang et al., 1987). Several high peaks werefalsod in the frequency range 0-117
Hz and the amplitude of peaks fluctuated signifisaand randomly as a result of
the irregular tool shape after fracture (Jiang let ¥987). When a tool wears or
deforms new sources of vibration are also introducgo the machining due to

abnormal cutting conditions (Thomas et al., 1998j)us, a random dislocation of
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workpiece profile with 5 and 10 times higher of ttlislocation of surface profile

resulted from wear was added as presented in Fgjid(e)-(d), respectively.

Relative high amplitude vibration between the @l the workpiece usually
occurs when cutting tool wear increased. Such tidmmacauses the formation of
surface modulation or waviness in both cutting ahé tool feed directions
(Boryczko, 2011). The surface roughness profilengldhe axial direction is
modulated by a revolution of the spindle within thege of wavelength longer than
2\, wherel is the wavelength of the workpiece profile (Sdtale 1985). Therefore,
Equation 3.2 was modified and the dislocation o thorkpiece profile due to
waviness resulting from the tool-workpiece vibratis presented in Equation 3.4.
The simulated workpiece profile accompanied with Waviness resulting from the
tool-workpiece vibration in Equation 3.4 is shownm Figure 3.7(e). The surface
profile presence of waviness resulted from the -temikpiece vibration aims to
observe how does the surface waviness influencé&@fe Thus, the dislocation of

vibration in workpiece profile is excluded.
N
. 2/M
u(x) :ZCn sm% +@ n=1, 2, 3 ... (3.4)
n=1

With the exception of ACF, a common drawback ddtistical surface
roughness parameters such as mean, RMS, peakl¢g-isathat they do not provide
information about periodicities. Mean and RMS valaee not sensitive to very large
impulses. Peak-to-valley height roughness paranetnsitive to impulses such as
tool breakage. However, a single noise spike caowtht off which could lead to
false alarm. Therefore, ACF was applied to invegéghe effect of the tool chipping

on the workpiece profile.
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In this work, ACF is chosen because it is capabléetecting the presence of
the random noise buried in any periodic surfacghoess profile. The flow chart of
ACF algorithm written inMATLABIs presented in Figure 3.8. The ACF analysis is
done by comparing the workpiece profile with a repbf itself whereby the replica
is shifted by a lag distance) (and is evaluated over the length of the workpiece
profile. In other words, for surface profig(x), the ACF is the average value of
product the un-shifted and shifted surface proflEx)G(x+r) and is given by

Equation 3.5 (Bendat & Piersol, 1993):
. 1L
Ar)=lim= I G(X)G(x + r)dx (3.5)
L-o |40
For discrete surface profile data the ACF ismdias in Equation 3.6:
1 N
A(MAT) :NZG(i)G(i -m) (3.6)
i=1
wherem is an integerAr is lag interval N is total number of sample points on the

workpiece profile((i)is the surface profile at positiomar and G(i —m) is the

surface profile at position(i —m)Ar7, i.e. atm sampling intervals earlier. The ACF
is then normalized by dividind(7) by the square of RMS roughnesR). The

RMS roughness is defined as the RMS average ofwibekpiece profileG(i)

calculated from the mean line and is expressedjuaion 3.7.
1,
R, = NZG(') (3.7
i=1
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Figure 3.8: Flow chart for ACF algorithm
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The mechanism of ACF is depicted in Figure 3.8sthj, each ordinate of the
workpiece profile was multiplied by itself acros®twhole workpice profile and the

products are add together. After that, the sunm@foroduct is divided by the number
of ordinates multiplied and normalized by dividinigy qu to obtain the

autocorrelation coefficient to yield a measure @ivtsimilar the workpiece profile is

at a given distance from the original locationslalways maximum at the origin.

un-shifted workpiece profile

shifted workpiece profile

2
n

o

Amplitude

=2
Ln

A1)

120

Figure 3.9: Mechanism of ACF

59



After the autocorrelation has been carried oug, Workpiece profile was
shifted relative to itself by an amount gf. In this study, each lag distancas
equivalent to one pixel. The steps abovementionasi nepeated by multiplying each

ordinate on the un-shifted workpiece profile by trelinate of shifted workpiece

profile and the average of all products are alsomadized by dividing bqu2 to

obtain the second autocorrelation coefficieA(rl). The process of shifting the
workpiece profile by a lag of, was repeated to obtain autocorrelation coefficognt
A(rz) and so on till the end of the workpiece profilerésched. The ACF value

between 0O to 1 gives the strength of the relatignbbtween the original profile and
shifted profile. Higher ACF value that is close 1o signifies that there is high
correlation between un-shifted surface profiles ahifted surface profile, whereas,
close to O implies no such significant correlatiexisted between these surface

profiles.

3.2.2 Experimental work

An experimental work was conducted to compare etkgerimental results
with the hypothesis of the simulation. In this s&tt machining condition and the
experimental setup with a specific image acquisiggstem for capturing the images
of the turned workpiece profile during turning ogieon is presented. Calibration of
image acquisition system such as scaling factardebation, distortion assessment
and motion blurring assessment was made to enstekable workpiece profile to
be used in analysis is obtained. The algorithmwiorkpiece profile detection in sub-

pixel level accuracy edge detection using invarmoment method is also presented.
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3.2.3 Machining condition

The turning operation was performed ofPiaocho S90conventional lathe
machine under dry cutting condition. The workpiecaterial used in experiments
was a cylindrical bar with diameter of 50 mm anéragth of 250 mm made of AISI
01 Arne oil hardening tool steel (C: 0.95%, Mn:%,IW: 0.6%, V: 0.1% Cr: 0.6%)
with the hardness of 190 HB. The commercially aldé aluminum oxide based
ceramic insert with added zirconia (CNGA 120408TA25CC620, Sandvik
Coromant Ltd., Sweden) was used for the machinkpgements. The cutting insert
was of rhombic shape. The tool holder used fortthraing was DCLNR 2020M

(Sandvik Coromant, Sweden).

The cutting conditions were as follows: the spenditational speed, 950 rpm;
feed rate, 0.4 mm/rev; and depth of cut, 0.5 mmewsglected according to the
recommendations provided by the cutting tool mactuf@r (Sandvik Coromant,
2015). No coolant were employed in the cutting expent to facilitate the image

acquisition of the workpiece profile during turning

3.24 Image acquisition system

The basic components of image acquisition setusists of 18-megapixel
DSLR camera (model: Canon EOS 700D) with a pictesolution of 5184x3456
pixels. The DSLR camera was fitted with Canon EP Xm macro lens and
connected via USB cable to a personal computegl(Rentium Dual CPU E2160 @
1.80 GHz) for capturing the images of the workpigeefile. Uniform diffused

backlighting illumination was obtained by using ighifrequency fluorescent light
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(Edmund Optics Pte. Ltd., Singapore) to capture dbetour of the workpiece.
Backlighting is the suitable type of illuminatioorfthis application because only

contour of the workpiece surface is needed.

Figure 3.10 shows the in-process image acquisgeinp used to capture the
images of the workpiece profile during turning ggaem. When capturing the images
of workpiece profile, the intensity of light souraad the lens aperture were adjusted
to avoid the burnout in the images. The focusing on the camera was adjusted so
that the edge of the workpiece is sharply in fodllse shutter speed of the DSLR
camera was set to 1/4000 s to freeze the motidheofotating workpiece in order to
reduce motion blur in the workpiece images to aimim. The images of the edge
of workpiece were captured diametrically oppodike ¢utting side during machining

as illustrated in Figure 3.11.

Computer Workstatiol'l

DSLR camera
with macro len

Figure 3.10: Experiment setup for in-process imagisition during turning
operation
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Image capturing
side

Fluorescent
lighting

Tool holder

Figure 3.11: Close-up side view of the image acdtiarsconfiguration

The images of workpiece profile were capturedrafte cutting tool has
turned the workpice, hence no chip obstruction l@mboccurred during image
acquisition as the chips and cutting tool were beythe field-of-view. All the
images of workpiece were captured using the Can0®& BEtility remote capture
software installed in the computer. For each pé#iseotool a sequence of six images
was capture automatically during each trigger. afgle image of the edge of the

workpiece at 950 rpm is shown in Figure 3.12.

Zoomed in
workpiece profile

Figure 3.12: Image of the edge of the workpiecdwapd by DSLR camera
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At a spindle speed of 950 rpm the workpiece rotatangle between
successive imageg, is approximately 60 The workpiece rotation angles between

successive images was determined using Equation 3.8

B =360n, —int(n)] (3.8)

where n; is the number of rotations between the successiages of the workpiece

profile andny; is defined in Equation 3.9.

VxS
" = 750

(3.9)
whereV is the spindle rotational speed in rpm (rotatien minute) and (S= 0.2 s)

is the capturing time between the successive im@gesvn as frames per second).

As seen in Figure 3.13, when the first edge of wurkpiece profile is
captured at point Q, the workpiece continues tateoaind the location of P reaches

point Q at a rotational angle gffor the next frame.

Second edge of the

Rotate workpiece to be captured

First edge of the
workpiece to be captured

Figure 3.13: Workpiece rotation angle determination
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After completion of the image acquisition and gs@ of the profile the
cutting tool tip was observed under a SEM (Hitaldkil1000) after each pass in order
to correlate the condition of cutting tool with thehaviour of each analysilicona
Infinite Focus(Alicona GmBH Ltd., Austria) was used to obtaiib3surface of the
cutting edge which allows a good visualization bipping on cutting edge region.
The experiment was repeated in order to verifyrdseilts to increase the reliability

of the proposed method.

3.25 Scaling factor determination

The horizontal X-direction) and vertical ytdirection) scaling factors for
converting the image coordinates in pixels to weatld coordinates in metric units
were determined using standaviitutoyo pin gages of known diameters, i.e. 0.25
mm, 0.725 mm and 0.895 mm. The pin gage was posifi@at the same level as the
axis of the workpiece so that the scaling fact@ns lbe determined at a position that
corresponds to the location of the workpiece edde pin gage was positioned
horizontally and vertically relative to workpiecen iorder to determine the

corresponding scaling factor in vertical and hamizb direction respectively.

Figure 3.14(a) shows the example of image of pgegwhich captured
vertically relative to workpiece. The cropped auage of the region of interest (ROI)
is shown in Figure 3.14(b). The ROI of pin gage waspped from the centre of pin
gage (e.g. 250 pixek250 pixels) and the scaling factor is a pre-deteeahivalue
and is applied itMATLAB once for all analysis. The cropped pin gage waariied
to separate the pin gage from the background uSitsy’s thresholding method

(Otsu, 1979). Firstly, the images of the pin gages wonverted from the original
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RGB image into digitized gray-scale using commamgb2gray. After that, the

graythreshbased on Otsu's methods was applied to computeeahbld value to
convert the gray-scale image to a binary imagegusommandim2bw’ The Otsu's

method is the default thresholding method availableMATLAB. Binarization

changes the original 8-bit gray scale image int®-tzt binary image. The binary
image of the pin gage is comprised of white piXeis value 1) for the background
and the black pixels (bit value 0) for the pin gagéis work focuses on tool
chipping detection rather than measurement, thasingcfactor determination in
pixel level using Otsu's thresholding method walligent. The number of pixels
occupied by the standard pin gage (e.g. betweant pandb) was calculated and

the scaling factor for converting from pixels tocnemeters was determined by:

Diameter of pin gage (3 10)
Number of pixels occupied by diameter of pin gage )

Scaling factor =

(@)

(b) Diameter of pin gage
—>

Background

Pin gage

Figure 3.14: (a) Image of pin gage captured vdhlyicand (b) binarization of
cropped ROI to determine the scaling factor

Once the scaling factor mdirection andy-direction were defined, the field-
of-view can be determined by multiplying the numioérpixels of the image in
horizontal and vertical direction with thedirection andy-direction scaling factor

respectively.
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3.2.6 Distortion assessment

When the camera was fitted with a closed-up l&nsjay introduce some
errors in the measurement due to the effect obdish in the images. The distortion
in the images was assessed by using Ronchi ruflfg (ines/4 inchesEdmund
Optics Pte. Ltd. The Ronchi ruling was located in the same lefelhe edge of

workpiece and the image of the ruling was captueztically and horizontally.

The image of the Ronchi ruling in RGB format wasabized to separate the
strips from background using Otsu’s thresholdinghmé. The binary image of the
Ronchi ruling is comprised of the black pixels (bétiue 0) for the strips and white
pixels (bit value 1) for the background. After thette distortion of the images was
assessed directly from the image by determininglibi@nces between the points as

shown in Figure 3.15.

(@) _a < . (b)
I S g h i=20

[N N p g i=1730

T T r S i=3436

b d f
j=20 j=2590 j=5164

Figure 3.15: Images of Ronchi ruling (a) vertiaid (b) horizontal
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The number of pixels between measurement pointigbislated in the Table
3.1. It was found that the maximum deviation intieat direction and horizontal
direction were 5 pixels (0.15%) and 3 pixels (0.06Béspectively. Since the

deviation is small, this assures that the imagmedien is negligible.

Table 3.1: Number of pixels between measurememit$oi

Points Number of pixels between the points
a-b 3313
c-d 3308
e-f 3313
g-h 5031
p-q 5028
r-s 5031

3.2.7 Description of workpiece profile detection algorithm in sub-pixel level

accur acy edge detection using invariant moment method

The workpiece profile extraction process is the nmogortant step because it
determines the accuracy of the subsequent outpumekbus edge detection methods
have been developed in the past and generally ealivitled into pixel or sub-pixel
level method. In order to improve the accuracyhef @dge detection, sub-pixel level
technigues can be applied to solve the problemdgt aletection precision. In this
study, an algorithm was developed to extract thekpiece profile with sub-pixel

accuracy as illustrated in Figure 3.16 .
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Read the captured images in RGB for

!

Change the images to gray-scale images ugibggray

v

Filter images using Wiener filtering

!

Apply the invariant moment operator t
determine the edge of workpiece profi
in sub-pixel level accuracy

v

Extract the workpiece profile using orthogonal stéag

v

k=1

v

[M N]=size of image

o Y

e

o
(R

A

=il

Edgepixelk)= |

v

k=i+1

Figure 3.16: Flow chart of algorithm for surfacefide detection
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Firstly, the captured image was read as a RGB inaagewas converted to
gray-scale usin@JATLAB commandrgb2gray. The workpiece profile in gray-scale
is composed of pixel intensity values that rangenfiO (black) to 255 (white) bits.
The image was then pre-processed to remove noigsibyg Wiener filtering. Wiener
filtering was applied to enhance the image bec#uskows one to keep the details

of the image and remove the effect of the noigaénmage.

In the next step, the invariant moment method psedoby Tabatabai and
Mitchell (1984) was applied to locate the edge airkpiece profile to sub-pixel
accuracy. In the invariant moment method a sca@ #ioross a step edge in the

absence of noise is characterized by a set of pikahsityx wherez=1, 2, 3 ... n,

which are either monotonically non-decreasing on-mmzreasing. The edge is
defined as a sequence of brightnbsdollowed by a sequence of brightndssas

illustrated in Figure 3.17, wheke denotes the edge location of the workpiecerand

is the number of input data. The first three morﬂgnnt ﬁz and ﬁs of the input
data sequence in the gray scale image were cadulsing a threshold independent

method based on invariant moment equation:

R 1 n i
m=-2(x) (3.11)

wherei=1, 2, 3
n = total number of pixel in columin

X~ intensity of the pixel in gray scale images
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Figure 3.17: Invariant moment method

The first three moments between input data sequeantée solved by:

m=YpHh (3.12)

h=m-a % (3.13)
1

h,=m+a % (3.14)
2

P, =%{1+ S,/4+—1$2} (3.15)

wherep, and p, are the densities of the gray level brightnessie/ad is equal to

skewness of the input data sequence which is defimthe Equation 3.16.

71



2my +me —3mm
s=Tn S (3.16)

wherea is sample variance given by:

a=+\m -m (3.17)

The densities of the gray level brightness valeeralated by:

Thus, the edge location of the workpiece up to @bt accuracy is determined by:

K=pn (3.19)

In the next step, the contour of surface roughpestle was detected using
orthogonal scanning as illustrated in Figure 3.18(he scanning starts from the first
point of the first row to locate the sub-pixel pl®fof K value on the workpiece
profile which is determined from Equation 3.19. T¢@manning continues to search
the second column to find the second sub-pixeltioocaThe interval along each pair
of adjacent scan lines is one pixel apart. Thisgse is repeated to detect all the sub-
pixels that lie on the profile thus producing tlemur of surface roughness. As seen
in Figure 3.18(b), the application of the invariambment method in sub-pixel edge

detection allows more precise edge location.
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After that, a best fit line (mean line) of the tmur of the surface was
determined using least squares fitting. Any tiittappear in the workpiece profile is
removed by subtracting each point on the detectedilep from the mean line.
Because the profile of the workpiece is in pixeltsirthe roughness profile is
converted from pixel unit to metric unit (micrometesing the scaling factor which

is obtained in Section 3.2.5.

(@) (b)
Starting point

Sub-pixel level
profile (red line)

Profile with low
intensity pixel

Scanning - Profile with figh

direction D intensity pixel

D [P —

T
1
1
1
1
1
1
1
|

v

Figure 3.18: Workpiece profile extraction (a) ogboal scanning, and (b) workpiece
profile with sub-pixel edge location.

The surface profile shapes obtained from the aipewtioned vision method
is very similar when compared to the surface roeghrprofile measured from the
mechanical stylus roughness tester (Mitutoyo SV3180 shown in Figures 3.19.
Three common roughness profile parametBs(Equation 3.20), RMS roughness,
Ry (Equation 3.7) andR; (vertical distance between the highest peak toldtest
valley) were determined from surface profile dat&racted from the images. The

arithmetic average height of surface profile isegivy:

R, ZZT wherei=1,2,3, ..., N (3.20)
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Figure 3.19: Surface profile obtained from (a) smsmethod, and (b) stylus method.

Table 3.2 shows the results of surface roughnessuorementR,, R, andR)
using the proposed machine vision method and tmepadson with the surface
roughness measurement obtained from mechanicalsstgethod. It can be found
that, the comparison of the, R; andR roughness parameters shows an error of
only 2.07%, 1.93% and 1.96%, respectively. An atad@dp error range depends on
the application (e.g. 5-10% error). An error witkb% exceptionally good. The
comparison shows the error is small (less than &84) thus the proposed machine

vision method is able to provide a reliable workgi@rofile to be used for analysis.

Table 3.2: Validation of the roughness valugs &, andR;) obtained from vision
method by comparing the roughness valBgdR, andR;) obtained from stylus

method
Roughness Stylus method Vision method
Error
parameter
1 2 3 | Averagg 1 2 3 | Averagg (%)
(nm)
Ra 499 | 4.95| 5.06 5.00 486 4.85 4.98 4.90 2.07
Ry 5.67 | 5.63| 5.72 5.67 558 551 5.66 5.56 1.93
R 21.50( 20.89| 19.77| 20.72 | 20.25 21.12| 22.05| 21.14 1.96
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3.2.8 Motion blurring effect assessment

Motion blurring can occur when capturing a rotatmgrkpiece. The motio
blurring effect can be eliminated by maximizing steutter speed in order to k«
the edge of workpiece profile she The shutter speed of the DSLR camera wa:
to 1/4000 s to freeze the motion of the rotatingkpaece in order to reduce moti
blur in the workpiece images to a minimum. The acef profile detection in s-
pixel acuracy level algorithm presented in Section 3.285 wsed to extract tl
workpiece profile. After that, the commarfindpeaks'in MATLAE was applied to
locate the peak between the wavelength of the vieckp profile. Themotion
blurring effect in the rotating image was determdiri®y comparing the number
pixels between the wavelength of the workpiece ilgrofinder various spindl
rotational speeds with the number of pixels betwtenwavelength of the sta

workpiece pofile as illustrated in Figure 3.2

a1
o

Peaks betwee
wavelength of profil

SN

E

Number of pixels between wavelen

Number of pixel

a
(=)

50 100 150 200 250 300
Number of pixel

o

Figure 3.20: Motion blurring assessment by conmgatine number cpixels
between the wavelength of workpiece prc

The number of the pixels between the wavelengtthefworkpiece profil¢

under various spindle rotational speed is tabulatedable 3.3. The maximu
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deviation of the number of pixels between the wawgth for the static and rotating

images was found to be only 3.4%, thus the motianribg effect could be

neglected.

Table 3.3: Number of pixels between the wavelength

Rotational Speed| = Number of pixels between the vesagth
RPM d; d2 d
0 65 66 66
625 66 66 68
1150 66 66 67
1750 66 67 67

3.3  Detection of tool chipping in ceramic cutting insert from the workpiece

profile signatureusing FFT

This section is divided into five sub-section. 8et 3.3.1 explains the
simulation work on tool chipping detection from B workpiece profile signature
using FFT by considering the geometry changes efttol nose due to wear and
chipping while an offline experimental work usedvididate the simulation work is
presented in Section 3.3.2. Simulation work on ct&ig of tool chipping based on
workpiece profile by considering the presence ol-teorkpiece vibration resulting
from wear and chipping is outlined in the followisgction. In-process experiment
setup to capture the images of the actual workpmodile simultaneously with
measurement of tool-workpiece vibration using asgheter is presented in Section

3.3.4. In order to further assess the applicabiifyFFT method in onset tool
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chipping detection, sub-window FFT method was psgplo aims to resolve the time

resolution of the FFT and the drawback of STFTrespnted in Section 3.3.5.

3.3.1 Simulation work on detection of tool chipping from surface profile

signature using FFT by considering the geometry changes of the tool nose

The surface profile of the turned workpiece is itherint of the cutting tool
nose profile replicated on the machined surfaceeauth imprint is a periodic pattern
separated by the feed distarices a result of the feed motion as illustratedigufe
3.21(a). Thus, the interaction between the cuttouj tip and the workpiece clearly
shows that the tool nose region plays an imporaetin shaping the surface profile.

If the cutting tool is used in finish turning, wiebly the depth-of-cut is smaller than

radius of cutting insert, , the cutting process occurs in the nose radiusetutting

tool between points P to Q as shown in Figure ®R1(

Chips

Cutting insert

Depth of cu
Workpiece Unworf tool’
profile _
Contact edge between Worn tool profile
workpiece and cutting insert
(a) (b)

Figure 3.21: (a) Schematic representation of icteya between the cutting tool tip
and the formed surface, and (b) formation of toeamnby increasing the radius in
minor axis.
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Gradual wear occurs from the outer point P toitimer point Q due to the

loss of material from the cutting tool tip causedabrasion between the tool and the
workpiece. Consequently, the radiysincreases. This gradual wear was simulated

by generating an ellipse on the contact edge betwetting insert tip and workpiece.
The gradual wear was approximated by increasingatiieis of the minor axis of the
ellipse as shown in Figure 3.21(b). Figure 3.22nshexamples of the gradual wear

generated on the cutting tool by increasing theen@asliusr, . The black shaded

region indicate the loss of tool material due te #rasion between the cutting tool

and the workpiece during machining.

N
[
o

Figure 3.22: Simulated cutting tool (a) unworn, gbadual wear by increase 1%rof
in the minor axis, (c) gradual wear by increased% in the minor axis, (d) gradual
wear by increase 3% of in the minor axis, (e) gradual wear by increaseot% in
the minor axis, (f) gradual wear by increase 5% @i the minor axis, (g) gradual
wear by increase 6% of in the minor axis, and (h) gradual wear by incee#% of
r. in the minor axis



Figure 3.23 shows the simulated workpiece profiteresponding to the
simulated worn tool generated in Figure 3.22. Tineukated worn cutting tools and
their surface profiles were constructed ushgTOCAD (Version 2013). For the
fresh cut shown in Figure 3.23(a) the turned serfafile similar to a very fine
circular thread was observed. As the 'tool wearteiases it was observed that the
peaks of the thread generated by the tool feedttebdcome higher. This is because
the steep groove on the tool nose due to the gradka leads to the sharp peaks on
the workpiece profile signalled by the higher vatdi€&; which is illustrated in Figure
3.24. This behaviour is in agreement with the etrotuof the tool wear and explains
the significant increase of the maximum peak-tdeyaheight R) of surface profile

(Pavel et al., 2005; Nabil and Mabrouk, 2006).

(@) (b) ()
(d) (e) (f)
(9) (h)

Figure 3.23: Simulated workpiece profile correspngdo the simulated worn tool
in Figure 3.22
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Profile of tool Feed direction

Unwor n tool

Worn tool

il

Figure 3.24: Tool nose area showing the maximunk@aalley heightR of
workpiece profile generated from worn and unwowl fwofile.

Chipping of cutting inserts was simulated by getiega a cavity or

depression on the cutting tool tip. Figure 3.25 destrates the generation of the

chipping on the tool nose region. The tool noseaheadiusr, between the point8

and Q, which lie at the ends of the major cutting edfiee simulation of chipping
was carried out by forming an irregularly shapeditgamanually and randomly on
the nose region cutting tool and the chipping imdestrated by removing a cavity or
depression (chipped area Afmnt’) from the sector subtending an andlat the
center. The successive simulated worn tools bypihgpwere obtained by enlarging
the chipped area @ mn¥. Figure 3.26 shows the simulated chipped tool wlike
chipping occurred at the early stage of cuttingrafen. The size of chipping is
enlarged for the successive chipped tool from Edlue6(a) to Figure 3.26(h). The

corresponding simulated workpiece profile is shawRigure 3.27.
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Tool profile

Nose regio

Enlargement of the cracking
from the preceding chipped
area ofA

Chipped are&

Figure 3.25: Formation of chipping by removingaaity from tool nose region.
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Figure 3.26: Simulated worn tool for chipping
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Simulated workpiece 1 Simulated workpiece 2 Simulated workpiece 3

(@)

(b) (c)
Simulated workpiece 4 Simulated workpiece 5 Simulated workpiece 6
(d) (e) (f)
Simulated workpiece 7 Simulated workpiece 8

(9) (h)

Figure 3.27: Simulated workpiece profile correspngdo the simulated
chipped tool in Figure 3.26

Figure 3.28 shows examples of replicated simulatedn tools by wear
(Figure 3.28(a)-(c)) and chipping (Figure 3.28(d)}(which demonstrated the
evolution of the simulated worn tool from graduakawx to chipping and their
corresponding workpiece profiles are presented iguré 3.29. To produce the
corresponding simulated workpiece profile resufredn gradual wear and chipping
(Figure 3.23, Figure 3.27 and Figure 3.29), thecedore of Stage 2 to Stage 6
shown in Figure 3.2 were repeated. The simulatedtpiece profiles were generated
by replicating the nose profile of simulated woutting tool by a feed distance of
0.4 mm for a length of 4 mm. The simulated workpigurofiles created by
AUTOCADwere exported to JPEG format and converted fronB Risgray-scale in
MATLAB The simulated workpiece profile in gray-scale gmavas detected when
the intensity values changes from 255 to O usinmgjoa scanning algorithm written

in MATLAB The algorithm start scanning from the first pigélthe first column. If
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the first pixel value is 0 the scanning beginshat $econd column. This operation is

repeated for all the columns to detect the conbdtine surface profile.

<

(d)

(
(<

(b)
(e)
(9) (h)

Figure 3.28: Simulated worn tool from evolutiongsddual wear to chipped tool

Simulated workpiece 1 Simulated workpiece 2 Simulated workpiece 3
(@) (b) (c)
Simulated workpiece 4 Simulated workpiece 5 Simulated workpiece 6
(d) (e) ()
Simulated workpiece 7 Simulated workpiece 8 Simulated workpiece 9

(h)

Figure 3.29: Simulated workpiece profile correspngdo the simulated worn tool
in Figure 3.28

(9)

83



The extracted simulated workpiece profile was egped as a function of
position along the simulated workpiece distance. V@ytical scanning along the
column k-coordinate), the-coordinate of the surface profi@®(x) was obtained by
extracting the y-coordinate of the pixel that hagalue in each column. The
coordinate of surface profil&(x) correspond to the scanned column. The simulated
workpiece profile in the spatial domain was themveted into the frequency
domain using FFT. Since the surface profile ofttireed part is essentially periodic

it can be expressed as a Fourier series given by:

G(X) = i[an cos@ny) + b, sin(@nx)] (3.21)

where G(X) is the workpiece profile height as a function wftancex, n is an integer,
« is the angular frequency, andb, are the coefficients of the cosine and sine

terms respectively. Thus , a finite Fourier transf@an be written as:
L

Y(@) = [G(X) exp(-jwxdx (3.22)
0

The resulting transformed workpiece profile gives an expression of the
frequency components that contribute to the workpiece profile wheacasm plot
of amplitude versus frequency is constructed. The amplitude¥ af is( the
magnitude of the complex number in the frequency domain andrissesged by the
vertical axis. The workpiece profile was extracted at discrete points ofieitea
length interval,L. For data taken at discrete points over a finite length intereal th

spectrum amplitude of the roughness profile is determined by thee@disFourier
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transform (DFT). The amplitude of the spectrum ofkpiece profileY(V,) at spatial

frequency oV, is given by (Wheeler and Ganiji, 2010):

o,

Y(V,)= szG(xn)e( L n=0,1,2,3, N1 (3.23)

wherej is a complex number defined lj)F\/——]. andV, represents a discrete spatial

frequency of the workpiece profile which expressbe number of roughness

wavelengths within a unit of leng#y. V, is given by:

(3.24)

The workpiece profile extracted from the 2-D imajevorkpiece was read
as RGB image when it was importedMATLAB and was converted into digitized
gray-scale image in spatial coordinatesx@ndy. Thus, the workpiece profile data

set consists oN values ofG(x) measured at equal intervals &% within a total
length of workpiece profild,, i.e.:

L L

L

(3.25)

The fundamental feed frequendy (mm?) represented in the spectrum analysis is

determined by% (Equation 3.3).
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The discrete surface profile data extracted fromicad scanning was loaded
into MATLAB The FFT algorithm in th#MIATLABwas used to compute the DFT of
the surface profil&s(x). MATLAB uses thdft command to determine the amplitude
of each spatial frequency components of a disaver&piece profile. The effects of
tool wear and chipping on the amplitude of fundarakefeed frequency and its

harmonic was investigated.

3.3.2 Offline experimental work

Preliminary study on tool chipping detection wasiea out offline whereby
the workpiece was removed from the turning maclioreimage acquisition. The
image of the edge of workpiece was captured offafter machining. Figure 3.30
shows the offline image acquisition configuratidhe DSLR camera was positioned
overhead to capture the edge profile clearly whth did of the backlighting system.
The camera was mounted on a linear translatiore stag tracks in order to move the

camera along the workpiece to capture the imagetsntmusly.

Machining experiments were carried on 50 mm diamgtéS304 stainless
steel workpiece of length 255 mm. An in-house fedigd cutting inserts made from
zirconia-toughened alumina (ZTA) + magnesium oxidlggO) was used to turn the
workpiece. The ceramic inserts consists of 79.2%valuminium oxide, 19.7 wt. %
yttria stabilized zirconia and 1.1 wt. % of maguoesioxide (Azhar et al., 2010). A
commercially available carbide tool (TNMG 160404 MFSandvik Ltd.) was used
because carbide insert has better fracture toughhas ceramic to prevent chipping
which could be used for studying the effect of gi@dwear on the amplitude of

fundamental feed frequency and its harmonics ire@aite experiment. Stainless
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steel was used instead of tool steel because eairsert was not suitable for cutting
tool steel as tool steel is harder compare to SUSinless steel (Tsao, 2002). The
machining was conducted using?enocho S9@onventional lathe machine under dry
cutting. Spindle rotational speed of 625 rpm, fea® of 0.4 mm/rev and 0.5 mm
depth of cut were used in the machining experimédiservation on the cutting tool

tips were carried out by means of a SEitgchi TM1000.

2 T B Bl B B B

! " .. USB cable connected
DLSR Camera fitted A -\ to compute
with closed up lens

Camera
stanc

Translation
stage and track

Light source
(Backlight;

Figure 3.30: Offline image acquisition configuratio

3.3.3 Simulation work on detection of tool chipping from surface profile

signature using FFT by considering the presence of tool-wor kpiece vibration

The generation of the simulated workpiece profite Section 3.3.1 only
considered the effects of tool nose geometry cheadge to tool wear and chipping

on the amplitude of fundamental feed frequency igmdharmonic. Tool-workpiece
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vibration was not taken into consideration. Howewefact various factors affect the
surface profile of turned workpiece. The dominattdrs are the tool geometry, feed
rate and chatter vibration. Thus, investigationdetection of tool chipping from the
simulated surface profile in the presence of tlod-¢arkpiece vibration results from
wear and chipping using FFT was carried out. Theukited workpiece profile
generated in Section 3.2.1 was applied in this ktimn. In Section 3.3.1, only the
amplitude of fundamental feed frequency and itsriwarics were used to correlate to
the cutting tool condition while other spatial fuemcies were excluded. Thus, an in-
process investigation on tool chipping detectianfrthe distribution of the spatial

frequencies along the workpiece profile signatuas warried out.

3.3.4 In-process experimental work

The experimental setup (image acquisition systemnfiguration during
turning operation) was same in the Section 3.2.2viith the addition of tool-
workpiece vibration measurement. Accelerometer asn®ytran 3055B27T were
mounted on the cutting tool holder in thgial, radial and tangential direction as
shown in Figure 3.31 in order to measure the tomkpiece vibration during turning
operation. The main interest of the study is nottenvibration signal. The purpose
of the tool-workpiece vibration measurement is lbbsarve the effect of tool chipping
on the vibration signal between the tool and thekpece as well as how does the

tool-workpiece vibration affects the surface pmafil

A turning machine Rinocho S9P was used to perform finish turning
experiments on AISI 01 Arne oil hardening tool steging aluminium oxide based

ceramic cutting insert with added zirconia (CNGA4@8T02520 CC620, Sandvik
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Coromant Ltd., Sweden). The cutting condition inlohg the spindle rotational speed,
feed rate and depth of cut were set as 950 rpmm@#&ev and 0.8 mm, respectively.
To obtain the actual surface profile from the inmg@é turned workpiece in both

offline and in-process experiments, steps in Sec8®.5 and Section 3.2.7 were

repeated before applying FFT analysis as summainizéa: Figure 3.32.

I mages capturing PC

Accder?maer
(tangential dir ecti

Accelerometer
(axial direction)

Accelerometer
(radial direction)

A
|
|
[

Accelerometer connection to
data acquisition equipment

Figure 3.31: In-process experiment setup with ¥ibremeasurement
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Detection of tool chipping using FFT
I

v v
Offline investigation In-process investigation
v v
Workpiece profile was Workpiece profile was
captured offline captured during turning
I [
v

Determine the scaling facto
(Section 3.2.5)

v

Extract the workpiece profile using moment
invariant method
(Section 3.2.7)

v
Apply FFT algorithm to convert the
workpiece profile from spatial domain to
frequency domain
|
v v
Offline investigation: In-process investigation:
Determine the amplitude of Observe the distribution of
fundamental feed frequency spatial frequencies of the
and its harmonics Workpiece profi]e

End

Figure 3.32: Flow chart for FFT analysis of actwalkpiece profile for offline and
in-process tool chipping detection in ceramic agttiool
Results obtained from Section 3.2.2 was used esntaol experiment with
the following cutting condition: rotational speefi®rpm, feed rate 0.4 mm/rev and
depth-of-cut 0.5 mm. The purpose of the control eexpent is to validate the
reliability of the proposed method on the detectafntool chipping in ceramic

cutting insert when one of the cutting conditionsvedianged. The cutting parameter
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was not our main concern in the study. The studyugoon the tool chipping
detection method during turning and the develomed ¢hipping detection method

could be applied no matter what cutting parameisesl in machining.

3.3.5 In-process detection of tool chipping from surface profile signature using

sub-window FFT

The major drawback of STFT is that analysis resutighly dependent on
window function. The attenuation effect in the womd function cause a loss in
spectral estimate. Therefore, in this study, a heub-window FFT method that
independent of window function is proposed. SimiarSTFT, sub-window FFT
uses small time-shifted window to approximate theetfrequency information,
providing bands of frequencies over time incremente procedure for computing
the sub-window FFT of a workpiece profile wavefois to divide a longer
workpiece profile waveform into shorter segmentsaédo the evaluation length of
4.0 mm according to ASME B46.1 (2009) standard tweth to compute the FFT of
the workpiece profile separately on each shortgmsmt. The time resolution of sub-

window FFT was determined by:

Sub-window time resolution =f\% (3.26)

wherew is the length of the windowf is feed rate an¥ is spindle rotational speed.
Statistical features from the sub-window FFT ofrkypoece profile was

extracted. Only amplitude of spatial frequency irmparticular spatial frequency

component provide information pertaining to failusé cutting tool. Average of
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amplitude spectrum in a specific spatial frequebeynd, y which is defined as

(Binsaeid et al., 2009):
1%

y==[YV,) (3.27)
ng

whereY(V,) is spectrum amplitude at a specific spatial fregyecomponents and

F., F,is the frequency range.

34  In-processdetection of tool chipping from workpiece profile signature

using CWT

The actual workpiece profile obtained from expenmnin Section 3.3 was
further analysed using CWT. This is because onelaak of FFT is that it is not
possible to simultaneously examine time (or spat&d frequency. That is, the
analysed surface profile can only be observed diwee (or spatial), or over
frequency. Sub-window FFT was proposed to solvetitme resolution problem.
However, the determination of window size is diffic and the time domain
resolution is highly dependent on the size of tledaw and machining parameters.

For this reason, wavelet transform was appliethigwork.

CWT allows for analyzing and displaying the ché&edstics of signal
waveform that are dependent on time and scale.efdrer;, CWT is potentially a
useful tool to detect the workpiece waveform witkotec spectral contents and
transient information content due to tool failurBurthermore, FFT is more
appropriate to be applied to stationary signalsredse CWT allows the components

of a non-stationary waveform to be analyzed.

92



Figure 3.33 shows the flow chart for CWT algorithmitten in MATLAB
applied in this study. Before a transform can bdopeed an appropriate wavelet
function must be selected. The shape of the wavalettion is one of the most
important considerations in the selection of a ©a€enerally, the shape of the

wavelet function should show similar characterssti the signal being analyzed.

Start

\ 4

Load theN points of surface
profile data

A 4
Choose an appropriate wavelet

A 4

=1, b=!

\4

Compute the inner product of each shifted
wavelet (translation) and the workpiece profile

v

a=\?
No
Yes
Dilate the wavelet based on the specifi¢d
scale
b=max
No
Yes

Plot the scalogram

Stop

Figure 3.33: Flow chart for CWT algorithm
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Several wavelets have been applied in previouksvtr study the surface
roughness characterization including Morlet (Jossal., 2002; Grzesik and Brol,
2009), Mexican hat (Grzesik and Brol, 2009), Datiies (Chen et al., 1999) etc. In
this study, the Morlet wavelet was chosen which ekcellent in frequency
distribution analysis. Further, the Morlet wavethets been consistently used in the
previous work for surface profile analysis, thusking it appropriate for interpreting

the surface profile result.

In the next stage, the inner product of wavelad #re workpiece profile
waveform was computed. The wavelet transform per$ordecomposition of a
waveform into a wavelet of functions localized iothb time and frequency, defined

by Leavey et al. (2003):

CWT(a b) = j G(tyw, (H)dt (3.28)

where CWT(a,b) is the wavelet coefficieniG t (s the workpiece profile in time
domain,y, ,(t)is the wavelet basisa andb are denoted as dilation (scaling) and
translation (time) factors, respectively, anhdepresents the complex conjugation.
The translation and scaling operations on mothesmleay ¢ ) constructs a family of

function as:

R0 =%[ﬂ] (3.29)

a

The analysing wavelet applied in this study, Marlet wavelet is shown in
Figure 3.34(a). The scaling or dilation controle thidth of the wavelet while the

translation parameter controls the location of wavelet. The interpretation of
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Equation 3.29 is that the size of the wavelet fiomciy, , (t) varies with the dilation

or scaling. Wavelet transform usually starts byngsiow scale wavelet functions
progressing to higher scales. When the scale isesethe wavelet is stretched in the
horizontal x-axis direction while it is squashed in the veltigeaxis direction as

shown in Figure 3.34(b).

(a)
(b) High scale, stretched wavelet

A W \/\/V\/

1 B — [

1
il |
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Q 1 i A I I i i i i i |
D A\ 7\ A A\ A 7\ Al A I a {
QJ 1 “‘ \ [ \“ “/‘ \“ /’ \ [ “(‘ ) - ‘/ \“ [ “r‘
m )\ /A \ /o In\ [\ /
5. ‘ / \ “'\ \\ / \ ,J ) \
(@] - \“\_, Hx f ‘,_,‘r
8
g, Wavelet surface profile

Translation/ shifting increases . - >

Low scale, compressed wavelet

Figure 3.34: (a) Morlet wavelet, and (b) waveledlgsis overview
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The analyzing wavelet is placed at the beginnihghe signal =0). The
wavelet is then moved by a small increment of pirelhe positive time direction.
The wavelet is multiplied by the workpiece profieaveform and integrated to
calculate a new wavelet coefficient. This processantinued until the end of the
workpiece profile is reached. At this point thelsda increased, the wavelet being
stretched and dilated, and the wavelet is returttedhe starting point of the

workpiece profile waveform to calculate the new elav coefficient.

This transformation is repeated until the workpigmofile waveform has
been analyzed for all the scales to produce tharsgwf the CWT coefficients and
form a scalogram as illustrated in Figure 3.35. $ta&es over which to compute the
CWT could be any real positive numbers. For DWT gbale are sampled in power
of two (dyadic sampling). In this study, the detaration of scale range in the CWT

is based on the dyadic sampling, (Z, 2,... etc).

A 3 cwra)  cwta)  cwT(Ba) CWT(b-23)  CWT(b-1a)  CWT(b,a)

a-1 | cwT(1,a-1) CwT(2,a-1) CWT(3,a-1) CWT(b-2,a-1) CWT(b-1,a-1) CWT(b,a-1)
(7]
Q

D a2 | cWiLa2) CWIRa2) CWTGa-2) CWT(b-2,3-2)  CWT(b-1,a-2) CWT(b,a-2)
()
S
£
Q@

S 3| cwrw3)  cwre3)  cwrEa) CWT(b-23)  CWT(b-1,3)  CWT(b,3)
0

2| cowt2)  cwr22)  cwTE2) CWT(b-22)  CWT(b-12)  CWT(b,2)

1| cwti,1)  cwT1)  CwTE1) CWT(b-2,1) CWT(b-1,1)  CWT(b,1)

1 2 3 b-2 b-1 b

v

Translation increases

Figure 3.35: Wavelet analysis to produce scalogram
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The CWT allows the localization of frequency comenots in the analyzed
workpiece profile. The CWT performs a comparisonhaf wavelet to the workpiece
profile waveform. Large CWT coefficients at thadrslation and scale indicate that
high degree of similarity exists between the watvilaction and workpiece profile
waveform. If the wavelet function and workpiece fpeoare dissimilar, small CWT
coefficients are found. Therefore, the waveletgfarm is a measure of how much
the workpiece profile waveform resembles the wavatea particular position and

scale.

The scale is usually correlated to the frequeridh® wavelet function. Scale
is inversely proportional to the frequency. Lowlsca usually associated with the
most tightly packed wavelet (high frequency) ancewersa. This wavelet transform
process provides an indication of the frequencyteras of the workpiece profile
waveform. A large CWT coefficients at a particusaale implies the presence of a
particular frequency because an approximate relstip exists between the scale

and the frequency.

35  Chapter summary

In this chapter, the simulation method and expenital method to detect tool
chipping in ceramic cutting inserts based on thH2 ilaages of workpiece profile in
turning are outlined. The simulated workpiece pesfiwith the presence of the
vibration due to wear and chipping were generatesrder to demonstrate the
application of ACF in detection of tool chippingdeal on the workpiece profile
signature. In-process experiment was conductedvestigate the capability of the

proposed ACF method for detecting the tool chippmgeramic cutting insert from
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the workpiece profile signature. The results ol#difrom experiments was used to

compare the results from simulations which areguresl in the next chapter.

Simulation work was conducted to investigate tlapability of the FFT
method in tool chipping detection based on the wiade profile signature. An
offline preliminary experimental work was carriedtdo investigate how amplitude
of fundamental feed frequency of the workpiece ifgand its harmonics could be
used to correlate with the tool chipping while athpatial frequencies were ignored.
An in-process experiment on tool chipping detectizas conducted to investigate
the effect of tool chipping on the distribution gpatial frequencies of workpiece
profile when the workpiece profile in spatial domavas transformed into frequency
domain. The results of experiments and simulatimese discussed in the next

chapter.

The sub-window FFT method was introduced to resdhe limitation in
STFT which is highly dependent of window functi®&®WT method was applied to
overcome the limitation of the sub-window FFT methas CWT allows to
decompose the workpiece profile in time domain afidquency domain
simultaneously. The results and discussions as aglthe comparison for both

methods are detailed out as well in the next chhapte
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CHAPTER FOUR

RESULTSAND DISCUSSIONS

4.1 Introduction

The results and discussions of the research werkr@sented in this chapter.
Section 4.2 presents the results of simulationhendetection of tool chipping from
workpiece profile signature using ACF followed bydacussion of the results
obtained from an in-process experiment. The armlgéi the effect of the tool
chipping on the workpiece surface using ACF is used. The findings obtained

from the simulation and experiments are compared.

Section 4.3 discusses the results of the simulatiorks on detection of the
tool chipping from the workpiece profile signatwsing FFT are compared with the
findings obtained from the experiments. The eftéddbol chipping on the amplitude
of spatial frequencies of workpiece profile is etpéd. In addition, the results on
detection of onset tool chipping in ceramic cuttingert using proposed sub-window

FFT is also discussed.

In Section 4.4, discussions on the capabilityhef CWT for detecting the tool
chipping in ceramic cutting insert based on the kpmce profile signature is
presented. Tool chipping detection methods by usuigwindow FFT and CWT are
compared so that a better method in terms of tlilgyabf detecting the onset tool
failure by chipping can be determined. Finally, thepter summary is presented in

the Section 4.5.
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4.2  In-process detection of chipping in ceramic cutting insert based on the

surface profile signatureusing ACF

In this section, the outcomes of simulation (Set#.2.1) and experimental
work (Section 4.2.2) on the detection of tool clgpfrom workpiece profile
signature using ACF are discussed in details. Tdmparison for results obtained
from simulation and experimental work were made d&ne effect of the tool

chipping on the workpiece profile using ACF is athscussed.

421 Simulation results

Simulated workpiece profiles were used to demotestiraw the ACF can be
applied to identify subtle changes in the turnedkpiece profile caused by tool
chipping. Figure 4.1(a)(i) shows the simulated idearkpiece profile generated at
tool nose radius of 0.8 mm and a feed rate of Gl par revolution. The peak of the
ACF decreases uniformly and linearly as the lagadise increases due to the
periodic workpiece profile as shown in Figure 4)@ila When the cutting tool
undergoes gradual wear, the peak of ACF show htdligviation from the ideal plot
(without vibration) and the deviation increasessaswn in Figure 4.1(b)(ii)) and
Figure 4.1(c)(ii). This is because the amplitudedislocation in workpiece results

from the tool and workpiece vibration generatedmpumachining increases.

When a tool has chipped the peaks of the ACF dsereapidly as the lag
distance increases as shown in Figures 4.1(dg){()i( The plot of the peaks also
deviates significantly from the envelope of theogotrelation peaks for a surface

produced by an ideal simulated (chipping-free) .tadtis behavior is due to the
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random variation in the workpiece profile that lésdrom the increased vibration

after tool chipping. When the randomness of thefaser profile increases the

deviation becomes more prominent. Figure 4.1(fghpws a rapid decline in the

peak of ACF as the lag distance increases dueet@tbsence of waviness in the

surface profile. The undulations of the surface imass in the simulated workpiece

profile leads to the profile is lack of autocorteda with increasing lag distance.
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Figure 4.1: (a)(i) Ideal workpiece profile and @Qrresponding peak of ACF plot;
(b)(i) simulated surface profile with increasindpsation amplitudes by 5% peak-to-
valley height of simulated ideal workpiece profiied (ii) corresponding peak of
ACF plot; (c)(i) simulated surface profile with m@sing vibration amplitudes by 10%

peak-to-valley profile height of simulated idealnkpiece profile and (ii)

corresponding peak of ACF plot (ii); (d)(i) simuddtsurface profile with random
vibration with 5 times higher magnitude as in (bdl &ii) corresponding peak of ACF
plot; (e)(i) simulated surface profile with randambration with 10 times higher
magnitude as in (b) and (ii) corresponding peak©F plot; and (f) simulated
surface profile with presence of waviness due ¢ottiol-workpiece vibration by 10
times higher vibration magnitude as in (b) andddjresponding peak of ACF plot

(Continued)
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4.2.2 Experimental results

Figures 4.2 shows the peaks of the ACF againstathelistance at different
rotational angles of the workpiece. Based on theegment results in the Figures
4.2(a) and Figure 4.2(b), it can be noticed that éhvelope of the peaks of ACF
decreased gradually with the lag distance alongmbikpiece profile. The trends of
the peak of the ACF are almost the same at diffemation angles of the workpiece.
Figure 4.2(c), however, shows a rapid decreasédnenpeak of ACF between lag
distances of 0 mm to 8 mm for the cutting interkatween 11.1 s to 16.5 s. In
Figures 4.2(d) to Figure 4.2(f), the envelopes e peak of ACF for workpiece
profile at different rotational angles deviate dsiigantly from one another.
Simulation and experiment results show that AC€&ajsable of detecting the random
features buried in the surface profile by determgnthe correlation coefficient
between the pairs of shifted and un-shifted surfacdile at a separation distance
called lag distance (each lag is equivalent to Xelpvalue) regardless of the total

length of workpiece profile.

Figures 4.3(a) and Figure 4.3(b) show the SEM &sagf the cutting inserts
after the machining operation for the peak of AQd&t ;n Figure 4.2(b) and Figure
4.2(c), respectively. As seen in Figures 4.3(ajasibn grooves are formed on the
flank face of the cutting insert due to the toot amorkpiece abrasion in the early
machining time interval of 5.6 s to 11.0 s. Figws8(b) shows chipping that
appeared on the cutting edge of the ceramic inafigs machining time duration of
16.5 s. Figure 4.4 shows a 3-D view of the cutidge usincflicona InfiniteFocus
where the chipping is clearly visible. The chippindrigure 4.4 occurred on the nose

area which falls in the flank wear land as showRigure 2.3.
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Figure 4.3 SEM micrographs of aluminium oxide cerarcutting insert afte
machining (a) before chippir and(b) after chipping

Figure 4.4: 3D observation of thchipping onthe cutting edge bAlicona Infinite
Focus
In the early machining stage tceramic cutting insert produces a peric
profile with almost constant wavelength along therkpiece. The pe&«to-valley
height of the surface roughness profile is appratety constant up to a machini

time of 11 s (at various roton angles) as shawin Figure 4.5 and Figure <.
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Figure 4.5: Extracted surface roughness profiledf®sD workpiece images at
different rotational angles (af,Qb) 60, (c) 126, (d) 180, (e) 246, and (f) 308in
cutting time interval of 0-5.5 s.
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Figure 4.6: Extracted surface roughness profilenf®sD workpiece images at
different rotational angles (af,qb) 60, (c) 120, (d) 180, (e) 246, and (f) 300in
cutting time interval of 5.6-11.0 s.
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Figure 4.7 shos the zoomed in B workpiece profiles and the
corresponding staice roughness profiles bef tool chipping.The peaks of thACF
for a workpiece profile generated from an unwormpgressiely worn cutting too
decreases gradually as a function of lag distandeage almost identical at differe
rotational angles as shown in Figure 4.2(a) and Figu2(b). This is due to th
uniform and repeatable profile which shows goodlicapon of he workpiece

profiles as the lag distance increa
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Figure 4.7: Zoomed view 01-D images of the workpiegarofile and th

corresponding extracted surface roughness pradiiere tool chippin

Figure 4.8 to Figure 4.11 show the surface profisselected cuttin
intervals of time and corresponding workpiece peofo the peak of ACF plot i
Figure 4.2(c) to Figure 4.2 respectively.The sharp decrease and the signific
deviation in the peaks of ttACF plots at different rotathal angles observed

Figure 4.2(c) to Figure 4(f) areattributed to the variation in the workpiece pr®
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caused by the tool chipping. Figure 4.12 illussatee zoomed view of 2-D images
of the workpiece profile and their correspondingrasted surface roughness profile
after tool chipping. After tool chipping the suréamughness profiles do not repeat
periodically compared to the profiles at the initiatting stages. The peak-to-valley

heights of the surface roughness profile changgutarly.

When the turning of workpiece was continued byhgghe chipped cutting
insert this could lead to continuous failure of thgting insert by tool chipping
because the workpiece profile generated in theegjuent passes show significant
and distinct undulations of the surface wavinessdiffierent rotational angles
observed in Figure 4.8 to Figure 4.11. As the cé&rdool material is brittle and once
it has been chipped or broken, the bonding betweermgrains are weakened due to
the mis-orientation of the neighbouring grains &hgtchipping. Continuous tool
chipping could be the result of propagation of pimg initiated at the edge of the
cutting insert under the action of cyclic load dadhe instability of cutting process

caused by the tool-chip abrasion.

When the cutting tool has chipped or continue hip dts effects on the
cutting force variation can sometime cause seviam@ton during machining. This
is because the chipped cutting tool and workpiem&act area increases and this
causes the cutting force to increase and in tueitethe tool and workpiece to
vibrate during machining. Consequently, the vilmatbetween the chipped cutting
tool and the workpiece leads to the tool movemeith wespect to the workpiece

which become unstable during cutting operation.
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Figure 4.8: Extracted surface roughness profiledf®sD workpiece images at
different rotational angles (af,Qb) 60, (c) 126, (d) 180, (e) 246, and (f) 308in
cutting time interval of 11.1-16.5s
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Figure 4.9: Extracted surface roughness profilenf®D workpiece images at
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cutting time interval of 16.6-22.0 s
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Figure 4.10: Extracted surface roughness profdenfR-D workpiece images at
different rotational angles (af,Qb) 60, (c) 126, (d) 180, (e) 246, and (f) 308in
cutting time interval of 22.1-27.5 s
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Figure 4.12 Zoomed view of -D images of the workpiece profile and
corresponding extracted surface roughness prdiée @ol chipping

According tc Boryczko (2011)unstable tool movemenresults in non-
uniform distribution of the height of irregularifeand wavelengths in the transve
direction in the workpiece ofiles. The effect of chipped tool and workpie
vibrationleads to th dislocation in workpiece profile and the dislocatiof the tool
edge perpendicular to the workpiece results froemvibbration generated cing its
successive revolutions. Thirregular profile height is observed due to
inconsistent tool movement whether the tool apgreacor moves away from tl
workpiece.The resulting profile differs from the theoretigabfile to a significan
extent due to the unpredictable interac between the chipped tool and 1

workpiece.

Since the ustable cutting process arising from the chippedl taond

workpiece contact is not absolutely predictableydoan features appear in t
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workpiece profiles and the workpiece profile diffstom one another at various
rotation angles as observed in Figure 4.8 to Figuté. Due to this reason, the sharp
decrease and the significant deviation in the pedkthe ACF plots at different
rotational angles were observed. The trends ofptrek of ACF obtained from the
experiments before and after tool chipping are isbeist with the results from the
simulation study. The peaks of ACF obtained in élperiments (Figure 4.2(c)-(f))
decrease rapidly in the presence of tool-workpideation and explicit surface

waviness appear after tool chipping as observédarsimulation.

The sum square of deviation (SSD) from the peakAGF of the ideal
workpiece profile for each workpiece rotation angkes determined to correlate with
the tool condition. Figure 4.13 shows the ACF fosimulated ideal workpiece
profile with a feed of 0.4 mm and length equalhe tctual length of image of the
workpiece profile. As seen in Figure 4.13, the A€Fnaximum and equal to 1 for
zero spatial separatiorr € 0) and then decays gradually with increase & Ity
distance. As the lag distance increases the ctoeldiminishes because the original
profile and shifted profile have increasingly sraalbverlapping areas. The slope and
the rate of decrement of the peak of ACF plot arewkn as indicators of randomness
of the surface. The ACF attains a peak when theidag multiple of wavelength

which means that the surface replicates itselfsggadial separation of wavelength.

The peak of ACF and the lag distance were cda@élasing Pearsonisvalue
in linear regression. Pearson's a measure of the strength of the linear retatip
between two variables. Pearson'sf approximately -1 indicates that a perfect but
negative linear relationship exists between thekpdaACF and lag distance. The

residual sum-of-square for the regression was tsatktermine the coefficient of
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determination ). A high value of adjusted?®> shows a significant linear
relationship between the peaks of ACF and lag uigta The linear relationship
between the peak of ACF and distance is used asnd@&t estimate the tool state by
determining the SSD from the peak of ACF of idealkpiece profiles as shown in

Figure 4.1(d) to Figure 4.1(f).

Equation y=a+b*
Weight No Weighting
Residual Sum of 6.13578E-4
1.2 Squares
1 Pearson's r -0.99994
1.0 3o, Adj. R-Square 0.99988
i HHH"'HL' Value Standard Error
0.8 4 L'L'HHN Autocorrelation Intercept 1.00761 8.74465E-4
""~|L"\"\1 coeffcient Slope -0.04508 6.72371E-5
= T -
S 0.6 Mg
o e
Q 4 e
&g s
= 0.4 -
=} J
o 02
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Figure 4.13: Peak of ACF of the simulated idealkpagce profile against with the
lag distance.

A 3-D plot of the SSD from ideal workpiece pre8lat different workpiece
rotation angles within different cutting interval presented in Figure 4.14. As seen
in this figure there is no obvious change in th®$3lue before cutting time of 11.1
s. This indicates that the machined profiles hagedgreplication and are highly
correlated at different rotational angles of thekpiece. The SSD increased sharply

after tool chipping at cutting time interval of 11s to 16.5 s. This is due to the non-
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uniform and abrupt changes in the workpiece pragfdeerated at different workpiece
rotation angles.

0-55s
56-11.0s
11.1-16.5s
16.6-22.0 s
22.1-275s
27.6-33.0 s

@

a8
error

=)
Sum square of.

0-55s
56-11.0s
11.1-165s
16.6-22.0 s
22.1-275s
27.6-33.0 s

(b)

Figure 4.14: 3-D bar plot of SSD from the ACF péaikthe ideal workpiece
profile:(a) front view, and (b) back view.
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A small SSD value was again observed at cuttimg interval of 16.6-22.0 s.
This is because when the chipped cutting tool p@séioned and continues to move
it touches the workpiece again thus closing thetgagpntinue the cutting. However,
the SSD value is generally high after tool chippamgl has significant fluctuation at
different cutting time intervals. The SSD of thek®f ACF of the workpiece profile
with different workpiece rotation angles also st&gnificant fluctuation at the onset
of cutting time of 11.1 s. It seems reasonablexfmeet the fluctuation as the surface
roughness profiles shown in Figure 4.8 to Figufiel £hange in various ways as the
dislocation profile resulting from the tool-workpe vibration generated during

machining when the tool chipping or more severgpinig of tool insert occurs.

When the experiment was repeated similar resulte i@nd as shown in
Figure 4.15. Once again, the envelope of the peakse ACF was found to deviate
significantly from one another at different angleken the tool has chipped as

evident in Figure 4.15(b).
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Figure 4.15: ACF plot of workpiece profile generhtyy aluminium oxide ceramic
cutting insert at different rotational angles fepeat experiment (a) before tool
chipping, and (b) after tool chipping
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4.3  Detection of tool chippingin ceramic cutting insert from the surface

profile signatureusing FFT

In this section, the results of using FFT methmdnalyze the surface profile
to detect tool chipping are presented. Two simaoitativorks on detection of tool
chipping from surface profile signature using FRTdonsidering (i) the changes of
the tool nose, and (ii) the presence of the toalkpi@ce vibration were conducted.
The results of each simulation work is presentatifahowed by the results obtained
from the experiments. The effect of tool chipping the amplitude of spatial
frequencies of the workpiece profile is discussHtke results on detection of onset
tool chipping in ceramic cutting insert using prepd sub-window FFT method is

presented in the final part of this section.

4.3.1 Simulation results on detection of tool chipping from surface profile

signature using FFT by considering the changes of the tool nose

Figure 4.16 presents the example of the spectmaiysis of the simulated
ideal surface profile with feed rate of 0.4 mm/ré&s seen in the figure a strong
fundamental feed frequency;) of 2.5 mm* (1/0.4 mm) appears at a wavelength
equal to the feed. Under ideal conditions the serfaughness profile is generated
by the repetition of the tool tip profile at intatg of feed per revolution. This is
based on the assumption that the tool is idealgtipmed relative to the workpiece.
Since the ideal surface produced by the tool m@getiodic several harmonics given
by m\i wherem= 2, 3, 4.... appear together with the fundamentd feequency;.

As seen in Figure 4.16 the fundamental feed frequesnd its harmonics are
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prominent. Thus, the amplitude of the fundamergatffrequency and its harmonics

were extracted to correlate with the cutting tamdition.
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Figure 4.16: (a) Simulated ideal workpiece profded (b) FFT analysis for

simulated ideal workpiece profile

Figure 4.17 illustrates the evolution of amplituoiethe fundamental feed

frequency and its harmonics for the simulated gahdiear on cutting tool in Figure

3.23 (represented by % increase of nose radiusinornaxis length). It was noted

that the amplitude of fundamental feed frequenayaases with the increase of

gradual wear. The second and third harmonics aldorental feed frequency did not

show any significant trend.
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Figure 4.17: Variation of the amplitude of fundarta feed frequency, second
harmonic and third harmonic of the simulated swfafile for gradual wear

Figure 4.18 shows simulation results where thepihg occurred at the early
stage of cutting operation as shown in Figure 3l2¢an be noted from Figure 4.18
the spectrum amplitude of fundamental feed frequestart fluctuating from
beginning of the simulated chipped cutting tool.aikg the second and third
harmonics of fundamental feed frequency did notashay significant trend. Since
the fundamental feed frequency is predominant wabl geometry in the FFT
analysis, the fundamental feed frequency was ersgléy correlate with the cutting
tool condition. Figure 4.19 presents the evolutioh the amplitude of the
fundamental feed frequency for the correspondingukited workpiece profile due
to gradual wear and chipping on cutting tool shaakigure 3.29. As seen in Figure
4.19 the amplitude of the fundamental feed frequancreased uniformly during

gradual wear and starts fluctuating once chippiccuoed.
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Figure 4.19: Variation of the amplitude of fundarnaeed frequency of the
simulated surface profile from gradual wear to ping
As shown in Figure 4.20, when the cutting tool blagpped, it was observed
that the R decreased due to the depth of cut reduced. Whenctitting tool
undergoes continuous chipping on the steep grobtleedool nose, this leads to the

workpiece profile signalled by the higher valueRyf This behaviour explains the
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significant fluctuations of thdR of surface profile and consequently leads to the

fluctuations in amplitude of the fundamental feeztjiency.

Profi)e of tool Feed direction

/7
Wor kpiec ngeneraledb//f(/////////////m/
unwor n tool Rt generated by R, generated by

chipped tool continuous chipped tool

Figure 4.20: Tool nose area showing the maximunkpeaalley heightR; of
workpiece profile generated from unworn and chipjoed profile

4.3.2 Resultsof offline experiment

An offline preliminary study on detecting the tamlipping in ceramic insert
was conducted. A commercially available carbiddirmgttool (TNMG 160404 MF —
Sandvik Ltd.) was used for studying the effect cddyial wear on the amplitude of
fundamental feed frequency and its harmonics iepaate experiment. The carbide
cutting insert was observed using a SEM after nmaghias shown in Figure 4.21. It
can be seen that there was no chipping or breakadfee edge of cutting insert after
eight minutes of machining. Thus, the wear pattemnnthe carbide insert can be

considered as gradual wear which mainly due t@brasion.
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Before machining

oz
|
(a) (b)

Figure 4.21: SEM observation carbide cutting insert before and after machi
(a) isometric view, and (b) top view.

Figure 4.22shows the evolutn of the amplitude ¢ fundamental feed
frequency and its harmonics as a function of cgttime forthe carbide cutting
insert. Figure 4.22(a) shows the amplitude of the fundaalefged frequency i
constant as the cutting tool undergoes minimum watnin a short cutting duratic
of 76.3 seconds. Gradual wear progresses slowdyeftbre to demonstrate teffect
of gradual weapn th¢ amplitude of fundamental feedefijuency and its harmoni
the workpiece profile images were captured at ek & each cutting interval of
minutes. The resulh Figure 4.22(b) shows that t amplitude ofthe feed frequency
increased gradually ith tool wearfor a cutting duration of 8 minutes. As seer
Figure 4.22, here was no distinctive trend observed in the harosool the feed
fundamental frequenciThese results agree closely with those from theulsition

study shown in the Figure 4..
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Figure 4.22: Variation of the amplitude of fundarnaheed frequency, second
harmonic and third harmonic of actual surface jpedfiom turning stainless steel
work piece using carbide insert in (a) cutting ticheation of 76.3 s, and (b) cutting

time duration of 8 minutes
Figure 4.23 shows an example of zoomed in spectanalysis for actual
surface profile obtained from experiment using wilzutting insert. It can be found
that the amplitude spectrum for the workpiece sfemachined using the carbide

insert exhibits a strong fundamental feed frequenfcg.538 mrt and frequencies

that are nearly multiplies of the fundamental féedjuency, i.e. harmonics. There is
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always a constant fundamental feed frequency fgrcatting conditions because the
surface profile along the axis of the workpiecegenerated by the tool geometry
forming one feed groove for each rotation of thekpeece. The fundamental feed
frequencyV; is represented in FFT analysis as described in tieoua.3, wherd is
the tool feed. Since the feed used in this expaerimas 0.4 mm a fundamental feed
frequency of 2.5 mimin an ideal workpiece profile is expected as seeRigure
4.16. The deviation between the theoretical funddaideed frequency (2.5 mip
and the actual (2.538 mthis due to the inconstancies in tool movementgtgect

rotation or uneven movement of the tool feed systethe lathe.
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Figure 4.23: Example of FFT analysis for actuafae profile obtained from
the experiment using carbide cutting insert
The profile of the turned surface was analyzedhimrtto better understand
increase in surface roughness is due to the inere®ol wear. Figure 4.24 shows
the images of workpiece profile and the roughnasdile extracted from the 2-D
images of the edge of workpiece. From the figurejas observed that for fresh tool
the workpiece profile of the turned surface closelgembles the ideal geometrical

shape of the tool as in the simulated turning pecés seen in the figure, the
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surface roughness profile is repeg periodically as expected and the length of ¢

cycle (wavelengthis nearly equal to the machining feed per revotu{i@< mm).

(a) Cutting time: 0.14 m
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Figure 4.24: 2D images of the workpiece profile from turning waarbide cutting
insert andheir corresponding surface roughness pr at cutting time duration of (e
8.55s,(b)50.9s,and (c) 84.8 s
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The maximum peak-to-valley height of the surfacefifg (R), which is the
vertical distance between the highest peak and lolnest valley within the
evaluation length, was determined from the imageth® workpiece profile. The
changes iR for the roughness profile are shown in Figure 4% amplitude of
peak-to-valley of the surface profile at the idigatting stage is lower and increased
with cutting time. Grzesik and Zalisz (2008) andn&lea et al. (2002) reported
similar findings that when tool wear increases, e maximum peak-to-valley of
the roughness profile also increased. They expaihat the increase &; is due to
the peak of the workpiece profile tend to be higmeaximum height of the surface

profile peak Ry) increases) as the tool wear increases.
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Figure 4.25: Peak-to-valley roughness param&gmag a function of cutting time for
carbide insert

An in-housed fabricated ceramic cutting inserto@nia-toughened alumina

(ZTA) + magnesium oxide (MgO)) was used for studythe effect of chipping on

the amplitude of fundamental feed frequency of \pake profile and its harmonics.

From the SEM images shown in Figure 4.26, it waseoked that the ceramic cutting
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insert chipped severelon the rake facat the end of the turning process. Si
ceramic is a brittle mater, friction between the tookorkpiece interfaces caus
premature toofailure by chippini instead of gradualvear. The detection of the
failure modes in ceramic cutting insert is impottaimce chipping may occlearly

during the turning.

Before machining

TM-1000_1554 2013/09/26  11:28 x100 1mm  TM-1000_1450 2013/07/11  10:34

After machining
ey

TM-1000_1559 2013/10/01 15:25 x60 1mm TM-1000_1556 2013/10/01 1452

(@) (b)

Figure 4.26 SEM cbservation of the ceramic cutting inskefore and afte
machining (a)sometric view, angb) top viev

Accordingto the result shown in Figure 4.27, it can be dbai there was a
drop to nearly 14.1% in amplitude of fundamental fieequency and was remain
stable from 17.0 s to 42.4 s. After 42.4 s. the laoge of fundamental fee
frequency fluctuated significantly, the trend wasady upward and downward
between 19.7%ral 27.9% Figure 4.28 shows the R-images of workpiece profil

at selected intervals c«cuttingtime and their corresponding roughness profileg
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It can be observed that the workpiece profile atehd of cutting process (cutting
time of 84.8 s) has irregular peak-to-valley hesgtdmpared to the profile from the
fresh cut at cutting time of 8.5 s due to the sewdripping of the cutting tool edge.
Figure 4.28(a) shows that the surface profile wasecto the theoretical profile at the
initial cutting stage at 8.5 s. However, when sevehipping has taken place the

amplitude of roughness profile is not uniform Hutfuates as seen in Figure 4.28(c).

Figure 4.29 shows that there is significant flatton in the peak-to-valley
height of surface profile which explains the fluaion in the amplitude of
fundamental feed frequency in cutting time intervdl2.4 s to 84.8 s was observed.
Ideally, when the cutting tool edge is still intaélse surface profile of the workpiece
is predominantly affected by the feed. When theeedf cutting insert has been
damaged by chipping the surface of workpiece woll be affected by the tool nose

and the feed only but many other influencing festweill be introduced.

21.3% 26.7%
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Figure 4.27: Variation of the amplitude of fundarnaeed frequency, second
harmonic and third harmonic of actual surface jpedfiom turning stainless steel
workpiece using ceramic insert.
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Figure 4.28: 2D images of the edge of workpiece from turning vaginamic cutting
insert and their corresponding surface roughnesfilg at cutting time duration of (e
8.55s,(b)50.9s,and (c) 84.8 s
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Figure 4.29: Peak-to-valley roughness param&gmag a function of cutting time for
ceramic insert.

Previous experimental work (Lan & Dornfeld, 198&howed that cutting
forces increase suddenly due to tool fragmentsgosiueezed between the tool and
workpiece when tool is chipped, and subsequenttyirtee The level of cutting force
may increase or decrease due to chipping of theagubol depending on the degree
and type of chipping. The force level change affter cutting tool chipped off is
caused by a loss of the depth of cut and accompgrdecrease in the chip load on
the tool. Thus the machining process become urmsiblthe cutting forces excites
the tool and workpiece to vibrate significantly whée cutting tool has chipped. The
effect of the relative tool and workpiece vibratid®ads to instability in the
machining process and determine whether the tdsldeeper or shallower from the
surface of workpiece. Consequently the peak-taeyaleight of the workpiece
profile fluctuates. Oraby and Alaskari (2008) alsported that consistent correlation
was found between surface roughness and cuttingg.fdvhen the cutting forces
fluctuate the surface roughness of the work mdtalsa fluctuated, thus leading to a

sudden drop and increase in the amplitude of thddmental feed frequency.
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4.3.3 Simulation results on detection of tool chipping from surface profile

signature using FFT by considering the presence of tool-wor kpiece vibration

Results of simulation study on the detection afl tchipping from surface
profile signature in Section 4.3.1 only considetteel change on the tool nose profile
due to gradual wear and chipping. Vibration betwientool and the workpiece was
excluded. Since the simulated workpiece profiledpieed by the worn and chipped
tool are periodic, the fundamental feed frequesgyredominant and is accompanied
with small amplitude spatial frequencies at harrosnof the fundamental feed
frequency. Thus, the offline study only considetteel amplitude of fundamental feed
frequencies and its harmonics, while the amplitudesther frequencies were not

investigated.

When the workpiece profile was turned with a woutting tool caused by
gradual wear, a new spatial frequency of aroundnb6* was found as shown in
Figure 4.30(a)(ii)-(b)(ii). This is due to the peese of irregularities in the workpiece
profile due to a regular vibration between theingttool and the workpiece. When a
tool has chipped the surface profile is accomparbgdrandom dislocation of
vibration as shown in Figure 4.30(c)(i)-(d)(i). Rrothe corresponding FFT plot
shown in Figure 4.30(c)(ii)-(d)(ii) little ripples frequencies was observed due to
the sudden changes from one frequency componeamidtiher due to the randomness
of the dislocation in surface profile. Presenceaha waviness in surface profile as
shown in Figure 4.30(e)(i) results in a conspiculous spatial frequency as shown in

Figure 4.30(e)(ii).

The amplitude of fundamental feed frequency amoat equal because the
periodic simulated workpiece profile with wavelemgif 0.4 mm contributes a strong

fundamental feed frequency of 2.5 MmThere was no obvious impact of the
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dislocation of workpiece profile due to vibration periodic ideal surface profile at
wavelength of feed. Therefore, the amplitude offtmelamental feed frequency was
approximately same. The dislocation in workpiea&fif@ due to regular and random
tool-workpiece vibration with the wavelength thatt mqual to feed distance excites

other spatial frequencies that beyond the fundaahéstd frequency.
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Figure 4.30: (a)(i) Simulated surface profile wirtisreasing vibration amplitudes by
5% peak-to-valley height of simulated ideal work@grofile and (ii) corresponding
FFT plot; (b)(i) simulated surface profile with neasing vibration amplitudes by 10%
peak-to-valley height of simulated ideal workpigeefile and (ii) corresponding
FFT plot (ii); (c)(i) simulated surface profile Wirandom vibration with 5 times
higher vibration magnitude as in (a) and (ii) cepending FFT plot; (d)(i) simulated
surface profile with random vibration with 10 timieigher vibration magnitude as in
(a) and (ii) corresponding FFT plot; and (e) sinedasurface profile with presence
of waviness due to the tool-workpiece vibrationliytimes higher vibration
magnitude as in (a) and (ii) corresponding FFT fBuntinued)
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Figure 4.30: continued

4.3.4 Resultsof in-process experiment

The offline results have shown that the fundanidetl frequency extracted
from the FFT of the workpiece profile can be usedlétect the tool chipping in
ceramic insert. The experimental work was conduategrocess to detect the tool
chipping during turning of AISI 01 oil hardeningolosteel using a commercial
aluminium oxide based ceramic insert by investigathe distribution of the spatial

frequencies along the workpiece profile. Figureld@Figure 4.34 show the zoomed
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actual workpiece profile captured during turningr feach pass and their
corresponding extracted sub-pixel profile at sixrkpiece rotation angles. Figures
4.35(a)(i)-(d)(i) show the FFT for the actual wokqge profile obtained from the
experiment (Figure 4.31 to Figure 4.34) after epelss for different workpiece
rotation angles. It should be pointed out thatrthtation angles of the workpiece at
different cutting durations do not correspond tce aamother since the start of
capturing of the profiles is random during the togn The corresponding cutting

inserts for each pass are shown in Figures 4.38{@)(ii).

Before tool chipping the amplitude of the fundataénfeed frequency
approximates to 2.5 mifmat various rotation angles of the workpiece isipreinant
as seen in Figures 4.35(a)(i), Figure 4.35(b)(0 Rigure 4.35(c)(i). This observation
agrees with the FFT of the simulated ideal workpipoofile. When the machining
process is stable the tool produces a periodiglenafth almost constant wavelength
at various rotation angles of the workpiece (Figdrdl to Figure 4.33). After a
machining duration of 22.0 s severe chipping on d¢btting edge of the ceramic
inserts was observed (Figure 4.35(d)(ii)). Sincealwec is brittle, friction between
the tool-workpiece interfaces causes premature fanhlre by chipping instead of
gradual wear. After the cutting insert has chippgbd amplitude of the spatial
frequencies lower than fundamental feed frequenuyreased sharply for all
workpiece rotation angles as seen in Figure 4.83(digures 4.36 shows examples
of zoomed-in FFT plot at workpiece rotation angtés6(® before and after tool
chipping. The results of experiment consistent wasults of simulation, because of
irregular surface profile introduced other spafi@quencies due to the random
features exist in the surface profile after too$ lchipped. Low spatial frequencies

was observed was due to presence of the waviness.
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Figure 4.37 shows the variation in the amplitudehe fundamental feed
frequency of the workpiece profile with cutting dtion. The amplitude of the
fundamental feed frequency remained almost constghtminimum gradual wear
within a cutting duration of 16.5 s but decreasbduptly after the tool insert has
chipped (Figure 4.37). This repeated result shdwed the result obtained from

offine and in-process experiments are in agreenvemtch confirmed that the

amplitude of fundamental feed frequency could lexlus detect the tool chipping.
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Figure 4.37: Variation in the amplitude of the fantkntal feed frequency of the
workpiece profile with cutting duration at variowsrkpiece rotation angles.
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4.3.5 Resultsof in-process onset detection of tool chipping from surface profile

signature using sub-window FFT

As STFT analysis is highly dependent on windowcfion and selection of
window function is difficult as it affect accuradue to attenuation effect in the
window function cause a loss in spectral estimiate.this reason, attempt has been
made to solve the problem by sub-window FFT thdépendent of window function.
Figure 4.38 to Figure 4.40 show the sub-windowhaf EFT along the workpiece
profile at different rotational angles for cuttidgration of 16.5 s where the cutting
tool undergoes gradual wear. As seen in Figure(d)@8(c)(i) to Figure 4.40(a)(i)-
(c)(i), the sub-window of FFT for each workpieceoffie shows a constant dominant
peak appearing at the fundamental feed frequencgraind 2.45 mih which is
approximately equal to the fundamental feed frequexf the ideal workpiece profile
(reciprocal of the feed rate of 1/0.4 =2.5 Mmin addition, the spectrum amplitude
of each FFT window along the workpiece profile imitar to one another. This is
because a periodic profile with almost constantelength along the workpiece was
produced as shown in Figure 4.38(a)(ii)-(c)(ihRigure 4.40(a)(ii)-(c)(ii) at different

rotational angles of the workpiece.

Figure 4.41(a)-(c) shows the sub-window and theiresponding workpiece
profile for the subsequent pass at the time intes/46.5 s to 22.0 s. The workpiece
profile is divided into smaller length's window vizmm equally for 5 sub sections
and each of the sub window length's interval darats 0.63 s. As seen in Figure
4.35 when the tool has chipped severely after éinguduration of 22.0 s, the
amplitudes at spatial frequencies lower than timeldfunental feed frequency increase

sharply starting from the first FFT sub-window falt rotation angles which was
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thereafter cutting time duration of 16.5 s. Sineehesub-window approximate to

0.63 s increment along the workpiece profile it banconcluded that the cutting tool

chipped at cutting time of approximately 17.13 s.
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Figure 4.41: Sub-window of the FFT along the woelggi profile at different
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Figures 4.41(a)(ii)-(c)(ii) display the fact tredter tool chipping the peak-to-
peak distance is not always equal to the feed hadeak-to-valley heights of the
surface roughness profile changes irregularly ahgttufate significantly, thus
introducing other spatial frequencies and redutchegamplitude contributed by the
feed wavelength. This is because when the cuttinbhas chipped its effects on the
cutting force variation can cause severe vibrabetween the tool and the workpiece

during machining.

Figure 4.42 shows the tool-workpiece vibration he taxial, radial and
tangential directions, respectively, during thenimg at various cutting durations. In
Figure 4.42(a) to Figure 4.42(c), small amplitudéshe tool-workpiece vibration in
the axial, radial and tangential directions withirtting time duration of 16.5 s were
observed as the cutting tool edgestill intact and the cutting process is steadg a
stable. Thus, only a very small amplitude of spafi@quency beyond the
fundamental feed frequency appear due to the saofatter excited during the

turning process when the cutting tool is still nevebserved.

Measurements of the tool vibration have confirntedt the tool vibrates
significantly during cutting time duration betwe#6.5 s to 22 s as large amplitudes
of the tool-workpiece vibration in three directiomsas found after the tool has
chipped (Figure 4.42(d)). Babouri et al. (2016)oafsund that when the cutting
insert undergoes accelerated wear caused by chippaccompanied bgn increase
in vibration. The machining process becomes unstablthe vibration between the
tool-workpiece interfaces increased significantlyen the tool edge has failed. As a
result the vibration between the chipped tool andkpiece leads to unstable cutting

and to the random fluctuations in the workpiecdif@¢Boryczko, 2011).
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Figure 4.42: Vibration measurement within cuttiimge duration of
(@) 5.5s,(b)11.0s,(c) 16.5s,and (d) 22.0 s
The tool-workpiece vibration also causes wavinegmsoth the cutting and the
tool feed directions. Because of the long waveleraytd periodicity of waviness
along the tool feed direction the waviness marsfesta sharp peak in the spectrum
at lower spatial frequencies. Figure 4.41(a)(i)d(c and Figure 4.42(d) integrally

show that tool-workpiece vibration leading to thecarrence of the significant
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undulation of the surface waviness. Therefore, @swevident that the spatial
frequencies lower than the fundamental feed frequém the workpiece profile is

mainly due to tool-workpiece vibration which caudsdthe tool chipping. The past
research work by Cheung and Lee (2000) also hawersithat the chatter vibration
and rotational spindle error could be identifiedhe low spatial frequencies from the

result of the spectrum analysis of the surfaceilgrof

Figure 4.43 shows the one of example of zoomedwsntow FFT plot to
show spatial frequencies around the fundamentadlfreguency before and after tool
chipping. When the cutting tool has chipped, thepl#odes of the spatial
frequencies lower than the fundamental feed frequeércrease for different rotation
angles of the workpiece. FFT allows to identifytaer spatial frequency components
of interest to correlate to tool chipping. Therefdhe average of the amplitude of
the spatial frequencies lower than the fundamefgatl frequency in each sub-

window was calculated as an indicator of tool cingpand are tabulated in Table 4.1.

a b
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= 30 ] = 30 increase in lower
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Figure 4.43: Zoomed sub-window of FFT of the wodqa profile for
(a) before tool chipping, and (b) after tool chipgpi
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Table 4.1: Average of spectrum amplitude at sp&egjuencies lower than the
fundamental feed frequency.

Duration Rotational Sub-window

(s) angle 1 2 3 4 5

55 0 0.6993 0.7620 0.9144 0.8930 0.9601
60 0.7751 0.7421 0.6497 0.7042 0.6739
120 0.6212 0.7000 0.7947 0.8801 0.8147
180 0.7857 0.7578 1.6125 0.7039 0.7489
240 0.6830 0.5847 0.6349 0.7844 0.7275
300 0.6297 0.6698 0.6663 0.6850 0.7741

11.0 0 0.9892 0.8445 0.5525 0.7122 0.9083
60 0.8955 0.7825 0.8669 0.8264 1.0742
120 0.8423 0.9315 0.9108 0.6753 0.7733
180 0.9858 0.7850 0.7332 0.9580 1.0510
240 1.0574 1.1974 0.8707 0.6070 0.9996
300 0.8263 0.8401 0.7943 0.8098 1.1629

16.5 0 0.8266 0.8098 0.7362 0.6675 0.7671
60 1.2783 0.6537 0.6612 0.8959 1.2237
120 1.0443 1.2350 0.7487 0.7610 1.1360
180 0.7167 0.7907 0.6748 0.9815 1.2032
240 0.9475 0.6158 0.7018 0.7897 1.2136
300 1.1428 0.8482 0.5136 0.8340 0.9094

22.0 0 4.6717 9.0307 9.1889 11.3930 14.8924
60 3.2714 8.2668 16.9896 19.0731 22.6823
120 4.0822 4.5554 9.1238 16.8191 13.5248
180 5.5554 6.4563 6.7220 10.4054 9.8891
240 5.5554 6.4563 6.7220 10.4054 9.8891
300 4.2321 5.3848 7.8268 8.8003 6.7615

Low average values of the sub-window amplitudepattial frequencies lower
than the fundamental feed frequency were obsenafdrd tool chipping. The
standard deviation of the average amplitude forhesgb-window for various
rotational angles in Table 4.1 is presented in f@gu44. The low standard deviation
in the average sub-window amplitude at spatial feegies lower than the
fundamental feed frequency indicates that the wedeg profiles at different
rotational angles are highly similar to one anothefiore tool chipping. However, the
standard deviation of the average sub-window aomditat the spatial frequencies
lower than the fundamental feed frequency for vaiavorkpiece rotational angle

increased sharply at cutting duration of approxemett 17.13 s due to the non-
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uniform workpiece profile generated at differentatmnal angle when the severe

chipping has taken place.

Standard deviation
w

O 1 T T T T 1
0 2 4 6 8 10 12 14 16 18 20 22 24

Cutting time duration (s)

Figure 4.44: Standard deviation of the amplitud&eT for each sub-window at
various rotational workpiece angle.
4.4 Results of in-process onset detection of chipping in ceramic cutting tools

based on the surface profile signatureusing CWT

Although the sub-window FFT of the workpiece prfivas successfully
applied to detect the tool chipping at cutting ticwgation of 17.13 s, the accuracy of
the sub-window method is highly dependent uporsthe of the window. Moreover,
the FFT method is designed for the use with statipsignal. Since the waveform of
the workpiece is non-stationary the wavelet analygas applied to overcome the

limitations of FFT (Josso et al., 2002; Grzesik &ndl, 2009).

Figure 4.45 shows the scalogram for the simuladed! workpiece profile.

Scale in CWT can be any real positive number. ia $study, scale in the CWT is
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determined based on the dyadic sampling 22 2°.... etc) which is used in DWT.
As shown in CWT of ideal profile, scale correspamgio feed frequency is ranging
in between 60 to 80 (nearest power of two 95 Pligher scale should be used to
detect the lower frequencies, thus the scale of(1&@proximate to 2 was applied
to localize the lower frequencies. Figures 4.46igure 4.48 show the corresponding
scalograms for workpiece profile in Figures 4.38(gajc)(ii) to Figures 4.40(a)(ii)-
(c)(ii) using Morlet wavelet at the cutting duratiof 16.5 s where the ceramic
cutting tool undergoes gradual wear. It can be skanbefore the cutting tool has
chipped, smooth and periodic workpiece profile Waka features are visible in
Figures 4.38(a)(ii)-(c)(ii) to Figures 4.40(a)({9)(ii)) at various rotational angles.
Their corresponding scalograms in Figure 4.46 tuia 4.48 show that the highest
magnitude of the CWT coefficients display an oatily pattern at scales between
60-80 (within the same spatial frequency band) wtibe oscillation in the wavelet
correlates best with the wavelet feature. The lgBRAVT coefficient values oscillate
within the same scale band (frequency band) areceded with the regular feed of
the workpiece profile which show an agreement wité result of scalogram for

simulated ideal workpiece profile.
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Figure 4.45: (a) simulated workpiece profile, abfigcalogram for simulated ideal
workpiece profile
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Figure 4.46: Scalograms corresponding to the wedeprofile in

Figure 4.38(a)(ii)-(c)(ii)
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Figure 4.47: Scalograms corresponding to the wedeprofile in

Figure 4.39(a)(ii)-(c)(ii)
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Figure 4.48: Scalograms corresponding to the wedgprofile in
Figure 4.40(a)(ii)-(c)(ii)

Figure 4.49 shows the CWT of workpiece profile floe subsequent pass in
Figure 4.48 at the time interval of 16.5 s to 22.8Vhen the cutting tool has chipped
changes in the higher range of CWT coefficienthigh scales are very distinct as
seen in the Figures 4.49. A distinct transitiontled largest CWT coefficient from
lower scale range of around 70 (Figure 4.48) théigscale range of around 110 was
observed from the beginning of the scalograms akpiece profile. In addition, the
CWT coefficient at higher scale band of 100 to 4pfears to vary within the profile
length. Thus, it can be concluded that the cutthrad starts to chip when it enters the
workpiece profile at cutting duration of 16.5 s.pApation of the Morlet wavelet in
this study allows separation of the different freqcies of the workpiece profile. As
the scale increases the transform start to ddtedbtver frequency components from
the workpiece profile. The apparent lower frequescire mainly due to the tool-
workpiece vibration thus causing the formationafder wavelength waviness along

the tool feed direction.
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Figure 4.49: Scalograms corresponding to the wedeprofile in
Figure 4.41(a)(ii)-(c)(ii)
In order to further extract from the CWT to coatel the tool wear condition,
the RMS of CWT coefficient at low, medium and higtales for different cutting
duration at various rotational angles was calcdlaRMS of CWT coefficients in

each scale was determined by:

i[(cwg(i) ~CWT.?]

RMSW = /1= N (4.1)

wherea is scale,CWT_ (i)is the values of the individual CWT coefficienGWT .

is the mean value of the CWT coefficients in thetipalar scale ofa. Figures

4.50(a)-(c) show that the variation of RMS of CW@efficient of workpiece profile
at scales of the 20 (low), 60 (medium) and 100Hhhigr various rotation angles.
From the figures it is clear that the RMS values@WNT coefficients deviate

significantly from one rotation angle to another &l selected scales when the tool
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has chipped. Figure 4.50(d) shows the maximum tewiaf RMS values of CWT
coefficients for the various rotation workpiece ksg As seen in Figure 4.50(d),
maximum deviation of the RMS values of CWT coe#iuis at all scales is low
during turning with unworn cutting tool. In conttaligh maximum deviation of the
RMS values of the CWT coefficient is found afteoltohipping. Low RMS values of
CWT coefficients is obtained at higher scales dnddreased sharply after tool has
chipped. It has also been found that comparedherd&®MS of the CWT coefficients
for different scales, the maximum deviation of RS of CWT coefficients in scale
of 100 is relatively large, indicating that the RMBCWT coefficient at higher scale
is more sensitive to the tool chipping which can draployed as an important

indicator to detect the failure of cutting tool.
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Finally, Figure 4.51 shows comparison between shie-window FFT and

CWT method in onset tool chipping detection. In esrdo demonstrate the
advantages of the CWT over the FFT analysis, aogieri workpiece profile
generated by unworn cutting tool was jointed witbrkpiece profile generated by a
chipped cutting tool as shown in Figure 4.51(b)e Bimplitude of spatial frequencies
lower than fundamental feed frequencies was foonstdrt to increase significantly
within the cutting duration of 1.26-1.89 s as ithased in Figure 4.51(a). Large CWT
coefficients were found in higher scales due tegular peak-to-peak feed distance
peak-to-valley height of workpiece profile as wels presence of significant
undulation of surface as shown in Figure 4.51(g.s&en in Figure 4.51(c), CWT
method is more effective in detecting the onsel thapping approximately to 1.6 s

instead of 1.89 s using sub-window FFT method.

(a) cutting time duration cutting time duration cutting time duration cutting time duration cutting time duration
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Figure 4.51: Comparison of the sub-window FFT akdTdn onset tool chipping
detection (a) sub-window FFT analysis, (b) workpiecofile, and (c) CWT analysis
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4.4.1 Resultsof repeat experiment

Figure 4.52 shows the example zdomed-in FFT plot while Figure 4.53
shows sub-window of the FFT for the workpiece peofbefore and after tool
chipping at workpiece rotation angle of 220r the repeat experiment with the
following cutting condition: rotational speed 95pnt, feed rate 0.4 mm/rev and
depth-of-cut 0.5 mm (Appendix A and Appendix B).eTitepeat results is consistent
with the results aforementioned. The amplitude mdtisl frequencies lower than
fundamental feed frequencies was found to increageficantly when the tool has
chipped as illustrated in Figure 4.52(b) and Figu&3(b)(i). Figure 4.54 shows the
scalograms corresponding to the workpiece profilé&igure 4.53(a)(ii) and Figure
4.53(b)(ii) respectively (Appendix C). As illusteat in Figure 4.54(b), when tool
chipping occurred, large CWT coefficients were fouim higher scales due to
presence of waviness due to tool-workpiece vibnatflow frequency). Once again,
Figure 4.55 shows the RMS of CWT coefficient atheigscale is more sensitive to

detect the tool chipping.
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Figure 4.52: Examples @abomed-in FFT plot (a) before, and (b) after tdopping
at workpiece rotation angle of 12far repeat experiment
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Figure 4.55: Comparison of maximum deviation of RMEWT coefficients (a)
before, and (b) after tool chipping at scales gf&fDand 100 for various workpiece
rotation angles

45  Chapter summary

This chapter presented the simulation and expetaheresults for the
detection of tool chipping in ceramic cutting irtsbased on the workpiece profile
signature using machine vision during turning pssceDetail analysis and

discussions for the obtained results were presented

In the first part, the ACF was applied to detéet tandomness features in the
workpiece profile to predict the occurrence of tolipping during turning operation.
ACF method enabled the effects of the failure irapec insert on the workpiece

profile to be observed by examining the peak ofAl# of the workpiece profile.

The application of FFT to detect tool chippingnfreurned workpiece profile

was discussed in second part. As the tool chigmifsiant changes occurs in the
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amplitude of spatial frequencies of the workpiecafife. The tool chipping can be

detected by using the amplitude of fundamental fesguency and the amplitude of
spatial frequencies lower than the fundamental feeguency. An attempt to solve
the window function problem in STFT has been méudeugh the development of a
novel sub-window FFT method. From the result irs ttihapter, it can be concluded
that the proposed sub-window FFT is capable ofatieig the tool chipping around a
cutting time of 17.13 s based on the statisticatuiees of spatial frequencies lower

than fundamental feed frequency in each sub-window.

The accuracy of the time resolution in sub-winde method is, however,
highly dependent of the size of the window andduing process parameter. Thus
the application of the CWT analysis method was ehds be extended in onset tool
chipping detection. From the detailed discussibean be concluded that the CWT
method has shown its applicability over the subdein FFT method in detecting the

onset of chipping in ceramic inserts from the waekp profile signature.
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CHAPTER FIVE

CONCLUSIONS AND FUTURE RECOMMENDATIONS

51 Introduction

This chapter concludes the study with highlighttled main contributions
made in this research and the objectives achieMeel.chapter ends with the future

research recommendations.

5.2 Conclusions

The following conclusions can be drawn from thesent study:

i. A machine vision system consists of DSLR camera& aitl of backlighting
for capturing the images of the workpiece profilgidg turning is developed.
The developed in-process tool chipping detectiorthow using machine
vision is shown to be effective in detecting theltchipping based on
workpiece profile signature in ceramic cutting ®adluring turning of
difficult-to-cut materials.

ii.  The effect of tool chipping in ceramic cutting irsen the surface profile
using ACF and FFT is studied. The peaks of ACFhef workpiece profile
generated by the ceramic cutting insert decreameidly as the lag distance
increased when the tool has chipped. The envelbpigegpeaks of the ACF
was found to deviate significantly from one anothedifferent workpiece
rotation angles when the tool has chipped. Chippivag significantly

influence the amplitude of fundamental feed frequeof workpiece profile
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and the amplitude of spatial frequencies lower thHandamental feed
frequency. The amplitude of the fundamental feeelgdency increased
gradually as the tool wear (gradual) increased. Mthel chipping occurred,
the amplitude of fundamental feed frequency showgmifscant random
fluctuations with the cutting time. In additionetikFT plots of the workpiece
profile clearly showed the appearance of significgratial frequencies lower
than the fundamental feed frequency after chippirgs is because the tool-
workpiece vibration causes waviness in both theéinrguitand the tool feed
directions. Presence of the long wavelength of mess along the tool feed
direction leads to existence of the sharp pedkerspectrum at lower spatial
frequencies due to tool-workpiece vibration whea tibol has chipped. ACF
allows to represent the spatial variation overreniiength of workpiece to
find the random features buried in periodic surfpoafile while FFT allows
to identify certain spatial frequency componentsniéérest to associate with
the tool chipping.

Detection of onset tool chipping from the workpiegmfile signature is
accomplished by using sub-window FFT and CWT. Theppsed sub-
window FFT method based on the statistical featofespatial frequencies
lower than fundamental feed frequency enable tbgypng to be detected
from the workpiece signature around a cutting toh&7.13 s. CWT method
was found to be more effective in detecting theceraset of chipping of the
cutting tool. Significant changes in the CWT coaéints at the larger scale
band were observed at cutting time of 16.5 s. Bingek CWT coefficient at
higher scales band (low frequencies) is due toldhg wavelengths of the

waviness of the workpiece profile caused by tooipgimg. The large
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deviation in the RMS of CWT coefficients for scale 100 shows that the
RMS of CWT coefficient at higher scale are sensitio tool chipping and
can be potentially used as an important indicatordietecting the onset of

chipping in the ceramic cutting tool insert.

5.3  Contributionsof the study

The main contribution of this study is a novelpimcess tool chipping
detection method in ceramic cutting insert basether?-D images of the edge of the
workpiece using machine vision method. This redeprovides a new algorithms to
process 2-D digital images of workpiece profile detect the occurrence of tool
chipping by distinguishing the sign of chipping workpiece profile from those
originating from tool wear. The study has gone somay towards enhancing the

understanding of the effect of tool chipping on kymece profile.

The findings show that features such as the angditof the FFT of
fundamental feed frequency, the amplitude of spdtiequencies lower than
fundamental feed frequency and the CWT coefficienthigher scale are useful to
identify the occurrence of tool chipping. Theseigatbrs would be a great help as an
important input for pattern recognition techniques a future tool chipping

monitoring system.

54 Futurerecommendations

From the investigations conducted in this reseandtk, a number of

possible avenues for future work can be sugge3tee.biggest obstacle facing the
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implementation of in-process tool condition monngr is the need for
experimentation to determine threshold values tweld® direct quantitative
relationship which relates to tool state to impletreffective tool changing strategies
in unmanned manufacturing. More research work exlad for advances in pattern

recognition and machine learning techniques toaee this obstacles.

The use of machine vision for in-process tool d¢ow monitoring has not
yet been explored in micromachining as it rotates \ery high speed which requires
a high shutter speed or speed frame grabber cafieisakind of cameras usually
work at low illumination but require high light emsity which can damage the
CMOS sensor in the camera (Mandal, 2014). A futsiedy investigating the
application of vision-based method on in-processl toondition detection in

micromachining would be very interesting.
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APPENDICES

APPENDIX A: REPEATED EXPERIMENTAL RESULTSOF FFT

Repeat experiment with cutting condition: spingdeexd 950 rpm, feed rate 0.4

mm/rev, depth of cut 0.5 mm

FFT plot for before tool chipping (a, b) and afigol chipping (c) at various
workpiece rotation angles




APPENDIX B: REPEATED EXPERIMENTAL RESULTS OF SUB-WINDOW

FFT

Sub-window FFT along the workpiece profile at diffiet rotational angles (a¥,qb)

12@, (c) 240 in cutting time duration of 5.5 s correspondingMpendix A
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Sub-window FFT along the workpiece profile at diffiet rotational angles (af,qb)
12@, (c) 240 in cutting time duration of 5.5-11.0 s correspangio Appendix A
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Sub-window FFT along the workpiece profile at diffiet rotational angles (af,qb)
12@, (c) 240 in cutting time duration of 11.0-16.5 s corresgagdo Appendix A

»
N—r

@
@
@
@
@

Amplnuhfie fum)
Ahr.nplnufe fum)
AmplllLLde fm)
Amplitude {1m)

Amplitude {1m)

,4
-

W@W

2 4 6 8 10 2 4 6 8 10
Spatial Frequency (1/mm) Spatial Frequency (1/mm)

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Spatial Frequency (1/mm) Spatial Frequency (1/mm) Spatial Frequency (1/mm)

Profile heighti{m)
o
-2
O S,
O S

Distance along the profile (mm)

(b)

Es Es Es g Es
=3 =h =3 =h =3
[} @ [} @ [}
EE EE EE EE EE
g 5 g 5 g
< <! < <! <1Ale\,¥
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Spatial Frequency (1/mm) Spatial requency (1/mm) Spatial Frequency (1/mm) Spatial Frequency (1/mm) Spatial Frequency (1/mm)
£100
=
<
5 50
£ 9
Q2
=
o -50,
o
-100
0

Distance along the profile (mm)

~—~
O
~—

Ea Ea Ea EE Ea
3 3 3 3 3
[} (] [} (] [}
EE EE: EE EE EE
2 g 2 g 2
< < < < <
2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Spatial Frequency (1/mm) Spatial quency (1/mm) Spatial Frequency (1/mm) Spatial Frequency (1/mm) Spatial Frequency (1/mm)
=100 =3 N P 4N A
E 1
£ 50
£5
Ry
Q
= qQ
L
=
-5
T 1, o s
-100 ‘
0 5 10 15 20

Distance along the profile (mm)



APPENDIX C: REPEATED EXPERIMENTAL RESULTSOF CWT

Corresponding CWT to sub-window FFT along the wagke profile at different
rotational angles (a)’0(b) 120, (c) 240 in cutting time duration of 5.5 s
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Corresponding CWT to sub-window FFT along the wagkp profile at different
rotational angles (a)°0(b) 126, (c) 240 in cutting time duration of 5.5-11.0 s

B DEE

(5) (or

- ———

T ﬂ

i 15 2 X 25
time (s) (or translation)

Corresponding CWT to sub-window FFT along the wagkp profile at different
rotational angles (a)’0(b) 126, (c) 240 in cutting time duration of 11.0-16.5 s

!

(@)

e o

() ( )

.a
ol 8 s 5
[=A
3
R
D &
n
)
=]
—
- N
Q
35
%28
=
5]
on
w
w
&

e ﬂ

(b) 120

|/ TN | 2
LA e i

8
o —

i
|
20]

1 15 2 25
time (s) (or translation)
(©)
12

10 'l l' {r 150 O
'Jlmmmull...mn l||lI||||Im|||u||mml|| g ié

40] (
20
0

1 15 2 25
time (s) (or translation)



LIST OF PUBLICATIONS

Lee, W.K., Ratnam, M.M., & Ahmad, Z.A. (2017). Detien of chipping in ceramic
cutting inserts from workpiece profile during turgi using fast Fourier
transform (FFT) and continuous wavelet transformW{Q. Precision
Engineering,47406-423. http://dx.doi.org/10.1016/j.precisione®d.2.09.014

Lee, W.K., Ratham, M.M., & Ahmad, Z.A. (2016). Detien of fracture in ceramic
cutting tools from workpiece profile signature ugimage processing and fast
Fourier transform.  Precision Engineering, 44, 131-142.
http://dx.doi.org/10.1016/j.precisioneng.2015.11.00

Lee, W.K., Ratnam, M.M., & Ahmad, Z.A. (2016). Imggess detection of chipping
in ceramic cutting tools during turning of diffidttb-cut material using vision-
based approachThe international Journal of Advanced Manufacturing
Technology, 85(5)1275-1290d0i:10.1007/s00170-015-8038-6

Lee, W.K., Ratham, M.M., & Ahmad, Z.A. (2013)ool breakage detection from 2D
workpiece profile using vision methoBaper presented af®2International
Manufacturing Engineering Conference iMEC aridl Bacific Conference on
Manufacturing System (APCOMS 2015), Kuala Lumpusl&§sia
(Published in IOP conf. Series: Materials Scieand Engineering 114 (1),
doi:10.1088/1757-899X/114/1/012132)

Lee, W.K., Ratnam, M.M., & Ahmad, Z.A.(2014)etection of fracture in ceramic
cutting tools from workpiece image using sub-pigeige location Paper
presented at International Conference on Controlo#ation Robotics &
Vision (ICARCV), 2014, Singapore.



