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ABSTRAK 

PERUBAHAN STRUKTUR HIPOKAMPUS DAN EKSPRESI PROTEIN 

HSP70, C-FOS DAN DREAM DI KORDA SPINA SELEPAS RANGSANGAN 

KEPANASAN AKUT PADA TIKUS BERPENGALAMAN STRES 

 

Kajian bertujuan untuk mengetahui kesan stres haba akut pada ekspresi 

protein HSP70, c-Fos and DREAM dalam usaha memahami mekanisma stres di 

peringkat neonat dan kesan pada kehidupan berikutnya. Fasa pertama kajian menilai 

ujian berenang secara paksa (FST) sebagai model induksi stres sederhana pada tikus 

neonat. FST dilakukan pada umur 7, 8 dan 9 hari selepas kelahiran. Kesemua tikus 

neonat hidup dan berada dalam keadaan sihat selepas FST. Berat badan mereka 

menurun pada hari ke 14 hingga 42 dan meningkat semula dan menyamai kumpulan 

kawalan pada hari ke 49 dan seterusnya. Nisbah sel neutrofil dan limfosit meningkat 

secara signifikan pada kumpulan FST berbanding dengan kumpulan kawalan. Skor 

BrdU menurun pada kumpulan FST berbanding tikus kawalan membuktikan 

berlakunya neurogenesis. Skor BrdU di bahagian atas dan bawah  girus dentat adalah 

sama tetapi lebih tinggi berbanding kawasan CA1-3 hipokampus, talamus dan 

retrospenial granular (RSG). Skor BrdU di talamus dan RSG lebih rendah 

berbanding kawasan CA1-3 hipokampus. Ini menunjukkan bahawa FST adalah 

model yang baik untuk mengkaji stres akut dalam tikus neonat. Pada masa yang 

sama, model ini mampu menunjukkan perbezaan tindak balas stres di hipokampus. 

 

Fasa kedua melibatkan kumpulan tikus dewasa yang mengalami FST semasa 

neonat (tikus berpengalaman stres) berbanding tikus tanpa pengalaman stres. Kedua-

dua kumpulan dibahagi pula kepada kumpulan tikus kawalan (C), tikus yang 

menerima suntikan awal nor-BNI (N) dan tikus yang menerima suntikan awal 

kortikosteron (CO) sebelum didedah kepada stres haba pada suhu 42±1°C selama 15 
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minit. Dua jam berikutnya haiwan dimatikan, diikuti dengan penentuan ekspresi 

protein HSP70, c-Fos dan DREAM. Kematian sel neuron dinilai melalui kaedah 

imunohistokimia (IHC) dan mikroskop elektron transmisi (TEM). Pada kumpulan 

kawalan, HSP70 meningkat di kalangan tikus berpengalaman dengan stres dan haba 

(CTH F). Tanpa bersandar kepada pengalaman, ekspresi HSP70 adalah tertinggi 

pada kumpulan kortikosteron. Ekspresi c-Fos yang tertinggi adalah pada kumpulan 

kawalan tanpa pengalaman stres (CTH C) manakala kumpulan berpengalaman stres 

(CTH F dan COTH F) menunjukkan ekspresi c-Fos yang lebih rendah. Begitu juga, 

ekspresi DREAM yang tertinggi adalah di kalangan kumpulan kawalan (CWTH C 

dan CTH C) berserta COTH F, kemudian diikuti oleh CWTH F dan CTH F. 

Kesimpulannya, berbanding dengan tikus tanpa pengalaman stres, didapati bahawa 

tikus berpengalaman stres lebih berkemampuan menahan stres yang berikutnya. Pada 

kumpulan tikus nor-BNI, hampir kesemua protein kurang di ekspresi. Ini 

menunjukkan bahawa nor-BNI telah bertindak sebagai antagonis reseptor opiat 

kappa, yang mana menyebabkan tikus mengalami stres dan kesakitan yang minima. 

Kesimpulannya, pengalaman stres semasa neonat menyebabkan perubahan di sistem 

saraf periferi. Ini menunjukkan bahawa tikus berpengalaman stres lebih mampu 

menahan stres yang berikutnya semasa dewasa. 

 

Namun demikian, kematian sel neuron masih berlaku di kawasan  

hipokampus CA3 diikuti dengan CA2 dan CA1 dan ini menunjukkan bahawa nor-

BNI bertindak secara spesifik kepada tisu. Mikroskop elektron transmisi 

menunjukkan kemusnahan kepada sitoplasma, nukleus dan mitokondria manakala 

radas Golgi tidak mengalami sebarang perubahan. Tahap kemusnahan organel dan 

kematian sel adalah tertinggi pada kumpulan COTH F di mana kematian berlaku 
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sebaik sahaja diberi stres haba. Suhu rektum, walaupun tidak signifikan, telah 

menunjukkan peningkatan pada kesemua kumpulan kecuali pada COTH C  yang 

mengalami hipotermia dan kemungkinan proses renjatan. Paras kortikosteron 

didapati tidak signifikan selepas dua jam stres haba, yang membuktikan bahawa 

paras telah menurun ke aras basal. Struktur dan fungsi hipokampus telah berubah 

akibat pengalaman stres semasa neonat dan ini menyebabkan pengurangan 

neurogenesis dan peningkatan kematian sel neuron. Kesimpulannya, stres haba akut 

pada tikus berpengalaman stres menyebabkan dua manifestasi yang berikut; (1) pada 

korda spina, stres haba akut dianggap “neuroprotective” dan kesan ini adalah khusus 

kepada tisu yang mengandungi reseptor opiat kappa di korda spina; (2) pada otak 

(terutama hipokampus), stres haba akut berupaya menyebabkan kematian sel neuron 

dan pengurangan neurogenesis. 
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ABSTRACT 

STRUCTURAL CHANGES OF HIPPOCAMPI AND EXPRESSION OF 

HSP70, C-FOS AND DREAM PROTEINS IN THE SPINAL CORD AFTER 

ACUTE THERMAL STIMULUS OF EARLY STRESS-EXPERIENCED 

RATS  

 

This current study was to explore the effect of acute thermal stress on the 

expression of HSP70, c-Fos and DREAM proteins in an attempt to understand the 

mechanisms of neonatal stress and the effect on stress later in life. Phase one of this 

study evaluated forced swimming test (FST) as a model for induction of moderate 

stress in neonatal rats. Forced swimming test was applied to neonatal rats on days 7, 

8 and 9 of life. All the pups survived and remained healthy after FST. From day 14 to 

day 42, the FST group had significantly lower body weights when compared to the 

control group. Their body weights were back to control levels on day 49 onwards. 

Forced swimming test significantly increased neutrophil/lymphocyte ratios in the 

stress group compared to controls. There was downregulation of neurogenesis as 

evidenced by the decreased BrdU scores in the FST group when compared to 

controls. 5’- bromo-2’-deoxyuridine scores in both upper and lower blades of dentate 

gyrus were similar but higher than other subfields of hippocampus (CA1-3), 

thalamus and retrosplenial granular (RSG) areas. BrdU scores in the thalamus and 

RSG were significantly lower than that of the CA1-3 subfields of the hippocampus. 

Forced swimming test was found to be a good model for studying acute stress in 

neonatal pups. It was able to show differentiation of the stress response in the 

hippocampus. 

 

Phase two involved the same group of rats subjected to FST in the neonatal 

period (stress-experienced rats) and included a comparison with non stress-
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experienced rats. Both groups were subdivided into control (C), pretreatment with 

either nor-BNI (N) or corticosterone (CO) groups, before exposure to thermal stress 

at 42±1°C for 15 minutes. The animals were sacrificed two hours later, followed by 

determination of HSP70, c-Fos and DREAM proteins expression. Neuronal cell 

death was evaluated with immunohistochemistry (IHC) and TEM respectively. In the 

control group, HSP70 was upregulated in stress-experienced and thermal rats (CTH 

F). Regardless of experience, the corticosterone group had the highest expression of 

HSP70. The highest expression of c-Fos was in the stress-experienced control group 

(CTH C) while stress-experienced groups (CTH F and COTH F) showed lower 

levels of c-Fos expression. Similarly, the highest expression of DREAM protein was 

in the control groups (CWTH C and CTH C) and COTH F, followed by CWTH F 

and CTH F. Thus, stress-experienced rats were better able to withstand subsequent 

stress compared to rats with no previous stress experience. In the nor-BNI group 

almost all proteins were less expressed, showing it worked as a kappa opioid 

antagonist, where the animals experienced less pain and minimum stress Thus, 

neonatal stress experience caused changes in the peripheral nervous system 

indicating that stress-experienced rats are better able to withstand subsequent acute 

stress during the adult stage. 

 

However, neuronal cell death remained present in the hippocampus in CA3, 

followed by CA2 and CA1 subfields, suggesting that nor-BNI was tissue specific. 

Transmission electron microscope showed damaged cytoplasm, nucleus and 

mitochondria, whereas the Golgi apparatus was unaffected. COTH F group has 

severe damage of organelles and death occurred immediately after heat stress. Rectal 

temperature showed an incremental pattern even though it was not significant except 
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for COTH C where there was hypothermia and probably shock. Corticosterone level 

was not significant after two hours thermal stress suggesting it had returned to basal 

levels.  The structure and function of the hippocampus was altered by neonatal stress 

experience resulting in depression of neurogenesis and increased neuronal cell death. 

Thus, acute thermal stress in stress-experienced rats result in a dual manifestation: 

(1) in the spinal cord, the acute thermal stress appears to be neuroprotective and this 

effect is tissue specific to the kappa-opioid receptors in the spinal cord; (2) in the 

brain (especially), acute thermal stress appears to cause persistent neuronal cell death 

and depression of neurogenesis. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 THEORY AND CONCEPT OF STRESS 

Selye (1976), a pioneer in stress research, defined stress as “the nonspecific 

response of the body to any demands made upon it”. These demands are a result of 

various factors that disrupt homeostasis and are collectively known as stressors. 

These factors increase the demand for readjustment (Selye, 1974) and lead to an 

overall disruption of body responses that is defined as stress. As a result, the body is 

forced to make adaptive changes via various non-specific responses in order to 

maintain homeostasis.  

 

A similar definition can be found in Bailliere’s Comprehensive Veterinary 

Dictionary (1988) where stress is defined as the sum of biological reactions to any 

stimulus, which tends to disrupt the homeostasis of organisms. In general, biologists 

define stress “as a physiological reaction involving heightened activity of the 

pituitary and adrenal cortex (Hill, 1983) in order to maintain homeostasis”. Stress 

can also be observed within the context of veterinary science and agriculture where 

conditions such as climate change, social interactions, stock density, nutrition, 

disease and human interactions (Harvey et al., 1984) are examples of potential 

factors that may affect homeostasis and therefore result in stress of an animal. Thus, 

interestingly, while all definitions of stress are related to the disruption of 

homeostasis, nevertheless, as pointed out by the American Institute of Stress               

(http://www.stress.org/), there is no actual single and specific definition of stress as 

what is stressful for one person or animal may be pleasurable or have little effect on 
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others.  Animals and people all react to stress in different ways and this makes it very 

difficult to experimentally design research paradigms that specifically address the 

concept of stress. In addition, any experimental design involving stress is further 

complicated by the fact that there are numerous factors, which may appear harmless 

but have the potential to be stressors. These factors may be in the form of physical 

(heat, noise), chemical (food, hormones), microbiological (viruses, bacteria or 

parasites), physiological (tumours, abnormal function), developmental (old age, 

genetic changes) or psychological (emotional and mental disturbances) stimuli (van 

Wynsberghe et al., 1995). 

 

Stress can be deleterious especially if it is in combination with injury, pain or 

disease. However, it must be realised that while stress may be damaging to biological 

systems, nevertheless, it does have a positive effect of enabling the organism to adapt 

to change and maintain homeostasis in the presence of rapidly changing situations. 

Thus, stress may lead either to a positive or negative outcome, depending on the 

interactions between individual characteristics and the properties of stressors, stress 

and physiological systems of the organism (Carlson, 1994).  

 

1.2 STRESS MODELS 

As mentioned above, stress is a multi-factorial and multi-dimensional concept 

that can be represented by an equally varied number of stress models. Recent studies 

on stress have used many different models that are applicable for use in adult 

laboratory animals. These stress models include animal restraint (Bain et al., 2004), 

exposure to a novel environment (Tang & Verstynen, 2002), cold and warm 

temperatures (McKitrick, 2000), feed restriction (Zulkifli et al., 2002) and sleep 
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deprivation (Mirescu et al., 2006). While these are well-established models of stress 

in adult animals, nevertheless, a suitable stress model in neonatal laboratory animals 

is still not well established.  

 

There are several stress models that have been used in neonatal laboratory 

animals, such as early postnatal handling (which causes prolonged anxiety) as 

described by Plotsky and Meaney (1993), maternal separation (which causes 

exaggerated hormonal responses and altered neurotransmitter release) (Ladd et al., 

1996) and feed restriction (Zulkifli et al., 2002). Nevertheless, early postnatal 

handling is not easy due to the difficulty in maintaining consistency of handling. 

Similarly, Zulkifli et al. (2002) showed that moderate stress could be induced early 

in life by moderate feed restriction (60% at 4, 5 and 6 days of age) resulting in heat 

tolerance later in life through enhanced heat shock protein 70 (HSP70) response.  

However, the procedure is quite tedious and a lot of time is required for measuring 

food and body weight in order to calculate the actual amount of food that was needed 

by the animal for each day of feed restriction. The various disadvantages of these 

models of moderate stress were the main reason why there is still a lack of proper 

stress models in neonatal animals. In this current study, the moderate stress was 

achieved not through feed restriction but through forced swimming test (FST).  The 

procedure is simple, low-cost, easy to manage and has proven its reliability across 

laboratories for testing potential antidepressant activities (Slattery & Cryan, 2012). 

Therefore, this study evaluated FST as a model for creating a moderate stress 

situation in neonatal rats. This current study also evaluated the degree of tolerance of 

the pups to the FST model, which mimics the watery medium and floating sensation 

inside the uterus during the prenatal period.  
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1.2.1  Forced swimming test 

The FST was first used in rats and mice by Porsolt et al. (1977). Since then, it 

has been widely accepted as a model for the measurement of the effects of 

antidepressant treatment especially in adult animals (Cryan et al., 2005). However, 

this stress model has not been used in neonatal rats. Therefore, this current study 

evaluated the effectiveness of FST to induce stress in neonatal rats. The effect of 

stress was measured through neutrophil/lymphocyte ratios and weekly body weight. 

Neurogenesis was also evaluated to see the significance of stress experience early in 

life on the development of the hippocampus. 

 

1.3 EFFECT OF STRESS EXPERIENCE IN EARLY LIFE  

Stress is a universal phenomenon in both humans as well as animals and has 

been extensively studied in various contexts. However, despite the large body of 

knowledge on stress (Shalev et al., 2000; Koolhaas et al., 2011) it is as yet unclear as 

to the mechanisms involved in the effect of stress during the neonatal period of life.  

 

Interestingly, it has been shown that handling of laboratory animals during 

their first few weeks after birth, inclusive of a brief separation from their mothers, 

was found to decrease age-related learning disturbances and increased resistance to 

the effects of later stressors (Meaney et al., 1996). It has also been shown that 

animals which experienced stressful stimulation during the first 21 days of life 

showed basal concentrations of adrenocortiotrophic (ACTH) and corticosterone 

comparable to that of non-stimulated animals. However, as adults, when exposed to a 

stressor, the stimulated animals displayed blunted ACTH and corticosterone 

responses and a faster return to basal hormone levels. It is postulated that these 
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changes involve complex neuronal changes associated with dysfunction of the 

hypothalamo-pituitary axis (HPA) (Meaney et al., 1996) while other researchers 

found a link in relation to the propensity to consume alcohol during later adulthood 

(Jones et al., 1985; Lancaster, 1998).  

 

Liu and colleagues (1997) conducted studies to determine why brief handling 

involving separation from the mother had such pronounced and persistent effects. 

After reuniting with their young following the brief separation, mothers exhibited 

increased licking, grooming, and nursing of their offspring. The researchers 

correlated these maternal responses with altered hormonal responses to stressors. 

They also suggested that maternal behavioural style acted to "programme" 

hypothalamo-pituitary-adrenal (HPA) responses to later environmental stressors, 

perhaps including factors like alcohol intake. However, the actual mechanisms 

involved in changing the HPA responses were not clarified.  

 

Anisman et al. (1998) studied two mouse strains that exhibit very different 

behavioural and neurochemical profiles in response to stressors. The more stress-

reactive strain displayed relatively poor maternal behaviour, compared to the less 

stress-reactive strain (Anisman et al., 1998). However, when young mice of the 

stress-reactive strain were raised by mothers from the less reactive strain (cross-

fostered on the day of birth), some behavioural disturbances and the exaggerated 

HPA alterations of the more reactive mice were decreased. However, maternal 

behaviour alone is not sufficient for this outcome to emerge because it has been 

shown that being raised by a mother from the more reactive strain did not result in 

behavioural or hormonal disturbances in young mice of the more resilient strain. 
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Thus, it appears that heightened stress reactivity in these mice result not only from 

inadequate maternal care but also a combination of genetic factors (Zaharia et al., 

1996). In this present study, the FST model was used to examine the expression of 

several stress-associated molecular markers in an attempt to evaluate the molecular 

mechanisms associated with stress in the neonatal period. Indeed, this current study 

focused not only on the effect of early neonatal stress but also examined if this early 

stress has any positive influence on the ability to tolerate subsequent stress later in 

life. 

 

1.4 NEUROGENESIS 

Neurogenesis is most active during pre-natal development where cells 

proliferate, survive and differentiate into neurons. Neurogenesis can continue 

throughout adulthood predominantly in two regions (Eriksson et al., 1998): 

 The subventricular zone (SVZ) lining the lateral ventricles, where the new 

cells migrate to the olfactory bulb via the rostral migratory stream.  

 The subgranular zone (SGZ), part of the dentate gyrus of hippocampus.  

 

The formation of new neurons can be divided into three major steps 

(Andersson, 2010) and in the hippocampus, as shown in Figure 1.1, the three steps 

include: proliferation of a neuronal stem cell in the SGZ, migration into deeper 

granular cell layers (GCL) and differentiation, where the mature neuron send out 

dendrites into the molecular layer (ML) and the axon (mossy fibre) through the hilus 

to the CA3 field. 
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Figure 1.1: Neurogenesis in the dentate gyrus (DG).  

 

ML – molecular layer, GCL – granule cell layer, SGZ – subgranular zone and mfp – 

mossy fibre. 

 

 

Adapted from Aberg (2007).  
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In the adult brain of rodents (Markakis & Gage, 1999), non-human primates 

(Kornack & Rakic, 1999; 2001), and humans (Eriksson et al., 1998), neurogenesis 

appears to occur throughout life in the anterior part of subventricular zone of the 

lateral ventricle and the GCL of the hippocampus.  Here, the cells arise from 

progenitors within the border of the hilus and DG and accumulate in the DG 

(Seaberg & van der Kooy, 2002). Newly generated neurons in the DG are 

morphologically distinguishable from other granule cell neurons (van Praag et al., 

2002), may be long lived, may contact and receive appropriate targets from the 

existing hippocampal circuitry, generate action potentials and have functional 

synaptic inputs and may be important for learning and/or memory formation (Shors 

et al., 2001). 

   

Several different factors that regulate neurogenesis have been identified. It has been 

shown that physical activity and environmental conditions can affect proliferation 

and survival of neurons in vertebrates (Kempermann & Gage, 1999) as well as 

invertebrates (Cayre et al., 1996).  It has also been found that crayfish in an 

"enriched" environment (filled with gravel, foliage, tunnels, a tree-like structure, and 

a rock) developed increased neurogenesis and neuronal survival compared to siblings 

in an "impoverished" environment (Ayub et al., 2011) Hormones have also been 

found to influence the rate of neurogenesis in vertebrates (e.g. testosterone) and 

invertebrates (e.g. ecdysone). Serotonin is believed to play a key role in neurogenesis 

in a variety of organisms (Beltz et al., 2001). In lobsters, depletion of serotonin 

dramatically reduced the proliferation and survival of olfactory projection neurons 

(Beltz et al., 2001) and local interneurons (Benton & Beltz, 2001). Most recently, 

neurogenesis was found to follow a circadian rhythm in the juvenile lobster (Goergen 

et al., 2002) where significantly more neurons were formed at dusk, the most active 

time for lobsters, than at any other time of the day. Thus, in this present study, the 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ayub%20N%5Bauth%5D
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presence of neurogenesis is an important indicator of increased stimulation, increased 

hormone release and greater physical activity: all of which occur in the presence of 

stress. In the context of this study, the focus will be on acute thermal stress.   

 

1.5 THERMAL STRESS 

Body temperature represents the balance between heat production and heat 

loss and it is controlled by the thermoregulatory centre in the hypothalamus.  

Therefore, when animals are exposed to thermal stress, the heat loss centre will be 

activated to protect the body from excessively high temperature, which can be 

particularly damaging to the body. Most heat loss occurs through the skin via the 

physical mechanisms of heat exchange – radiation, conduction, convection and 

evaporation. Heat loss centre triggers one or both of the following: 1) vasodilation of 

cutaneous blood vessels and 2) enhanced sweating. If normal heat loss processes 

become ineffective, the hyperthermia that ensues depresses the hypothalamus. As a 

result, heat-control mechanism suspended, creating a vicious positive-feedback 

cycle. Sharply increasing temperatures increase the metabolic rate, which in turn 

increased the heat production. The skin becomes hot and dry and as the temperature 

continues to spiral upward, multiple organ (including brain) damage becomes a 

distinct possibility. This condition, called heat stroke, can be fatal (Gomes Ramos et 

al., 2012).  

 

The thermoneutral zone (TNZ) is the temperature tolerance range of the body 

where there is a balance between heat gain and loss in order to ensure comfort 

(Hafez, 1968). The organism adjusts to the temperatures within the zone through 

different responses requiring little energy. However, heat stress, as indicated by 

elevated body temperature, occurs when environmental extremes, either acute or 
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chronic, lead to alterations in the rate of heat production and a rise in body 

temperature (Francis et al., 1991). This increase in body temperature (hyperthermia) 

as a response to thermal exposure is a well-established mechanism (Ahmed et al., 

2007). It can often be attributed to failure of the proper physiological and 

behavioural responses of the peripheral receptors, hypothalamus, nervous system, 

endocrine glands or enzymes thus leading to heat stress.  

 

1.5.1 Physiological responses to heat stress 

A variety of physiological responses are evoked to cope with changes in 

ambient temperatures (Harvey et al., 1984). In birds, blood flow is diverted from 

certain internal body organs such as the liver, kidneys and intestines to dilated blood 

vessels of the peripheral tissue (skin) in order to facilitate heat loss (Darre & Harison, 

1987). The lungs and kidneys along with various buffers systems play an important 

role in preventing rapid changes in the blood pH. However, as the respiratory rate 

increases in heat-stressed broilers, there is a corresponding decrease in the levels of 

blood carbon dioxide. These changes may alter the acid base balance and 

subsequently lead to hypocapnia and respiratory alkalosis (Teeter & Smith, 1986). 

 

Exposure of humans or animals to high ambient temperatures poses several 

problems. In the poultry industry it may result in a reduction of egg production, egg 

size, feed consumption, feed efficiency, growth rate, hatchability and survivability 

(Kuttlu & Forbes, 1993). While in humans, the primary signs and symptoms of heat 

stroke are confusion, irrational behaviour, loss of consciousness, convulsions, a lack 

of sweating (usually); hot, dry skin, and an abnormally high body temperature, e.g., a 
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rectal temperature of 41°C. If body temperature is too high, it can be fatal (Che 

Norma, 2000).  

 

Similarly, heat stress can retard the growth rate of broilers when they are 

reared at temperatures higher than 21 to 25°C (Meltzer, 1980). Modern fast growing 

broiler chicks must consume large quantities of feed in order to attain maximal 

growth rate. However, the intake and metabolism of feed have a thermoregulatory 

effect and at high environmental temperatures the heat increment aggravates the 

problem by adding more heat to an already heat stressed system (Kuttlu & Forbes, 

1993). The birds, therefore react by reducing voluntary feed intake (Howlider & 

Rose, 1987) and metabolic rate, resulting not only in poor feed efficiency and body 

growth (van Kampen, 1981) but also in decreased egg production (Clark & 

Sarakoon, 1967). Geraert et al. (1996) indicated that half of the growth reduction in 

hot environments was due to a direct effect of high temperature. This reduction of 

efficiency was partly explained by decreased metabolic utilisation of nutrients, 

increased heat production, reduced protein retention, and enhanced lipid deposition 

(Ain Baziz et al., 1996). 

 

1.5.2 Biochemical responses to heat stress  

In animals, aversive stimuli such as heat stress, can lead to an imbalance of 

various biochemical substances in blood (Teeter et al., 1985). However, the literature 

on the effects of heat stress on biochemical reactions is often contradictory. In the 

face of an acute stressor, the blood glucose level increases (Collier et al., 1982), and 

Webster (1976) attributed the phenomenon to depression of both catabolic and 

anabolic enzyme secretions, retarded glucose utilisation and consequently decreased 
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metabolic rate. Another explanation from Thompson, (1973), linked the 

hyperventilation of acute stress to the increase in level of glucocorticoid hormone 

which consequently led to an increased breakdown of glycogen into glucose. 

Incontrast, studies in ruminants (Alnaimy et al., 1992) demonstrated that blood 

glucose level decreased significantly in response to high ambient temperature. This 

could be due to the marked dilution of blood and body fluids as a whole in the heat 

stressed animals (Habeeb, 1987) on the increase in glucose utilisation to produce 

more energy for greater muscular activity required for high respiratory response. On 

top of that, the reduction in production of propionic acid in the rumen and the 

decrease in feed intake as well as hepatic capacity for gluconeogenesis (Sano et al., 

1983) could also be linked to lower plasma glucose levels in heat stressed animals. 

Exposing chickens to a temperature of 41°C may increase body temperature to 

between 44.5°C to 45.0°C with an associated increase in plasma sodium and chloride 

and a concurrent decrease in plasma potassium and phosphate (Ait-Boulahsen et al., 

1989). In normally hydrated fowls however, heat stress (35°C to 45°C for 10 to 12 

hours) produced no significant changes in the serum concentrations of chloride, 

potassium, sodium and calcium, or in the serum osmolarity, although serum 

phosphate levels declined (Arad et al., 1983). 

 

1.5.3 Hormonal responses to heat stress 

The Merriam-Webster’s Medical Dictionary (http://www.merriam-

webster.com/) defines hormones as chemical substances, which are formed in one 

organ or part of the body and carried in the blood to another organ or part where they 

exert functional effects. Hormones can modify the functional activity, and sometimes 
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alter the structure, of just one organ or tissue or various numbers of them. They are 

produced and release based on the physiological demands of the body system. 

 

1.5.3 (a)     Corticosteroids 

When an animal is exposed to a stressor, the paraventricular nucleus of the 

hypothalamus (PVN) releases corticotrophin-releasing factor (CRF) which stimulates 

the anterior pituitary gland to secrete ACTH (Varghese & Brown, 2001). ACTH 

enters the general circulation and stimulates the adrenal cortex to synthesise and 

release corticosteroids. At the cellular level, ACTH alters the production of cellular 

proteins and enzymes (Gross & Siegel, 1993). In conditions of stress, increased 

levels of corticosterone promote gluconeogenesis from muscle proteins and lipolysis 

of adipose tissue for immediate energy requirements. However, prolonged 

hypersecretion of corticosteroids may result in cardiovascular disease, 

hypercholesterolemia, gastrointestinal lesions, retardation in growth, reduced 

reproductive capability (Moberg, 1985) and immunosuppression (Roth, 1985).  

 

1.5.3 (b)     Thyroid hormones 

The importance of the thyroid gland in adaptation to heat stress is related to 

the central role that thyroid hormones play in the regulation of metabolism (McNabb, 

1988). In chickens, thyroid hormone secretion is depressed as environmental 

temperatures increase, thus heat tolerance improves as thyroid function is reduced. 

The two active forms of thyroid hormones are thyroxine (T4) and triiodotyronine 

(T3) while the inactive form is reverse triiodotyronine (r-T3). When animals are 

exposed to warm temperatures, T4 is activated by conversion into r-T3, whereas 

during cold exposure T4 is converted into T3, which stimulates metabolic rate. 
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Prolonged exposure of animals to high temperatures decreased T3 but not T4 

concentrations. The explanation for the phenomenon has yet to be documented. 

 

1.5.3 (c)     Aldosterone 

Aldosterone, a steroid hormone secreted by the adrenal cortex, causes sodium 

retention. Aldosterone hormones are known to play an important role in controlling 

body fluid together with vasopressin hormones. In cattle, plasma aldosterone 

concentration has been reported to decrease following heat stress (Niles et al., 1980). 

This could be attributed to a large decrease in potassium retention in heat stress 

(Kamal et al., 1962). With prolonged heat stress, mineralocorticoids seem to 

decrease due to the change in blood electrolytes. The increase in body fluids which 

occurs in heat stressed cattle may be partly responsible for this decrease (Alnaimy et 

al., 1992), since the increase in the extracellular fluid volume decreases the 

aldosterone secretion.  

 

1.5.3 (d)     Catecholamines 

The catecholamines are secreted by specialised cells derived from the neural 

crest and located in the medulla of the adrenal gland. These hormones can be divided 

into two types: adrenaline (A) and noradrenaline (NA) which are synthesised and 

released from the adrenal chromaffin cells. Harvey et al. (1986) indicated that, the 

response of both hormones to stress is similar to that of corticosterone since both 

adrenal cortical hormone and ACTH stimulate the release of both A and NA. Both 

adrenal catecholamines have a large number of actions, most of which contribute to 

the sympathetic fight-or-flight response. They promote glycogenolysis (breakdown 

of glycogen to glucose-1-phosphate) in skeletal and cardiac muscles. This action 
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mobilises glucose in those tissues (e.g. muscle and cardiovascular system tissues) 

that are typically involved in response to emergencies. In addition, these hormones 

stimulate the strength and rate of the heart beat and the contraction of vascular 

smooth muscle, thereby raising the blood pressure (Kadetoff, 2012).      

 

1.5.3 (e)     Melatonin 

Melatonin is an indolamine hormone synthesised and released by the pineal 

body during the hours of darkness. Melatonin has been implicated in 

thermoregulation in birds (John & George, 1991) and may regulate the circadian 

rhythm in body temperature. John et al. (1978) indicated that in pigeons, body 

temperature is relatively lower in the night when both plasma and pineal levels of the 

melatonin are high. In contrast, body temperature is higher in the day when the 

melatonin levels are low. High concentration of melatonin hormones may help the 

animal to dissipate heat by enhanced process of vasodilation and blood flow to 

peripheral tissue particularly to the foot (Jones & Johansen, 1972). In addition, 

melatonin also acts centrally by lowering the set point of the main thermostat, which 

is believed to be present in the hypothalamus (John & George, 1991).  

 

1.5.4 Feed and water intake 

 High ambient temperatures stimulate the peripheral thermal receptors to 

transmit suppressive nerve impulses to the appetite centre in the hypothalamus 

causing reduced feed consumption (Alnaimy et al., 1992). Thus, less nutrients are 

available for enzymatic activities, hormone synthesis and heat dissemination, which 

minimises thermal load (Kamal, 1975). In mammals, exposure to severe heat, 

suppresses the production of hormone releasing factor by the hypothalamus, causing 
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a decrease in pituitary hormonal secretion (Johnson, 1974), insulin and possibly 

thyroxine (Habeeb, 1987). According to Niles et al. (1980) these changes may slow 

down the metabolic pathways, causing drastic impairment of protein utilisation. 

Under these situations, the rate of protein synthesis is unable to compensate for the 

increase in protein metabolism, which leads to a negative nitrogen balance. The 

destruction in protein tissue is due to an increase in glucocorticoid hormone which is 

responsible for protein catabolism (Selye, 1976).  

 

Increasing environment temperature may change the water intake regime, 

where animals will consume more water (Deyhim & Teeter, 1991). The increase in 

water consumption occurs immediately (May & Lott, 1992), in order to balance for 

water loss through evaporative cooling (Mench, 1985). The intermediate increase in 

water consumption meets the intermediate demands of evaporative cooling from 

respiratory surfaces and associated decline in food consumption reduces the 

contribution of metabolic heat to the total heat load that requires dispersion.  

 

1.6 THE CELLULAR STRUCTURE 

A brief description of the cell is provided as background for the explanation 

regarding changes in the cell following heat stress. Basically, a cell (Figures 1.2 and 

1.3) has a nucleus, which is surrounded by cytoplasm. The nucleus has a nuclear 

membrane, chromatins and a nucleolus. It also contains important genetic material 

within the chromosomes. The cell membrane not only provides the structure and 

shape, but it is protective in function as the selectively permeable cell membrane, 

controls movement of materials across the cell membrane.  
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Figure 1.2: A eukaryotic cell, its cytoplasm, and its organelles.  

 

 

Adapted from Eroschenko (2008). 
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Figure 1.3: Micrograph of a eukaryote cell consists of organelles such as cytoplasm 

(C), endoplasmic reticulum (ER), golgi apparatus (G), lysosomes (L), mitochondrial 

(M), nucleus envelope (NE), plasma membrane (PM) and Vacuoles (V).  

 

 

Adapted from Eroschenko (2008). 
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The endoplasmic reticulum (ER) transports material from one part to another 

part of the cell. There are two types of endoplasmic reticulum: 

•   RER is the rough endoplasmic reticulum (attached to ribosomes)  

•   SER is the smooth endoplasmic reticulum (no ribosomes) 

 

The ribosome is made of ribonucleic acid (RNA) and protein enzymes and it 

has an important role in protein synthesis. Mitochondria are known as the 

“powerhouses” of cell. They consist of a double-layered membrane where the inner 

part consists of folds, called cristae that assist in the breakdown of glucose 

molecules. The energy released through this process is stored in the form of 

adenosine triphosphate (ATP). The Golgi apparatus is made up of numerous layers 

which form sac-like structures and help in protein packaging and its distribution to 

other parts of the cell. 

 

Centrioles lie near the nucleus and are made up of nine tube-like structures, 

each of which has three tubules. They release spindle fibres which attach to 

chromosomes during the cell division. Lysosome is a structure containing several 

enzymes. It helps for the breakdown of larger molecules into small parts and is also 

responsible for the transport of waste out of the cell. Vacuoles store food and water 

and provide turgor pressure against the cell walls.  

 

1.6.1     Structural changes due to heat stress 

1.6.1 (a)     Concepts in cell injury 

When animals or humans are exposed to any form of stress, their body 

system will try to restore homeostasis. Failure of homeostasis results in cell injury. 
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Cell injury can be divided into two types: reversible and irreversible injury. In 

reversible injury, the cell is able to overcome the insult, while irreversible injury can 

eventually lead to cell death (Figure 1.4).  Cell death can be classified into two major 

types: necrosis and apoptosis. 

 

     i. Necrosis 

Necrosis is characterised from the activities of diseased organisms, toxins or 

physical factors, as well as inadequate nutrition or starvation due to an interrupted 

normal blood flow or avascular necrosis (Bejar et al., 2005). Changes of 

morphologies in cells undergoing necrosis result from enzymatic degradation and 

denaturation of proteins of cellular components (Majno & Jovis, 2004). Those tissues 

having necrosis may undergo characteristic alterations over time. Grossly, all the 

necrotic tissues undergo colour changes and acquire a firm consistency within the 

first 24 hours except for the brain. Within two to three days, a mark delineated by an 

inflammatory reaction is presented, which may have fibrinous exudates. Then, a 

gray/white periphery area, due to healing process, occurs after a week, and after 

several months, a fibrous scar develops. However, in brain tissue the gross changes 

start with a softening and loss of tissue definition resulting in extreme softening after 

two to three days and a rim of peripheral hyperaemia. After several months, a cystic 

area traversed by fibrous strands may be seen.  

 

Microscopically, the earliest changes include a mild degree of cytoplasmic 

oedema, dilatation of endoplasmic reticulum, slight mitochondrial swelling, 

disaggregation of polysomes and the present of small aggregates of condensed  
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Figure 1.4: Schematic diagram of normal cells and the changes in reversible and 

irreversible cell injury.  

 

 

Adapted from Mitchell and Cotran (2003). 
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chromatin around the nuclear periphery (Mitchell & Cotran, 2003). All the 

alterations are probably all reversible, but in dying cells are  followed by a further set 

of changes that are irreversible; it is the stimulation of these which defines the ‘point 

of return’ in the route to death (Laiho & Trump, 1975).This second set includes ‘high 

amplitudes’ swelling of mitochondria – a florid dilation with rupture of internal 

cristae and usually, development of matrix densities of flocculent or granular types. 

Later lethal alterations include extensive cytoplasmic swelling, dissolution of 

cytoplasmic organelles and rupture of plasma membranes.  

 

Necrosis can be classified into three types: coagulation necrosis occurs as a 

result of protein denaturation (cell shape and tissue architecture are maintained 

remained and it is the most common type of necrosis), colliquative or liquefactive 

necrosis results from enzymatic degradation (does not involve the preservation of 

tissue architecture), and fat necrosis is due to the action of fat degrading enzymes 

known as lipases and occurs in tissue with a high fat content such as pancreas 

(Brauchle, et al., 2014). 

 

      ii.     Apoptosis 

Apoptosis has been observed in a variety of tissue including; prostate, adrenal 

cortex, endometrium, thymus and embryonic tissue. Apoptosis, by contrast, is 

inherently “programmed” as part of cellular processes, allowing the cell to die in 

response to variety of signals without seriously affecting neighbouring cells, that is it 

does not elicit an immune response. It is frequently physiological, and regulated by 

changes in the levels of recognised trophic hormones or by lesser known but 

undoubtedly physiological factors in embryonic development. Further, necrosis 

http://www.nature.com/srep/2014/140415/srep04698/full/srep04698.html#auth-1
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apparently represents loss of plasma membrane volume control, initiated, or at least 

perpetuated by collapse of cellular energy supply, but the initiation of apoptosis in 

several different types has been shown to require continuing macromolecular 

synthesis and perhaps new gene activation and involve the early appearance of non-

lysosomal nuclease activity in the nucleus. Apoptosis is a common and essential 

form of cell death that occurs under both physiological and pathological conditions 

such as the apoptosis present during development of the hands and tail of frogs 

(Mosser & Martin, 1992). 

  

Details of the morphology of apoptosis have been extensively reviewed 

(Asadi-Shekaari et al., 2009). Ultrastructurally the earliest changes of apoptosis 

include the loss of cell junctions and other specialised plasma membrane structures 

such as microvilli. At the same time the cytoplasm becomes condensed and nuclear 

chromatin marginates into one or several large masses, which initially may blister the 

nuclear membrane outwards and then coalesce to form crescentic caps around half or 

more of the nucleus. Apoptosis involves separation of the cell from it neighbours, 

condensing of the cytoplasm, condensing of the plasma membrane and finally 

blebbing off apoptotic bodies, which contain various organelles and chromatin 

fragments (Figure 1.5). In such organisms, total cell number is a function of both cell 

proliferations via mitosis and cell death. Necrosis is rarely seen under physiological 

conditions. It is almost always associated with an inflammatory response and 

neighbouring cell damage (Cotter & Al-Rubeai, 1995). Such an event would 

obviously have detrimental effects on the whole organism. This is unlike apoptotic 

cell death where the contents of dying cells remain within sealed vesicles until the 

apoptotic cell is removed through phagocytosis.  
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Figure 1.5: Differences between necrosis and apoptosis.  

 

 

Adapted from Mitchell and Cotran (2003). 

 

 

 

 

 


