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PERMODELAN HIBRID CFD-NNARX BAGI INJAP MRF 

TUNGGAL UNTUK SERVO VISUAL 

ABSTRAK 

 

Penggerak Bendalir Reologi Magnet (MRF) muncul sebagai satu sistem yang 

berpotensi bagi menggantikan servo electro-hidraulik. Pemodelan bagi injap penting 

dalam membangunkan sistem kawalan yang optimum, tetapi pengetahuan kelakuan 

bendalir dalam saluran injap sangat terhad. Objektif kajian ini adalah untuk 

membangunkan model pengerak MRF menggunakan pendekatan sistem 

pengenalanpasti di mana Pengkomputeran Dinamik Bendalir (CFD) digunakan 

sebagai input. Model kemudiannya digunakan untuk merekabentuk sistem kawalan 

gelung tertutup untuk penggerak MRF. Untuk mencapai objektif, model 3-Dimensi 

CFD perlu dibangunkan, dan analisis keadaan mantap telah dijalankan untuk mengkaji 

kelakuan bendalir dalam saluran. Seterusnya, analisis fana dengan input dinamik 

dilakukan untuk mengkaji hubungan antara input dengan jumlah kadar aliran semasa 

sebagai output. Autoregresif rangkaian neural masukan luar (NNARX) menggunakan 

data daripada CFD untuk mengenal pasti model dinamik injap MRF. Hasilnya, 

simulasi CFD dan model dinamik sepakat dengan hasil eksperimen dengan ralat 

kurang daripada 3%. Halaju bendalir di dalam injap berkurangan sebanyak 85% 

apabila arus berubah daripada 0 ke 0.8A. Model hibrid CFD-NNARX menunjukkan 

sisihan kecil dengan hasil purata ralat eksperimen 4%. Kesimpulannya, Hibrid CFD-

NNARX telah terbukti berguna dalam permodelan penggerak MRF. Sumbangan 

utama penyelidikan ini adalah model penggerak MRF yang boleh digunakan sebagai 

input dalam proses rekabentuk pengawal penggerak MRF. 
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HYBRID CFD-NNARX MODELLING OF SINGLE MRF VALVE 

FOR VISUAL SERVOING 

ABSTRACT 

 

Magnetorheological fluid (MRF) actuator emerged in the last decade as a 

potential system to replace electro-hydraulic servo system in precision applications. A 

complete closed-loop control system is necessary to support the accuracy of the 

system. Modelling of the valve is a crucial task in developing an optimal control 

system for the valve, but the knowledge of fluid behaviour inside the valve channel 

remains scarce. This research aims to develop a plant model of MRF actuator using 

the system identification approach, where the Computational Fluid Dynamics (CFD) 

result is used as an input. The plant model is then used to design a closed-loop control 

system for the MRF actuator. To achieve this objective, a 3D CFD model was 

developed, and a steady state analysis was run to study fluid behaviours in the channel. 

Transient analysis with dynamic input was further performed to study the correlation 

between the current input and the volume flow rate as an output. Neural network 

nonlinear autoregressive network with exogenous inputs (NNARX) used data from the 

CFD to identify the plant model of an MRF valve. The result acquired from the CFD 

simulation and plant model gave good agreement with the experimental result with an 

error of less than 3%. The velocity in the MRF valve reduced 85% when the current 

varied from 0 to 0.8A. The hybrid CFD-NNARX model shows a small deviation from 

the experimental result with an average error of 4%. As a conclusion, the hybrid CFD-

NNARX has been proven useful in modelling the MRF actuator. The main 

contribution of this work is the plant model of an MRF actuator, which can be utilised 

as an input in controller design process of MRF actuator.  
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CHAPTER ONE  

INTRODUCTION 

1.1 Overview 

This chapter describes the background of the research, including the 

motivation and significance of this work. The problem statement section provides a 

technical description of the specific issue. The objectives and approaches to achieve 

the objectives are also presented. Then, the chapter elaborates the scope of work that 

determines the boundary of the research. Finally, the chapter concludes the document 

outline. 

1.2 Background 

Accurate and precision positioning systems have emerged as a vital 

requirement in the industry (Wonohadidjojo et al., 2013). Motorised actuators are 

popular choices in developing a positioning system over several decades. However, 

in a high load application, a motorised actuator is less efficient compared to a 

hydraulic actuator (Guo et al., 2015a). To this extent, an electro-hydraulic system has 

been introduced by many practitioners to answer the limitation of the motorised 

actuator system when a high load is needed (Guo et al., 2015a; Le-Hanh et al., 2009; 

Lin, 2011). The accuracy of the electro-hydraulic system is ensured by utilising a 

servo valve that is used to control the displacement of the cylinder. A conventional 

hydraulic control valve consists of a spool, inside which acts as a control mechanism. 

This spool is moved by a solenoid, and the speed of spool is determined by the 

current induced in the solenoid (Kang et al., 2008). It is clear that proper control of 

the servo valve will help improve the accuracy and precision of a hydraulic 

positioning system. 
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The spool has introduced difficulty in controlling the valve due to friction 

with the valve body. Therefore, the magnetorheological fluid (MRF) valve was 

designed and has proven to control fluid flow (Grunwald & Olabi, 2008; Imaduddin 

et al., 2014; Moon et al., 2011; Hadadian et al., 2014). The MRF valve has 

successfully eliminated the use of a spool to control fluid flow by manipulating the 

MRF rheological properties using a magnetic field. The MRF is considered a smart 

material where its state might change from liquid to solid in milliseconds with the 

presence of magnetic field (Ekwebelam & See, 2009). The invention of the MRF 

valve potentially accelerates the development of an accurate positioning system. 

Even though the MRF valve was successfully designed to control the direction of the 

MRF, the valve is limited to simple geometry such as a straight channel. However, if 

the channel’s is complex, for example having a curvature, it becomes difficult for the 

MRF valve to regulate due to a lack of understanding fluid flow behaviour. Thus, the 

design process requires knowledge of fluid flow inside the valve while a magnetic 

field is applied. 

One way to analyse fluid flow behaviour is by using the CFD, which is the 

acronym for Computational Fluid Dynamics. CFD is considered as a simulation tool 

that uses a powerful computer and applied mathematics to model fluid flow situations 

for the prediction of heat, mass, and momentum transfer, as well as the optimal 

design of industrial processes (Gurreri et al., 2016; Shirazi et al., 2016). Recently, 

CFD has been used widely in solving problems related to material engineering, 

especially smart materials such as MRF (Gedik et al., 2012; Parlak & Engin, 2012). 

Besides that, CFD also has the capability to model the transient of a fluid system. 

Thus, CFD data shown by Dobrev & Massouh (2011), Meng et al. (2009), and  
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Zerihun-Desta et al. (2004) is useful in modelling plant model through system 

identification approaches. 

System identification has more advantages in modelling a nonlinear system 

than an analytical method (Schoukens et al., 2015), as the analytical method of a 

system modelling requires a complex mathematical equation and sometimes leads to 

assumptions that reduce the accuracy of the plant model (Paduart et al., 2010). In 

contrast, system identification attempts to develop a plant model using input-output 

data from an experiment. Increasing the complexity of the system to be a model 

makes the conventional system identification method fail to develop an accurate 

plant model (Xie et al., 2013). Thus, an artificial method is embedded into the 

system identification to cope with the nonlinearity effect (Romero-Ugalde et al., 

2013). Artificial Neural Network (ANN) is a popular method adopted by many 

researchers in solving the issue of nonlinearity in system modelling. Neural network 

offers the capability to develop a nonlinear function, which is important in predicting 

nonlinear behaviour in the system. A Neural network that is autoregressive with 

exogenous input (NNARX) is an example of the ANN method used in system 

modelling. This technique is a combination between conventional system 

identification models, namely autoregressive with exogenous terms (ARX) and 

ANN. The NNARX model has been applied to many industrial applications and has 

shown more advantages than other methods in several cases (Deng, 2013; 

Folgheraiter, 2016; Janakiraman et al., 2013; Xie et al., 2013). 

In general, this research is important for the future development of an optimal 

MRF valve. When the model of the MRF valve is validated, its geometrical 

optimisation can be done with less experimental works. Nevertheless, knowledge in 

fluid particle interaction is important, but till now, it is still hardly reported in the 
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literature. Within a proven method in the numerical model and experimental work, a 

more detailed mathematical model that is more accurate on the particle was able to 

be developed by the researcher. The particle model lead to another finding on 

suspension particle and finally improved human knowledge on the particle. 

1.3 Problem Statement 

Electro-hydraulic actuator (EHA) is extensively used in the positioning 

system, but the accuracy is low due to its complexity in controlling the spool inside 

the valve. Salloom and Samad (2012) and Imaduddin et al. (2014) developed an 

MRF valve that worked without a spool, but fluid behaviour in MRF valves have yet 

to be understood. Due to a lack in knowledge about MRF flow, the response of the 

valve is difficult to predict and the development of an optimal control system 

becomes slow. Even though Omidbeygi and Hashemabadi (2013) solved the MRF 

fluid flow using an analytical solution, it is limited to simple geometry and strictly 

followed a 2D flow assumption.  

The plant model of the valve is an important input to design an optimal 

controller and commonly developed using the analytical or system identification 

approach (Wang & Gordaninejad, 2007; Khalid et al., 2014). When a magnetic field 

is applied to the MRF valve, the MRF response is difficult to model analytically and 

the system identification becomes a better choice for modelling purposes. System 

identification requires an input-output data, but in the design stage, the data is not yet 

collected so that the CFD approach can be used to replicate an experiment for the 

data collection process. Thus, the modelling of the valve requires a hybrid between 

the CFD and system identification. 
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As verification is compulsory in the plant model development process, the 

MRF actuator requires feedback to measure the response. Displacement sensor is 

normally used to give feedback to the controller, and most of the displacement 

sensors are installed at the actuator because it reduces the measurement reliability 

due to vibration. Thus, a noncontact measurement system such as a vision-based 

sensor is needed. However, because there is still no literature that reports that the 

vision-based sensor is used to work with the MRF actuator, the development of a 

vison-based feedback system for the MRF actuator is needed. 

1.4 Research Objective 

The aim of this research is to develop the plant model of a single MRF valve 

using hybrid CFD-NNARX. To fulfil this purpose, several objectives were defined as 

the following: 

1. To evaluate the steady-state and transient flow behaviour of MRF in a curve 

valve channel using the CFD approach; 

2. To develop a plant model of the MRF valve using the hybrid CFD-NNARX 

identification method; 

3. To develop an MRF actuator embedded with the robust vision-based feedback for 

model validation; and 

4. To analyse the hybrid CFD-NNARX model performance using a visual servoing 

MRF actuator. 

1.5 Scope of Research 

This work is divided into two main stages: experimental and modelling. In 

the experimental stage, a complete closed-loop magnetorheological linear actuator 



 

6 

 

was developed and tested. The experimental data was used in the validation process 

for the CFD and neural network models. Meanwhile, in the modelling stages, a CFD 

model for the MRF valve was developed and the results were used as raw data to 

develop a plant model for the MRF valve. 

The extent of this present work to develop a nonlinear plant model for the 

single MR fluid valve. The plant model is developed using the hybrid CFD-NNARX, 

which is a combination of numerical modelling and a system identification approach. 

This work covers the numerical modelling of fluid flow characteristic in a single 

MRF valve using the CFD method. A viscosity model was developed specifically by 

combining the results from the finite element analysis of magnetic field in the valve.  

The model was then validated with the experimental data. Next is the 

development of the closed-loop MRF linear actuator. A machine vision system was 

also developed to work as visual feedback. A PID controller was designed to make 

the MRF linear actuator performance better. It was tuned to test whether the plant 

model is capable of searching for an optimal controller for the real MRF system. 

1.6 Thesis Outline 

The thesis is presented in five chapters, including an introduction, literature 

review, methodology, results and discussion, and finally the conclusion. Chapter One 

consists of the background of the study, research objectives, and thesis outline. 

Chapter Two consists of the literature review, where previous works conducted by 

other researchers regarding magnetorheological valve, CFD, and NNARX are 

examined and discussed.  

Chapter Three describes the methodology used in this study, including the 

development of the magnetorheological linear actuator and the CFD modelling. 
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Chapter Four presents the results, as well as the discussion of the outcomes. Chapter 

Five presents the conclusion and recommendations of the present work. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview 

A literature survey on previous work was conducted to search for a research 

gap. Firstly, the importance and current art of electrohydraulic actuator are review. 

This first section also includes a brief explanation on MRF and the valve. The second 

section deals with the CFD analysis of the MRF. Thirdly the review focuses on CFD 

application in system identification. Next, the literatures expand into vision-based 

positioning system. The final section focuses on the use of machine vision as a 

feedback for measuring displacement. This chapter was ordered to follow the objective 

this research as mentioned in Chapter 1. 

2.2 Conventional Electro Hydraulic System  

The Electro-Hydraulic Servo System (EHSS) is widely used in industrial and 

machinery settings for high-performance position tracking applications. The EHSS 

system is capable of generating high forces with fast response time and offers great 

durability, particular by for heavy engineering systems with a compact size and design 

(Ahn et al., 2002; Guo et al., 2015a; Lin, 2011). The EHSS usually consists of a 

double-acting cylinder actuator driven by a proportional directional control valve 

connected to a hydraulic pressure unit. It has proven to be a promising choice for 

various mobile and high-performance applications due to its high power to weight 

ratio, good dynamic performance, and its ability to tolerate abrupt and aggressive 

loadings. This type of system can generate very high forces and has a very high power 

to weight ratio compared to its electrical counterparts. This characteristic makes the 
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EHSS ideal for various high-performance applications, and it is widely utilised in 

aircraft control, machine tools and manufacturing, excavating, and automotive 

industries. 

Figure 2.1 presents a complete example of the EHSS. The hydraulic system is 

used to drive a cylinder in controllable position and speed. It consists of the power 

source, servo valve, and actuator. The power source system has a pump to push the 

fluid at a certain level of pressure and flow rate. The pump used depends on the power 

required and the type of fluid. Positive displacement pumps are commonly used as 

opposed to non-positive displacement pumps. Positive displacement pumps such as 

gears, vanes, and screws for rotary type, and pistons for reciprocating type offers high 

pressure which is important for hydraulic applications. 

 

 

Figure 2.1 Electro-hydraulic system (Peter-Nachtwey, 2006) 

 

The pump pushes the fluid to the actuator from the reservoir through the valve. 

The valve acts as a control device to manipulate the direction and the pressure of the 
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fluid. If the extended mode is required, the fluid will be redirected to the rear chamber 

and the pistons start to move. The sensor will detect the position of the piston and 

calculate the velocity. The motion controller can use the displacement and speed 

information to make a decision as to how best to control the motion accurately. The 

decision is converted into an electrical signal then sent to the servo valve. The servo 

valve accepts the signal which starts to change the flow pressure and flow direction 

according to the signal. 

The EHSS is controlled by the servo valve to manipulate the pressure and flow 

direction according to input desired by the operator. The servo valve shown in Figure 

2.2 consists of the spool inside the valve and the spool motion controlled by the 

magnetic field generated by the solenoid coil. In practice, the control system was 

developed to control the position or the speed of the spool. This method requires a 

highly complex control system due to the nonlinearity introduced by the friction 

occurring between the spool and the channel wall. This causes the controller to become 

more complex sometimes rendering its application impractical in industrial 

applications. 

Ghazali et al. (2012) presented an optimal control for tracking discrete-time 

non-minimum phase of an electro-hydraulic actuator (EHA) system by adopting a 

combination of feedback and feedforward controller. The proposed controller was 

performed in simulation and experimental studies where the EHA system is 

represented in a discrete-time model. This is obtained using the system identification 

technique where a linear-quadratic regulator (LQR) is firstly designed as a feedback 

controller, and a feed forward controller is then proposed to eliminate the phase error 

resulting from the LQR controller during tracking control. Similar approaches were 

shown by Chen and Lian (2011) and Liu et al. (2014) but in different applications. The 
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feed forward controller was developed by implementing the zero phase error tracking 

control (ZPETC) technique in which the main difficulty arises from the no minimum 

phase system with no stable inverse. The result obtained from the study showed that 

the controller offers good performance in reducing phase and gain error that usually 

occurs in positioning or tracking systems.  

 

 

Figure 2.2  Conventional servo valve illustration (Valdiero et al., 2011) 

 

In the same direction, Tivay et al. (2014) developed a controller for the valve 

to optimise the energy used in the system. The optimal controller concept was applied 

and showed good performance in minimising energy. The torque performance also 

improved better by controlling the valve as shown by Wang et al. (2015a). The 

positioning of the cylinder showed a significant improvement when the H∞ controller 

was used to drive the servo valve. The pioneering work was done by Guo et al. (2015b) 

showed that using the H∞ controller possibly reduced the tracking error of the cylinder 
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due to the friction effect. Some researchers also used intelligent controllers for the 

servo valve. 

Wonohadidjojo et al. (2013) utilised the couple fuzzy and particle swarm 

optimisation method to develop a position control for the EHSS system. The controller 

successfully determined the opening range of orifice in the servo valve. The fuzzy 

controller was also used by Renn and Tsai (2005) when implementing a switching 

control for the solenoid valve in hydraulic press application. The fuzzy controller 

successfully controlled the force acting on the workpiece during the press process. 

Similar works examined the use of the fuzzy based controller in the EHSS system (Le-

Hanh et al., 2009; Songshan et al., 2015; Zheng et al., 2009).  

Other than a fuzzy controller, the neural network also offers advantages in 

designing the controller for the EHSS system. In missile tracking applications, 

reliability is a very important factor since it relates to human safety. EHSS shows good 

performance even in high precision applications. However, the controller needs to be 

sufficiently reliable to run the system properly as shown by Cao et al. (2006). Their 

study used a neural network coupled with the sliding mode control method to develop 

a precise control system for missile tracking. Faults model of the valve is important to 

determine the reliability of the EHSS performance. Huang et al. (2006) used genetic 

algorithms and neural networks as tools to study the fault behaviour in servo valve. 

The model significantly contributed to predicting the valve model and indirectly 

improved the reliability of the EHSS system. This further proved that the neural 

networks method is widely used in developing a controller in the EHSS system. Other 

clear examples of neural networks implementation in EHSS can be seen in Kang et al. 

(2008) and Kilic et al. (2014). The literature clearly shows that the servo valve 

controller remains a critical issue to improve the overall performance of EHSS. Servo 
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valve controller is required to be fast in response, disturbance rejection, less steady 

state and tracking error. Searching for these criteria remain a critical issue in servo 

valve controller design (Kang et al., 2008). To date, various controllers have been 

developed by researchers either using conventional methods or intelligent approaches. 

Besides the controller of the valve, the power pump and pressure relief valve have also 

become subjects of interest for researchers in optimising EHSS operations. 

The pump system is a major element to ensure the EHSS is working as 

expected. Issues arise when the power or energy consumed by the pump must be 

minimal as possible. Many dimensions have been explored by researchers regarding 

the pump such as a controller, mechanical component, and also the electrical system. 

The comprehensive review by Quan et al. (2014) shows various work on direct pump 

control technology embedded in the EHSS system. The direct pump control 

technology aims to minimise energy used to manipulate the EHSS actuator. The 

argument that a proper pump controller saves energy is supported by other researchers 

(Chu et al., 2006; Hong & Doh, 2004). Ho & Ahn (2010) studied the pump’s role for 

improving the transmission line using an accumulator. However, the study of the pump 

is still in its early stages compared to the study of the valve due to the widely held 

argument that improving valve technology will generally optimise the pump system. 

Hős et al. (2014; 2015) formulated a nonlinear plant model of a relief valve in 

the stage form. According to the results, the opening time of the valve is linearly related 

to the dimensionless parameter given by the ratio of orifice length to the radius. Liu 

and Jiang (2014) developed plant models of a spring loaded pressure relief valve with 

computational fluid dynamics and valve plant modelling. Athanasatos and 

Costopoulos (2012) and Dransfield and Teo (1979) studied the dynamics of a pilot 

operated pressure relief valve using the Bond graph simulation technique. The 



14 

 

governing equations of the system were derived from the model. Song et al. (2013) 

and Wenbing et al. (2012) developed a relatively simple and accurate model to solve 

the dynamical behaviour of a pressure reducing valve. Sizing is the most important 

component in selecting the right pressure relief valve for the circuit assuring the 

reliable safety of the system. Nowadays, sizing is achieved with software available on 

the market and provided by manufacturers. It is important to understand what is behind 

the software and to look into the formulas on which these calculations are based. It is 

also important that relief valves be selected by the operators with detailed knowledge 

of all the pressure-relieving requirements of the system to be protected. The circuit 

designer must be aware of what is available on the market in order to select the right 

valve for the correct application to assure a safe hydraulic system. 

Accuracy, stiffness, and controllability are major factors when designing a 

linear actuator. The electro-hydraulic system offers several advantages such as high 

stiffness and applicability to many working environments as compared to the electrical 

motor. However, the system suffers from being bulky in size and complexity in 

controlling the motion. The main factor attributed to this drawback is the hydraulic 

valve used to control the fluid direction. The valve is controlled by supplying a current 

to the armature coil and the magnetic field generates forces and pushes the spool inside 

the valve. Utilising a spool as a control mechanism introduces friction leading to 

increased complexity in controlling the flow. Answering this drawback, this research 

seeks a new solution for designing the hydraulic valve. Due to the ability to change 

from liquid to viscoelastic states, the MRF is considered an appropriate candidate to 

explore its potential as a valve. Although a working MRF valve has been invented, 

there is little research on the use of this valve in industrial applications.  
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The main issue that emerges is that the valve is still in a single mode with the 

ability to control only one flow direction at one time. To reduce complexity, a compact 

MRF was designed to control the fluid direction in a single geometry. However, this 

compact valve is only designed to meet a reduction in size. The plant model and the 

flow of the valve remain major questions for the valve to be used in real applications. 

There is therefore need to understand the fluid flow inside the valve as a means to 

better design the valve controller. The plant model for this valve has never been 

developed presenting an urgent need to model this compact valve to increase the 

possibility of its use in industrial applications.  

2.3 Magneto-Rheological Fluid  

MRF is categorised as intelligent material due to it rheological properties 

capable of changing from the Newtonian fluid into Bingham plastic with the presence 

of a magnetic field (Ashtiani & Hashemabadi, 2015; Zhou et al., 2015). The magnetic 

field acts as a power source for the fluid where the yield stress increases with increases 

in the magnetic field. The fluid was first introduced by Rabinow in late 1949 as an 

alternative to the electro-rheological fluid. In principle, MRF consists of iron particles 

suspended in mineral or silicon oil. The iron particle size lie in between 5-10 micron 

(Bica et al., 2015). The magneto-rheological effect is shown in Figure 2.3. 

In the absence of magnetic field, the iron particles are distributed 

homogeneously in the continuous silicon oil with Brownian motion. In this condition, 

the rheology can be assumed as Newtonian fluid (Sherman et al., 2015). The viscosity 

of the fluid is influenced by the volume fraction of the iron particle with suspension 

media. To avoid locomotion in the particle due to particle-particle interaction, the iron 

particle was coated with the Nanolayer polymer lithium grease (Dong et al., 2012; 
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Iglesias et al., 2012; Yamanaka et al., 2012). This layer of coating is important to 

maintain the distribution of the particle in the media with minimal sedimentation 

effect. The fluid is also stable in a wide range of temperatures from 10 to 140 degree. 

These properties render the fluid applicable for numerous industrial applications ( Park 

et al., 2009). 

 

Figure 2.3 Magneto-rheological working principle (Truong & Anh, 2012) 

 

The rheological properties of MRF gradually changed in the presence of the 

magnetic field. Ekwebelam and See (2009) explained this physical phenomenon of the 

fluid using a spherical particle model. The magnetic field induces the force into the 

iron particle, and the particle starts to align to produce resistance to any external force. 

Peng et al. (2009) and Yongzhi et al. (2011) showed the mechanism of the particle 

with the presence of the magnetic field using the Monte Carlo method. The iron 

particle starts to develop a chain and cluster in the fluid domain. The chain holds the 

particle together and the holding force depends on magnetic field magnitude. The force 
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provides resistance to the fluid flow and increases its shear force to break the chain. 

Thus, with increasing magnetic field, the yield stress of the fluid is increased. 

      The three modes of MRF are the shear mode, valve mode, and squeeze 

mode as shown in Figure 2.4 (Yazid et al., 2014). In shear mode operation, one of both 

of the surface is moving, and the magnetic field is perpendicular to the surface. Shear 

mode is used when the application relates to torque as an output such as in a braking 

system. When the magnetic field is present, the fluid tends to bind together and resist 

any motion of the surface. 

 

Figure 2.4 Magneto-rheological modes of operation (Mazlan et al., 2009) 

 

This property can be applied in controlling the torque continuously (Nguyen et al., 

2014). In valve mode operation, both surfaces are fixed and the fluid moves by external 

pressure. In this mode, the fluid starts to resist the flow and reduces the pressure. 
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Similar to shear mode, the chain creates resistance and the pressure is used to break 

the chain. In the squeeze mode, any or both surfaces move in the direction of the 

magnetic field. With the presence of a magnetic field, the particles come closer 

together and create a displacement to the surface. Squeeze mode is commonly used in 

developing acoustic transducers. 

2.3.1 MRF Device 

Because the state of MRF materials can be controlled by the strength of an 

applied magnetic field, it is useful in applications where variable performance is 

desired. Microprocessors, sensor technologies, and increasing electronic content and 

processing speeds have created real-time control possibilities of smart systems used 

by MRF devices. With different modes of operation, the MRF shows many potential 

applications in industry. The MRF technology offers several advantages compared to 

conventional mechanical devices in terms of controllability (Bossis et al., 2002; 

Nguyen et al., 2014; Russo et al., 2015).Perhaps the most popular application of MRF 

in the industry is the linear damper system as shown in Figure 2.5. This system was 

designed to absorb vibration with wide range frequency (Zalewski et al., 2014). The 

capability to change the stiffness of the fluid inside the damper renders this MRF valve 

useful in many industrial applications even in heavy vehicle design such as truck 

suspension (Orečný et al., 2014; Tsampardoukas et al., 2008).  

In the automotive field, this type of damper is useful for providing a smooth 

driving experience. Boada et al. (2011), Dominguez et al. (2008) and Raju et al. (2015) 

all worked on designing and controlling the MRF damper to suit automotive 

applications. Their prototypes prove that the MRF damper is able to reduce the effect 

of vibration even when random excitation signal emerged. Their works indicate that 

the MRF damper can be controlled intelligently to overcome the effect of vibration 
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due to uncertainty in road terrain. The MRF damper was also tested on a  larger scale 

when it was applied to reduce the effects of an earthquake in a building (Kim et al., 

2015; Li et al., 2013; Uz & Hadi, 2014; Yang et al., 2013). Besides buildings, bridge 

designs also included MRF damper technology. Several researchers explored the 

potential of the MRF damper for improving bridge design (Erkus et al., 2002; Luu et 

al., 2014; Ok et al., 2007; Yang et al., 2011). The critical issue is when the high-speed 

wind effect was considered a factor in design. Passive dampers conventionally used 

nowadays are no longer efficient to cope with uneven climate change. Thus, there is a 

need to exploit an intelligent material such as MRF to design bridges. Figure 2.5 shows 

the MRF damper design which is used in industry and accepted as a future trend in 

damper technology. Besides the valve, MRF also has an important contribution to 

braking system design. 

 

Figure 2.5 MRF damper system (Çeşmeci & Engin 2010) 

 

Braking systems nowadays suffer from several drawbacks such as high 

friction, wear, jerking, and overheating. These issues arise due to the direct contact 

between the disc brake and the brake pad. To overcome this problem, new braking 

concepts were introduced utilising an MRF as an active element (Park et al., 2006). In 

the case of braking, the fluid was placed in between the disc plate and the shaft as 
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shown in Figure 2.6. Karakoc et al. (2008) and Park et al. (2008) developed a 

numerical model for an MRF braking system in order to optimise the geometrical and 

electrical design. An optimal parameter gained from a numerical was validated using 

a developed prototype and showed good agreement. Further the numerical model was 

used to study the behaviour of the braking system. Before that, Bica (2004), Huang et 

al., (2002) and Li and Du, (2003) designed the MRF braking system and studied the 

performance of the brake experimentally. 

 

Figure 2.6 Magneto-rheological brake (Thanh & Ahn, 2006) 

 

However, no numerical model was developed at that stage. The braking system 

also captured the interest of the haptic community in order to improve the efficiency 

of devices (Demersseman et al., 2008). Shiao and Nguyen (2014) proved that the MRF 

brake is feasible to be used in motorcycles. The result from the simulation shows that 

the braking torque produced is sufficient to instantly stop the motorcycle with less 

deceleration effect on the driver. Numerous studies extended the MRF braking system 

concept to develop a clutch system (Bucchi et al., 2013; Wang et al., 2015b; Wang et 

al., 2013a; Wang et al., 2013b). These studies focused on designing an optimal 



21 

 

transmission system with high torque coupled with the use of minimal current. Both 

the brake and clutch showed that the MRF is an emerging technology to be applied in 

the future. A polishing method also showed a significant advancement for developing 

mechanical components using MRF technology. 

In order to understand the effect of particle size on the rheological properties 

of MRF polishing fluid, Jha and Jain (2009) developed a special magneto-viscometer. 

Three viscosity constitutive models were fitted from experimental data. These models 

were the Bingham plastic, Herschel-Bulkley, and Casson Models. Pan and Yan (2015) 

focused on experimental work of understanding the material removal mechanism in 

MRF polishing. An experimental study conducted by Niranjan and Jha (2015) 

contributed significantly toward understanding the effect of the MRF polishing 

process on the tool life. The flow behaviour of MRF polishing directly affected the 

final product. This flow behaviour was studied by Das et al. (2015) where the 

analytical and numerical models were explored in modelling the fluid flow. This 

fundamental work showed that the study of MRF properties in the polishing process 

is still in progress. Many other researchers worked on developing the MRF polishing 

system. Shi et al. (2012) combined the MRF polishing head into a numerical machine 

to determine the advantages of controllability and accuracy of the system. A 

combination of MRF polishing with chemical machining was explored by Jain et al. 

(2012). The system successfully enhanced the surface finish for micro-machining 

products. Concave geometry is a challenge in the MRF polishing system while the 

fluid tends to flow to other areas leading to difficulty in controlling the performance 

of the polishing process. A novel method to solve concave surface polishing was 

introduced and improved by Chen et al. (2015b). Another example of successful 

application of MRF polishing is in improving a piece cavity in a wired electric 
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discharge machining (Wang et al., 2015c). Clearly, the MRF polishing research has 

many areas of application. 

Besides conventional mechanical devices such as damper and brake, MRF also 

shows significant advantages in many other applications. Kaluvan et al. (2014) and  

Kaluvan and Choi (2014) manipulated shear and squeeze modes of MRF to design a 

novel sensor for current and resonance of wave detection. In an application where 

space is a major constraint, the multifunctional actuator requires careful design. To 

answer this, Guo and Liao (2012) designed a rotary multifunctional actuator using the 

MRF. The finite element analysis revealed that the multifunctional actuator could 

possibly provide the desired force. In more advanced applications, Kaluvan et al. 

(2015) developed a microactuator system using MRF. Their experimental result 

suggests that the micro motor in the MRF could be implemented in real industrial 

applications with minimal modification in design. The most challenging application of 

MRF is in developing a valve for controlling the hydraulic system.  

2.3.2 MRF Valve 

The MRF-based control valve provides flow control by varying the electrical 

current to an electromagnet that affects the apparent viscosity of the MRF (Wu et al., 

2011). Increased electric current provides an increased magnetic field, which in turn, 

increases the apparent viscosity of the fluid. This means that the flow rate through the 

valve can be controlled. Figure 2.7 illustrates the fluid flow through the valve. 

MRF valve is a device commonly used to control the speed of the MRF or 

hydraulic actuator. The performance of valve depends on the magnetic circuit design. 

The MRF valve is a key component of the MRF actuation system (Salloom & Samad  

2011). Using MRF valves in MRF actuation systems have many advantages, 
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including: (1) valves have no moving parts, and (2) electronic flow control via an 

electromagnet. The most important advantages of an MRF valve will be weight 

savings and reduction in complexity and no-moving parts as compared to a mechanical 

valve.  

MRF valve has the potential to improve the performance of the hydraulic 

system, especially in terms of accuracy and reduced complexity in fabrication. Many 

researchers are working on designing and optimising the performance of the valve 

(Nguyen et al., 2007; Nguyen et al., 2008; Wang et al., 2009) by optimising control 

energy applied to the valve while considering parameters such as current, geometrical 

dimension, and coil wire size. Similarly, the optimisation of the orifice in the valve has 

been explored (Grunwald & Olabi., 2008; Li et al., 2014). Nguyen et al. (2009) worked 

on the design of the optimal dimension and valve structure using an analytical solution. 

 

Figure 2.7 MRF single valve (Grunwald & Olabi, 2008) 
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The analytical model has been further used to determine a maximum yield stress and 

pressure drop by varying the geometry. In order to achieve a size reduction in the 

valve, Ichwan (2014) successfully demonstrated a novel design for an MRF valve, 

using the meandering flow path. This type of design can minimise the size of the valve 

while maintaining sufficient pressure to operate the valve. 

An optimal valve design is useful for designing the MRF damper (Moon et al., 

2011). The MRF damper is controlled by the orifice opening acting as a valve. The 

damper performance can be increased by optimising the valve geometry. Optimising 

the orifice flow in the damper was studied by other researchers (Fujitani et al., 2002; 

Høgsberg & Krenk, 2008; Milecki, 2001). Work on MRF valve design also can be 

seen in the energy absorber system where Hu et al. (2007) designed the bypass valve 

to create an absorbing mechanism. Coil dimensioning directly affects the core 

induction in MRF. Thus, studying the coil diameter and structure are compulsory in 

developing an optimal valve design. Daniel et al. (2015) developed an analytical model 

for the valve to search for the best combination of coil structure and valve core.  

Nishiyama et al. (2011) showed that the MRF valve design offers significant 

improvement in the bio-medical application. As shown in his experimental work, it is 

important to consider the valve wall effect on the fluid flow behaviour for micro-scale 

applications such as in medical devices. The MRF valves produced to date have yet to 

replace the conventional 4/3 proportional directional hydraulic valve because of its 

shape and extension of the complex system. The role of the 4/3 proportional directional 

valve in the hydraulic system is very important because it can effectively control the 

movement of the double acting cylinder. To solve this problem, Salloom and Samad 

(2011) successfully designed MRF valves that are compact and suitable for controlling 

of a double-acting hydraulic cylinder. The MRF system with the invention of the valve 


