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1. Introduction

The propagation of elastic waves may be strongly affected by periodic arrangement of scatterers in the material 
microstructure. This has spurred many researches on new materials such as phononic crystals and metamaterials 
for the control of dispersive waves. In fact, the periodicity of the material microstructure may lead to destructive 
interferences (Bragg periodic scattering and Mie localized scattering) inducing attenuation of the amplitude of the 
travelling waves for some bands of frequencies called acoustic wave spectral gap or band gaps. In this respect, the 
complex band structure associated to damped Bloch waves in periodic materials is analysed in [1-3], a high-
frequency homogenization in micropolar continua for chiral metamaterials have been proposed in [4] and optimal 
design of auxetic hexachiral metamaterials are investigated in [5,6].

In the present paper, a periodic beam-lattice metamaterial containing inertial viscoelastic resonators connected to 
elastic slender ligaments is formulated. The complex Floquet-Bloch spectrum is determined and the complex 
modes are identified. The real part band structure and its imaginary part characterize the attenuation and 
propagation modes of dispersive waves, respectively. Moreover, a high-frequency higher-order homogenization in 
micropolar continua is proposed. By approximating the ring displacements of the discrete model as a continuum 
field and through a continualization of the equation of motion of the discrete model, a generalised micropolar 
equivalent continuum is derived, together with the overall equation of motion and the constitutive equation.
Finally, the validity limits of the generalized micropolar model are obtained by comparing the hermitian matrix of 
the Christoffel equation with the corresponding one from the discrete model.  

(a) (b)

Fig. 1. (a) beam-lattices metamaterials and periodic cells; (b) inertial resonator.

2. Lagrangian model of the lattice metamaterial

Let us consider the 2-D quadrilateral and triangular beam-lattice metamaterials characterized by the periodic cells 
shown in Figure 1(a). Each cell is made up of a ring with mean radius r and n (=4,6) slender ligaments of length l,
section width w and unit thickness, rigidly connected to the rings. A heavy disk with external radius R shown in 
Figure 1(b) (in dark grey), is located inside the ring through a soft viscoelastic annulus (in yellow). This inclusion 
plays the role of low-frequency resonator. The Young modulus of the ligaments is denoted by sE , while the 
translational and the rotatory inertia of the rings are 1M and 1J , respectively. The soft viscoelastic coating inside 
the resonator is characterized by the translational and rotational relaxation functions ( )dk t and ( )k tθ ,

respectively, while the translational and rotatory inertia mass density of the internal resonator are 2M and  2J ,
respectively. The motion of the rigid ring is denoted by the displacement vector u and the rotation  φ ,
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respectively, while the motion of the internal resonator is denoted by the displacement vector  v and the rotation 
θ . The resulting Lagrangian model is characterised by six Dofs per node and the equation of motion of the 
reference cell are written as a system of six integral-ordinary differential equations
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where the unit vector id represents the i-th ligament orientation, 3i i= ×t e d is the unit vector normal to id and  

iu , iφ are the displacement and the rotation of the adjacent i-th ring, respectively.

By applying the bilateral Laplace transform ( )( ) ( ) ste dt
+∞

−∞
= ∫  to the equation of motion (1)-(4) and by imposing 

the Floquet-Bloch conditions in the Laplace space ( ( ) ( ) ˆ ,1ii
i e ⋅  − = −k xu u u  ( ) ( ) ˆ 1ii

i eφ φ φ ⋅  ± = ±k x  , with ix

the vector position of the centre of the i-th ring and û , φ̂ the displacement and rotation in Bloch-Laplace space) 
the generalized Christoffel equation is obtained in terms of the complex angular frequency s and the wave vector 
k . It may be noted that the assumption of a bilateral Laplace transform is here justified under the assumption of a 
continuity prolongation of the integral kernel as a zero function in the negative t-time domain. The Floquet-Bloch 
spectrum ( )s k is obtained by solving the transcendental characteristic equations associated to the generalized 
Christoffel equation, from which six dispersive branches are obtained in the irreducible Brillouin zone. The real 
part ( )Re s  k and the imaginary part ( )Im s  k of the complex angular frequency characterize the attenuation 
and propagation modes of dispersive waves, respectively. 

The equation of motion in the Laplace space may approximated by replacing the Laplace transform of the 
viscoelastic terms ( )dk ∗ −v u  and ( )k φθ ∗ θ −  (∗ denoting the convolution product) with their first order Taylor 
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  

equivalent to that obtained by a discrete model with classical viscous damping [2, 3]. The governing equation in 
the Laplace space (or Christoffel equation) takes the simplified form in analogy to the case of classic damped 
discrete models:
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. (8)

In the equivalent matrix form the Christoffel equation is written
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The Floquet-Bloch spectrum ( )s k is obtained by solving the characteristic equation (9) from which six 

dispersive branches are obtained in the irreducible Brillouin zone. The real part ( )Re s  k and the imaginary part 

( )Im s  k of the complex angular frequency characterize the attenuation and propagation modes of dispersive 
waves, respectively. It is worth to note that if a wave vector with real components is considered, the solution of the 
characteristic equation provides propagating modes and/or modes of temporal damping [7]. In the more general 
case of complex components of the wave vector, both spatial and temporal damping are considered [7,8].

3. Generalized micropolar continuum

An approximation to the description of motion of the discrete model is obtained by introducing continuous fields 
of displacement and rotation to describe the generalized displacement of rings and resonators. The displacement 
vector and the rotation of the ring of the i-th neighbouring cell may be approximated through a second-order 
Taylor expansion in terms of: i) the first and second macro-displacement gradient = ∇H u and ∇H ; ii) the
curvature φ= ∇χ and the gradient of the curvature ∇χ :

( )
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1+ : ,
2
1+ : ,
2

i i i i

i i i iφ φ

+ ∇ ⊗

+ ⋅ ∇ ⊗

u u Hx H x x

x x x



 χ χ
(11)

By substituting the above expansion in the Laplace transform of the equation of motion of the discrete model (5)-
(8), the macroscopic equation of motion in the Laplace domain is obtained as the governing equation of a
generalized micropolar continuum (see also [5])
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being Γ̂ the Laplace transform of the non-symmetric micropolar strain tensor, d d cellK k Aα α=




and cellK k Aα α
θ θ=




( )with 0,1α = the overall constitutive parameters of the resonator, 1 1 cellM Aρ = and 2 2 cellM Aρ = the overall mass 
densities, 1 1 cellI J A= and 2 2 cellI J A= the micro-rotatory inertia terms 1 1 cellI J A= and 2 2 cellI J A= of the 
resonator. Finally, the fourth and the second order elastic tensors in equation (12) are given in the form

( ) ( )
22

12

n
s

s i i i i i i i i
icell

E a w w
A l l=

    = ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗    
     

∑ d d d d t d t d ,              (13)

( )
3 24

1
3

24

n
s

s i i
icell

E a w l
A l a =

    = − − ⊗    
     

∑E d d .             (14)

The Christoffel equation (in matrix form) of the generalized micropolar continuum takes the same structure as 
the one of the Lagrangian model
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(16)

The accuracy obtained by the continuum formulation may be appreciated by noting the following property of the 

hermitian matrix ( ) ( ) ( )3, ,Lag cell Homs A s O= +C k C k k , as already obtained for block lattice [9]. In the long 

wavelength limit λ →∞ , namely 0→k , the complex frequencies obtained by the two spectral problems turn 

out to be coincident. In this case, the starting point of the two acoustic branches ( )0, 0s= =k is obtained by 
solving problem (15). It may be seen that in the neighborhood of such state, two propagative modes take place. In 
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The Floquet-Bloch spectrum ( )s k is obtained by solving the characteristic equation (9) from which six 

dispersive branches are obtained in the irreducible Brillouin zone. The real part ( )Re s  k and the imaginary part 

( )Im s  k of the complex angular frequency characterize the attenuation and propagation modes of dispersive 
waves, respectively. It is worth to note that if a wave vector with real components is considered, the solution of the 
characteristic equation provides propagating modes and/or modes of temporal damping [7]. In the more general 
case of complex components of the wave vector, both spatial and temporal damping are considered [7,8].

3. Generalized micropolar continuum

An approximation to the description of motion of the discrete model is obtained by introducing continuous fields 
of displacement and rotation to describe the generalized displacement of rings and resonators. The displacement 
vector and the rotation of the ring of the i-th neighbouring cell may be approximated through a second-order 
Taylor expansion in terms of: i) the first and second macro-displacement gradient = ∇H u and ∇H ; ii) the
curvature φ= ∇χ and the gradient of the curvature ∇χ :
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i i i iφ φ

+ ∇ ⊗

+ ⋅ ∇ ⊗

u u Hx H x x

x x x



 χ χ
(11)

By substituting the above expansion in the Laplace transform of the equation of motion of the discrete model (5)-
(8), the macroscopic equation of motion in the Laplace domain is obtained as the governing equation of a
generalized micropolar continuum (see also [5])
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being Γ̂ the Laplace transform of the non-symmetric micropolar strain tensor, d d cellK k Aα α=




and cellK k Aα α
θ θ=




( )with 0,1α = the overall constitutive parameters of the resonator, 1 1 cellM Aρ = and 2 2 cellM Aρ = the overall mass 
densities, 1 1 cellI J A= and 2 2 cellI J A= the micro-rotatory inertia terms 1 1 cellI J A= and 2 2 cellI J A= of the 
resonator. Finally, the fourth and the second order elastic tensors in equation (12) are given in the form
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The Christoffel equation (in matrix form) of the generalized micropolar continuum takes the same structure as 
the one of the Lagrangian model
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The accuracy obtained by the continuum formulation may be appreciated by noting the following property of the 

hermitian matrix ( ) ( ) ( )3, ,Lag cell Homs A s O= +C k C k k , as already obtained for block lattice [9]. In the long 

wavelength limit λ →∞ , namely 0→k , the complex frequencies obtained by the two spectral problems turn 

out to be coincident. In this case, the starting point of the two acoustic branches ( )0, 0s= =k is obtained by 
solving problem (15). It may be seen that in the neighborhood of such state, two propagative modes take place. In 
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addition, four branch points are obtained from which four optical branches depart. In general, these branches may 
be representative of propagative waves with or without temporal and/or spatial damping.

4. Conclusion

A simplified model of periodic beam-lattice containing inertial resonators has been formulated to analyse the 
influence of the dynamic characteristics of the inertial resonators and of their viscoelastic constitutive parameters 
on the acoustic behaviour. The beam-lattices is made up of a periodic array of rigid heavy rings, each one 
connected to the others through elastic slender massless ligaments and containing an internal resonator made of a 
rigid disk in a soft viscoelastic annulus. A discrete Lagrangian model has been formulated involving the inertia of 
the lattice rings and the elasticity of the ligaments connecting the rings. The soft viscoelastic annulus is described 
through two relaxation functions. The equation of motion is formulated in the Laplace space under the simplifying 
assumption of linearized viscoelasticity. The Christoffel equation is derived, from which the complex Floquet-
Bloch spectrum is obtained. The band structure of the lattice without resonators is characterized by two acoustical 
branches and an optical one. When considering the presence of inertial resonators, two acoustical branches and 
four optical branches characterize the band structure, the latter ones being representative of propagative waves with 
or without temporal and/or spatial damping. 

By approximating the displacement and rotation of the rings of the discrete Lagrangian model as a continuum 
field, an equivalent generalized micropolar continuum has been derived through a continualization procedure of 
the Lagrangian governing equations. The overall equation of motion and the constitutive equation of the resulting 
generalized micropolar model having six degrees of freedom are given in closed form. The accuracy of the 
dispersive function obtained through the generalized micropolar model has been analyzed and it is shown that the 
hermitian matrix appearing in the Christoffel equation for the Lagrangian model is approximated by the 
corresponding one from the micropolar continuum model within an error ( )3O k .
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