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Abstract 

A simplified model of periodic chiral beam-lattices containing local resonators has been 

formulated to obtain a better understanding of the influence of the chirality and of the dynamic 

characteristics of the local resonators on the acoustic behavior. The simplified beam-lattices is 

made up of a periodic array of rigid heavy rings, each one connected to the others through elastic 

slender massless ligaments and containing an internal resonator made of a rigid disk in a soft 

elastic annulus. The band structure and the occurrence of low frequency band-gaps are analysed 

through a discrete Lagrangian model. For both the hexa- and the tetrachiral lattice, two acoustic 

modes and four optical modes are identified and the influence of the dynamic characteristics of 

the resonator on those branches is analyzed together with some properties of the band structure. 

By approximating the generalized displacements of the rings of the discrete Lagrangian model as 

a continuum field and through an application of the generalized macro-homogeneity condition, a 

generalized micropolar equivalent continuum has been derived, together with the overall 

equation of motion and the constitutive equation given in closed form. The validity limits of the 

micropolar model with respect to the dispersion functions are assessed by comparing the 

dispersion curves of this model in the irreducible Brillouin domain with those obtained by the 

discrete model, which are exact within the assumptions of the proposed simplified model. 
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1. Introduction 

It is well known that the propagation of elastic waves may be strongly affected by periodic 

arrangement of scatterers in the material microstructure, in which the density and the elastic 

constants are periodic function of the position. This has spurred many researches on new 

materials such as phononic crystals and metamaterials for the control of vibrational waves (see 

Lu et al., 2009, Pennec et al. 2010, Deymier, 2013, and Craster and Guenneau, 2013). In fact, the 

periodicity of the material microstructure may lead to destructive interferences inducing 

attenuation of the amplitude of the travelling waves for some bands of frequencies called acoustic 

wave spectral gap or band gaps. 

Lattice materials are phononic crystals whose properties have been extensively studied 

from the seminal book of Brillouin (1953). Phani et al., 2006, studied the dispersive wave 

propagation in periodic beam-lattices and showed the presence of band gaps. The analyzed model 

was made up of elastic slender beams rigidly connected at the nodes undergoing to axial strain, 

shearing and bending and subjected to inertial forces associated with the distributed mass of the 

beams themselves. Of special interest in this class of materials is the influence of the lattice 

topology on the acoustic properties (see Wang et al., 2015).  Auxetic lattices (see Prawoto, 2012) 

have attracted particular interest because of their dispersive properties (see Krödel et al., 2014). 

Some theoretical and experimental studies on the phononic properties were carried out on chiral 

auxetic lattices, introduced in a seminal paper by Lakes, 1987. Particular attention has been 

devoted to hexachiral lattices, made up of circular rings each of them connected to its neighbors 

with six ligaments tangent to the ring itself, whose constitutive equation were firstly obtained by 

Prall and Lakes, 1997. Spadoni et al., 2009, numerically investigated the dispersive waves in 

hexachiral lattice made up of elastic rings and ligaments with distributed mass. The periodic cell 

was analyzed with Bloch boundary conditions for several ratios between the length of the 

ligaments and the diameter of the rings and band gaps in the frequency spectrum were obtained. 

A band gap structure for plane tetrachiral lattices was experimentally obtained and numerically 

simulated by Tee et al., 2010. These chiral beam-lattices have also described through equivalent 

continua mainly based on the micropolar model (see Spadoni and Ruzzene, 2012, Liu et al., 

2012, Chen et al., 2014, Bacigalupo and Gambarotta, 2014a, Bacigalupo and De Bellis, 2015). 

Dispersive functions for hexachiral and tetrachiral lattices have been obtained by Liu et al., 2012, 
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and Chen et al,, 2014, respectively. However, in the domain of considered wave numbers, these 

equivalent micropolar models do not show band gaps. 

To obtain low frequency band gaps, the insertion in the microstructure of local resonators 

generally made of a hand core surrounded by a soft coating has been proved effective. In fact, the 

locally resonant material may exhibit the emergence of stop bands at frequencies around the 

natural frequency of the resonator with overall negative mass density and bulk modulus (see for 

instance Liu et al., 2000, Huang et al., 2009a, b, Lai et al., 2011, Raghavan and Srikantha Phani, 

2013, Krushynska et al., 2014). Chiral periodic metamaterials with internal locally resonant 

structures supporting tunable low-frequency stop bands have been recently proposed by Liu et 

al., 2011a, Bigoni et al., 2013, and Zhu et al., 2014. In particular, Liu et al., 2011a, have shown 

the benefice resulting from the chiral microstructure with local resonators that allow coupling the 

local translational and rotational resonances. Hexachiral beam-lattices integrated with local 

resonators made up of a softly coated heavy cylinder located inside the rings were analysed 

numerically by Liu et al., 2011b, for low-frequency wave applications. Through a finite element 

analysis of the periodic cell with Bloch boundary conditions, the dispersive functions were 

derived in the reduced Brillouin domain and low-frequency band gaps were obtained. 

The present paper is focused on understanding of the acoustic behavior of these chiral 

beam-lattice models with reference to different aims. A first issue concerns the sensitivity of the 

acoustic behavior and the formation of low-frequency band gaps as a result of the chiral 

geometry and the dynamic characteristics of the local resonators. Although some studies on the 

optimization of band gap in acoustic metamaterials have been carried out (see Tan et al., 2012), 

in this study is preferred to consider a simple model of hexachiral and tetrachiral lattices (see 

Figure 1) having a reduced number of degrees of freedom and therefore able to provide some 

useful analytical results. To this end, the rings are assumed to be rigid and equipped with mass, 

as well as the cylindrical mass of the resonator, while the ligaments are assumed elastic but 

massless. These ones are connected to the rings according to various configurations, ranging 

from the achiral geometry, with the ligaments normal to the ring, to that of maximum chirality, 

with the ligaments tangent to the ring. These assumptions appear realistic, because the rings can 

be manufactured with these properties and the vibrations of the ligaments occur at high 

frequencies (see Phani et al., 2006), while the interest of this study is more aimed at low 

frequencies. A simple Lagrangian model is formulated, which allows the determination of 
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dispersive elastic waves and provides a simple evaluation and a comparison of the effects of the 

chirality with those of the local resonators. 

A further issue concerns the formulation of a homogenized continuum model equivalent 

to the discrete Lagrangian. The homogenization of beam-lattice models has been tackled by 

several authors generally referring to homogeneous micropolar models (see for reference Bazant 

and Christensen, 1972, Noor et al., 1978, Chen et al., 1998, Pradel and Sab, 1998, Forest and 

Pradel , 2001, Onk, 2002, Ostoja-Starzewski, 2002, Kumar and McDowell, 2004, Gonnella and 

Ruzzene, 2008a,b, Bacigalupo and Gambarotta 2014a,b). On the other side, the wave 

propagation analysis through the dynamic homogenization of beam lattices has been analyzed by 

Suiker et al., 2001, Ostoja-Starzewski, 2002, Gonnella and Ruzzene, 2008b, Stefanou et al., 

2008, Vasiliev et al., 2010. The discrete model above described is here homogenized through a 

generalized energy equivalence criterion, by considering an approximation of the generalized 

displacement field through a second order Taylor expansion and by applying an appropriate 

transformation already proposed by Bazant and Christensen, 1972, and then taken up by Kumar 

and McDowell, 2004 and Liu et al., 2012. The equations of motion thus obtained are those of a 

generalized micropolar continuum characterized by a generalized displacement field equipped 

with six degrees of freedom. It may be shown that these equations coincide with those derived by 

substituting the second order Taylor approximation of the displacement field in the equation of 

motion of the discrete model.  

In order to investigate the influence of chirality on low frequency band gaps, both 

hexachiral and tetrachiral beam lattices are analysed, respectively, and the dispersion functions 

of the discrete and of the homogenized model are given, respectively, for several chiral angles 

measuring the inclination of the ligaments with respect to the line grid joining the centres of the 

rings.  For both the lattices, two acoustic modes and four optical modes are identified and the 

influence of the dynamic characteristics of the resonator on those branches is analyzed together 

with some properties of the band structure. The validity limits of the micropolar model with 

respect to the dispersion functions are assessed by comparing the dispersion curves of this model 

in the irreducible  Brillouin domain with those obtained by the discrete model, which are exact 

within the assumptions of the proposed simplified model. 
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2. Chiral lattice with local resonators: a simplified model 
 
The beam-lattices shown in Figure 1 are based on the hexachiral and tetrachiral periodic cells 

shown in Figure 2, respectively. Each cell having size a is made up of a ring with mean radius r 

and n (=4,6) slender ligaments of length l, section width t and unit thickness, rigidly connected to 

the rings. The inclination of each ligament is denoted by the angle   with respect to the lines 

connecting the centres of the rings. A heavy disk with external radius R shown in Figure 2 (in 

dark grey), is located inside the ring through a soft elastic annulus (in yellow). This inclusion 

plays the role of low-frequency resonator.  Increasing the angle , a chiral microstructure with 

auxetic behaviour is obtained up to the condition in which the ligaments are tangent to the ring, 

when the angle takes the value 
2

arcsinm

r

a
    
 

. This geometry allows to consider separately the 

effects of both the chiral microstructure (increasing  ) and of the local resonator (increasing R) 

on the acoustic behaviour of the beam lattice. For 0  the microstructure is no longer chiral, 

while for 0R  the resonator disappears. It follows that the independent geometric parameters 

of the model are: a, r, R, t and  . The hexachiral lattice is transversely isotropic while the 

tetrachiral material belongs to the tetragonal system (see Bacigalupo and Gambarotta, 2014a,b). 

 

 
(a)  (b) 

Figure 1: (a) Hexachiral lattice; (b) tetrachiral lattice. 
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To obtain a simplified dynamic model (compare with Liu et al., 2011) the rings and the 

disc of the resonators are assumed rigid, a technological condition that can be easily 

accomplished, while the inertia of the elastic soft coating and of the ligaments are ignored. From 

this last hypothesis, the high frequency vibrations of the ligaments are ignored, an aspect that is 

assumed not relevant to the present study which is focused on low frequency band gaps. The 

Young modulus of the ligaments is denoted by sE , while the rings have mass density s , so that 

the translational and the rotatory inertia of the rings are 1 2 sM rt   and 2
1 1J M r , 

respectively. The soft elastic coating inside the resonator has Young’s modulus aE  and Poisson’s 

ratio a . The mass density of the internal resonator is denoted by a , so that its translational and 

the rotatory inertia are 2
2 aM R   and 2

2 2
1

2
J M R , respectively.  

  
(a) (b) 

 
Figure 2: Periodic cell of the (a) hexachiral lattice; (b) tetrachiral lattice. 

 

The motion of the rigid ring of the beam lattice is denoted by the displacement vector u 

and the rotation   , respectively (see Figure 3.a), while the motion of the internal resonator is 

denoted by the displacement vector v and the rotation    (see Figure 3.b).  

The constitutive equation of the soft elastic annulus connecting the internal rigid mass to 

the external rigid ring is 

      ,      c =       ,dk k     f v u   (1) 
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f  being the force exerted by the rigid ring on the internal mass and c the corresponding couple 

(see Figure 4). The translational and rotational stiffness 
dk  and k , respectively, depend on the 

isotropic elastic moduli of the soft coating ( aE , a )  and on the inner and outer radii as detailed 

in Appendix A. 

 

 
                               (a)                                                                                          (b) 

 
Figure 3: (a) The rigid ring and related dofs; (b) internal mass and related dofs. 

 
 

 

Figure 4: Contact force and couple between the rigid ring and the resonator. 

 

The analysis of the propagation of elastic waves in two-dimensional lattices is carried out 

considering two models. The first, which is rigorous within the simplifying assumptions adopted, 

is based on a Lagrangian description characterized by the degrees of freedom of each ring 

together with those of the internal resonator. The second is based on an approximate description 

of the equations of motion through a dynamic homogenization in which the motion is described 

at the macroscale. 
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3. Dispersive wave propagation:  the Lagrangian model 

In the Lagrangian model the dissipative processes of deformation are ignored and six degrees of 

freedom for each cell are considered (three dofs for the ring, three dofs for the resonator). The 

equations of motion of the discrete dynamical system are obtained via the Lagrangian function 

T  , T being the kinetic energy and   the total potential elastic energy, sum of the 

contributions associated to all the elementary cells each centered in the corresponding ring. The 

contributions to the kinetic energy of the ring and the resonator inside the reference unit cell are 

 
 

 

2
1 1

2
2 2

1 1
, ,

2 2
1 1

, .
2 2

s

r

T M J

T M J

  

   

u u u

v v v





   

   
  (2) 

The elastic potential energy in the reference cell is obtained as the superposition of the 

contributions due to the elastic energy stored in the soft annulus of the resonator and in the n 

ligaments surrounding the ring. The first contribution is  

        21 1
, , ,

2 2r dk k       u v v u v u   (3) 

 

Figure 5: The i-th ligament between two adjacent cells: cell dofs and beam end displacements. 
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 The elastic potential energy in the i-th ligament connecting the central reference ring of the 

reference cell to the i-th adjacent ring (see figure 5) depends on the end displacements of the 

ligament itself 

 0
3  3    ,       i i i i i i      s u e r s u e r   (4) 

with u ,  , iu ,  i  the displacement rotation of the central ring and of the i-th ring, respectively, 

and vector   i ir r  connecting the centre of the ring with the point of connection with the 

ligament as shown in Figure 5 and 3e  the unit vector normal to the lattice. Here, the centre of the 

coordinated is assumed located in the centre of the central reference ring. Accordingly, the 

position of the i-th ring is  i iax n , being  in  a unit vector. Moreover, the unit vector id  

represents the ligament orientation and 3i i t e d  is the unit vector normal to id . Note that the 

relation holds 
2 2i i i

a l
 r n d  .  The ligament extension is  

           0

3 sin
2di i i i i i i i i i i i

a                   s s d u u d e r d u u d .  (5) 

The transverse relative displacement between the ends of the ligament is  

            0

3

1
cos

2ti i i i i i i i i i i ia l                  s s t u u t e r t u u t .  (6) 

The mean rotation of the i-th ligament is i ti l     and the end rotation of the ligament at the 

central and i-th ring are 0 ti
i i l

        and ti
i i i i l

       , respectively.  

The axial potential elastic energy due to axial strain di
i l


    of the i-th ligaments takes 

the form 

  
21

, , ,
2

di
ai i i sE t

l
   u u   (7) 

and the bending potential elastic energy due to bending of the ligament is written as  
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2

0 2 2 0
 6

s
i i i i i ibi

E t t
, , ,

l
      

 
 

   u u . (8) 

The resulting Lagrangian function is obtained as the sum of the contributions of all the 

elementary cells  

           
1

, , , , , , , , , , ,
n

s r r ai i i bi i i
i

T T     


           
 

 u v u v u u u u     (9) 

where the index denoting each cell has been omitted for simplicity and each contribution is 

obtained according to the above evaluation. The Euler-Lagrange equations of motion of the 

considered cell are obtained by the Lagrangian function (9) and depend on the generalized 

displacement and velocity of the ring and the resonator at the center of the cell and on the 

generalized displacement and velocity of the rings of the surrounding cell. The equation of 

motion of the reference cell are written as a system of six ODEs taking the form 

       1
1 2

n

s i i i i d
i

t a
E k M

l
 



               
 A u u b v u u 0   , (10) 

 

 

   
 2 2 12 2

2 21

2
0

     sin cos
4 12

i i
n

s
i

i i

a

t
E k J

a t l tl
l l

 
   




    
                                


b u u

 , (11) 

   2+dk M v u v 0 , (12) 

   2+ 0k J       , (13) 

having defined    
2

i i i i i

t

l
     
 

A d d t t  and  
2

sin cosi i i

t

l
      
 

b d t .  

 If a harmonic plane wave propagating along axis i  in an infinite two-dimensional 

medium is admitted, the generalized displacement field at a point is assumed in the following 

form  ˆ exp i t    U U k x , where qk i  is the wave vector and q  and   denote the wave 

number and the circular frequency, respectively, and 

   1 2 1 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

T T
T T u u v v    U u v  is the polarization vector.  Substituting the 
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assumed generalized displacement field in the equation of motion (10)   (13) and noting that 

   ˆ exp 1 expi ii i t       u u u k x ,    ˆ exp 1 expi ii i t          k x  and  

   ˆ 1 exp expi ii i t          k x ,  one obtains the system of six linear homogeneous 

equations: 

 

 
2

2 1 2 2 2 1

2
1 1 2

2
2 2 1 2 2 2 2 1

2
1 2 1 2 2

ˆ                 ,

ˆ

ˆ
   

ˆ

ˆ

Lag

s d s d

s s

d d

t t
E k M E k

l l

t t
E E C k J k

l l

k k M

k k J







  

 

   

 

                  
              

      
        

C k U

A I I b I 0 u

b 0 0
v

I 0 I I 0

0 0

 (14) 

where the following terms are defined in view of the centrosymmetric layout of the ligaments in 

the periodic cell: 

    
1 1

1 exp 1 cos
n n

i i i i
i i

i
 

            A k x A k x A  , (15) 

    
1 1

1 exp   sin
2 2

n n

i i i i
i i

a a
i i

 

       b k x b k x b  , (16) 

    
1 1

1 exp  sin
2 2

n n
T T

i i i i
i i

a a
i i

 

        b k x b k x b  , (17) 

 

   

   

2 22 2
2 2

1

2 22 2
2 2

1

sin cos 1 exp 1 exp
4 12

      = sin cos 1 cos 1 cos
4 12

n

i i
i

n

i i
i

a t l t
C i i

l l

a t l t

l l





                                
                               





k x k x

k x k x

  (18) 

with 2I  unit matrix and 1 20  zero vector of order 2, respectively. Because of the centrosymmetry 

of the cell it follows  Im A 0 ,  Im 0C  , Re Re        b b 0  and  Im Im
T         

b b  

and the matrix  ,Lag C k  is Hermitian.  
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 The angular frequency   k  and the polarization vector  Û k  of a travelling wave with 

wave vector k is obtained by solving the eigenvalue (14), from which six dispersive branches are 

obtained in the irreducible Brillouin zone. In the long wavelength limit, namely for 0k , one 

obtains A 0 ,   b b 0  and  
22

2 2
0 0 sin cos

2

na t
C C

l

        
   

k , and a double 

vanishing solution is obtained from which two acoustic branches take place. Another double 

solution is obtained  2
3,4

1

1  opt d

M

M
     , being 2d dk M   the translational frequency of 

the resonator, that defines a critical point with vanishing group velocity (
 

0

0g

d
v

d



 

k

k

k
) on 

the band structure from which two optical branches depart. Finally, two different solutions are 

obtained 

22 2 2

2 2
5,6

1 1

2
1  1 4   

2opt

J J

J J
  


  

        
                      

 , being 2k J   

the rotational frequency of the resonator and 1H J    ( 0s

t
H E C

l
   
 

 ) the frequency of the 

lattice with no resonators at the long wavelength limit ( 0k ). These two critical points define 

in the band structure two corresponding optical branches. 

 

4. Equation of motion in the equivalent continuum model  

An approximation to the description of motion of the Lagrangian system considered in the 

previous paragraph can be obtained by introducing continuous fields of displacement and rotation 

to describe the generalized displacement of the rings and of resonators. The displacement vector 

and the rotation of the ring of the i-th neighbouring cell may be approximated through a second-

order Taylor expansion according to Bazant and Christensen (1972) and Kumar and McDowell 

(2004) 

 
 

 

1
+ : ,

2
1

+ : ,
2

i i i i

i i i i 

  

   

u u Hx H x x

x x x



  
  (19) 
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H u  and H  being the macro-displacement gradient and second gradient,   and   

the curvature and its gradient tensor, respectively. In this case, being i iax n , the extension of 

the i-th ligament takes the form 

      
2 2 3

: sin  sin  ,
2 2 4d i i i i i i i i i

a a a
a          d n n H d n n n n        (20) 

where the Cosserat strain tensor  Γ H W  and the rotation tensor  
0

0





 

  
 

W  are 

introduced (note that   3 sini i    e n d   and  3 i i  e n W n  ).  Moreover, the transversal 

displacement is obtained as   

 
   

     

2

2

:
2

cos cos : .
2 4

ti i i i i i

i i i

a
l a

a a
a l a l

     

      

t n H t n n

n n n

   

   
  (21) 

The effective end rotation of the ligaments, being i i  t Wn , are 

 

   

 

   

2
0

2

2

2

:  
2

cos 1 cos 1 : ,
2 4

:  
2

cos 1
2

ti
i i i i i i

i i i

ti
i i i i i i i

i

a a

l l l

a a a a

l l

a a

l l l

a a a

l

 

 


        

                  


        

    
 

t n H t n n

n n n

t n H t n n

n





 

  

 

   cos 1 : .
4 i i

a

l
         

n n

  (22) 

The axial elastic potential energy density is derived from definition (7) in the form 

2ai ai cellA  . Under assumption (19) on the generalized displacements and in consideration of 

the centrosymmetry of the cell the elastic potential density takes the form 

 
 

   

2

2

2
1

: sin  
2

4
  sin  

2 4

i i in
s

a
icell

i i i i i

a
E a t

A l a a

          
          

  


t n n

H d n n n n

  

 


 . (23) 
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By expanding (23) one obtains some tensors of odd rank as dyadic product involving the vectors 

in , it  and id  which are vanishing as a consequence of the centrosymmetry of the periodic cell.  

Moreover, according to Bazant and Christensen (1972) and Kumar and McDowell (2004), the 

terms depending on higher order of generalized displacements H and   are disregarded apart 

from the term involving the tensors W  and  , namely the term 

   
2

sin :  
4 i i i i

a
         t n W n n   . In fact, since  i i  t n W , this term takes the 

form   
2 2

,sin   : sin   
4 4

i i
i i pq p q

a a
n n      n n .  By noting that the integral over the periodic 

cell  , , , ,      
cell cell cell cell cell

i i i i i
pq p q p q p q p p i i i

A A A A A

n n da n n da n ds da ds      
 

            n n n    is a 

quadratic form of the Cosserat curvature plus a boundary term, it follows that, the axial potential 

energy density may be written as a quadratic form of the Cosserat strain measures: 

    
2 2

2

1

sin
4 4

n
s

a i i i i i i
icell

E a t a

A l 

                      
 d n d n n n      . (24) 

Similarly, the bending elastic potential energy density 2bi bi cellA  is considered. From 

equations (6) and approximation (19) and proceeding in analogy to the case of axial strain as 

previously shown, the quadratic form is obtained 

   
32 2 2

2
2

1

3 : 3cos
12 4

n
s

b i i i i i i
icell

E a t a l

A l a

                 
      

 t n t n n n      . (25) 

Lastly, the density of elastic potential energy is obtained as a quadratic form of a classical 

centrosymmetric micropolar continuum. 

 
1 1

2 2s s s   E     , (26) 

where the fourth order elasticity tensor  

    
22

12

n
s

s i i i i i i i i
icell

E a t t

A l l

               
     
 d n d n t n t n  , (27) 
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is endowed with the major symmetry and is positive defined while the symmetric second order 

elasticity tensor associated with the curvature 

  
2 24

2 2

1

3sin 3cos
24

n
s

s i i
icell

E a t t l

A l l a 

                   
         

E n n  . (28) 

is negative defined. Conversely, if the second order terms of the generalized displacement field of 

the rings are neglected in the approximation (19) (see for instance Chen et al., 1998) the second 

order elasticity tensor takes the following positive defined form 

  
2 24

2 2

1

3sin 3cos
24

n
s

s i i
icell

E a t t l

A l l a




                  
         

E n n  . (29) 

 The elastic potential energy density stored in the resonator is defined as follows  

      21 1ˆ ˆ
2 2r dk k      v u v u  , (30) 

ˆ
d d cellk k A and ˆ

cellk k A  being the averaged stiffnesses of the resonator. The kinetic energy 

density of the ring and of the resonator takes, respectively, the forms 

 

2
1 1

2
2 2

1 1
,  

2 2
1 1

.
2 2

s

r

t I

t I

 



 

  

u u

v v





 

 
  (31) 

where the averaged mass densities 1
1

cell

M
A   and 2

2
cell

M
A  , and the micro-inertia terms 

1
1

cell

JI A  and 2
2

cell

JI A  of the ring and the resonator are defined, respectively.  

The Lagrangian defined on the periodic cell takes the form 

 

     

2 2
1 1 2 2

2

1 1 1 1
I I

2 2 2 2  . 
1 1 1 1ˆ ˆ       
2 2 2 2

cellA
s s d

da bound terms

k k

  



      
  

          


u u v v

E v u v u

 



    




   
 (32) 

and from the application of the Hamilton’s extended principle, the equations of motion of an 

enhanced micropolar continuum are obtained in the form 
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1

3 1

2

2

ˆ  ,

ˆ: :  ,

ˆ  ,

ˆ  ,

s d

jh j h s s

d

div k

k I

k

k I



 









   

    


 


  

v u u

e e Ε

u v v












   
  (33) 

where ijk  is the Levi-Civita symbol. These equations can be obtained through an alternative 

procedure by substituting the approximation (19) of the generalized displacement of the i-th ring 

in the equations of motion of the discrete model (10)   (13). It is worth to note that such 

circumstance is achieved if the negative defined elasticity tensor given in (28) is applied, but not 

with the positive definite tensor given in (29).  

Finally, from the definition of elastic potential energy density (26) stored in the ligaments, 

the overall asymmetric stress tensor and the couple stress vector are obtained  

              s s
s s

 
   
 

T m E  
 

  (34) 

having components 11 , 12 , 21 , 22  and 1m  and 2m , respectively,  which are energetically 

conjugated to the components 1,111 u , 22 2,2u , 12 1,2u   , 21 2,1u    of the overall 

asymmetric strain tensor and to the curvatures 1 ,1   and  2 ,2   of the chiral lattice.   

 

5. Wave propagation in the equivalent generalized micropolar continuum 

The equations of motion of the equivalent continuum derived in the previous Section are 

specialized to the cases of hexachiral and tetrachiral lattices. Hence, the equations governing the 

propagation of harmonic plane waves are formulated and the angular frequencies for the long-

wavelength limit are derived. 

  

5.1 Hexachiral lattice 

For the hexachiral lattice, the elasticity tensors are derived from equations (27) and (28) noting 

that 23 2cell aA   , and the constitutive equation is written in the Voigt notation 



 
 

17 
 

 

11 11

22 22

12 12

21 21

1 1

2 2

2 0 0

2 0 0

0 0
,

0 0

0 0 0 0 0

0 0 0 0 0

A A

A A

A A

A A

m S

m S

   
   
    
    




     
         
                   
    
    
       

  (35) 

with the five elastic moduli 
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  (36) 

depending on the Young’s modulus sE , the characteristic size a of the lattice,  the slenderness 

ratio t l  and the angle   of inclination of the ligaments. It is worth to note that in case of 

ligaments tangent to the ring  m  these equation corresponds to those obtained by Liu et al., 

2012, and Bacigalupo and Gambarotta, 2014. Moreover, if only a first order approximation of the 

generalized displacement field is assumed, the positive defined elastic constant is obtained 

2 2 2
2 2 23

3 sin cos
12 s

t t t l
S E a

l l l a


                      
           

. The elastic moduli, with the exception 

of parameter  , depend on the angle of chirality , but only the constant A, that couples the 

extensional and the asymmetric strain components, is an odd function of this parameter.  For 

symmetric macro-strain fields  2,1 1,2

1

2
u u    one obtains the in-plane elastic moduli of the 

transversely isotropic continuum 
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The free wave motion is derived from equations (33) in terms of the components of the 

generalized displacement field    1 2 1 2

T
u u v v U x  in the following form  
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  (38) 

The propagation of a harmonic plane wave travelling along axis  1 2

T
k kk  with angular 

frequency    and polarization vector    1 2 1 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

T T
T T u u v v    U u v  is 
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obtained by substituting the harmonic motion  ˆ exp i t    U U k x  in equation (38) so 

obtaining the following system of six linear homogeneous equations: 
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 (39) 

 

The solution of the eigenproblem (39)   ˆ,Hom  C k U 0 , with HomC  hermitian matrix, provides 

six dispersion functions  1 2,k k  defined in the plane  1 2,k k  by the irreducible Brillouin 

domain shown in figure 6(c). The accuracy obtained by the continuum formulation may be 

appreciated by the following property      3
, ,Hom Lag O   C k C k k , which is general for 
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periodic lattices, but that does not hold if the positive defined stiffness S   is assumed in the 

formulation.  In the long wavelength limit   , namely 0k , the following angular 

frequencies are obtained:   

 

1,2

2
3,4

1

22 2 2

2 2
5,6

1 1

0

1  

2
1 1 4   

2

ac

opt d

opt

I I

I I




  


  

 

   

        
                      



  (40) 

being 2
ˆ

d k    and 2 2
ˆk J k I     the translational and rotational frequency of the 

resonator, respectively, and 14k I   the long wave-length frequency of the lattice with no 

resonator. In analogy to the discrete model, two acoustic branches are obtained, together with two 

couples of optical branches. The first couple of optical branches start from the critical point 

(
0

0
d

d





k
k

) with frequency 3,4opt , while two distinct optical branches depart from the critical 

points corresponding to the distinct frequencies. 

 

5.2 Tetrachiral lattice 

For the tetrachiral lattice, the elasticity tensors are obtained from (27) and (28) noting that  

2
cellA a ,  and the constitutive equation is written in matrix form as follows: 
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where the four elastic moduli are related to the lattice parameters as follows 
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  (42) 

where in case of ligaments tangent to the ring the first three moduli have been obtained in 

Bacigalupo and Gambarotta, 2014a. In case of first order approximation of the generalized 

displacement field the positive defined stiffness is obtained 

2 2 22
2 23 sin cos

12
sE a t t t l

S
l l l a


                      

           
. Similarly, to the hexachiral honeycomb, a 

coupling is obtained between the extensional strains and the asymmetric strains through the 

elastic modulus B which is an odd function of the parameter of chirality , while the other elastic 

moduli are even functions. In case of symmetric macro-strain fields, the resulting classical fourth 

order elasticity tensor has the elastic moduli of the tetragonal system. The free wave equation of 

motion takes the form: 
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The plane harmonic waves are obtained by solving the eigenvalue problem: 
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Six dispersion functions are obtained  1 2,k k  defined in the plane  1 2,k k  by the irreducible 

Brillouin domain shown in figure 12(d). In the long wavelength limit    the frequencies are 

those given by equation (40) where the long wave-length frequency of the lattice with no 

resonator is  12k I   . 

 

6. Influence of the chirality and of the local resonators on the acoustic band structure 
 

To investigate the sensitivity of the acoustic band structure and the formation of stop bands as a 

possible consequence of the chiral geometry of the microstructure and of the presence of local 

resonator, some example have been considered and analysed for both the hexachiral and the 

tetrachiral microstructure. For both the geometries, three cases have been considered which 

correspond, respectively, to the achiral geometry  0  , to the intermediate chirality  o10   

and to the maximum chirality  m    that is attained when the ligaments are connected to the 

ring in the tangent point. The geometric parameters of the microstructure are those taken from 

Alderson et al., 2010, and Bacigalupo and Gambarotta, 2014a, and are here considered in 

dimensionless form. The ratio between the mean radius of the ring to the cell size 1 5r a  , the 
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ratio between the ligament thickness and the cell size 3 50t a  , the ratio / 1/ 2R r   between 

the radius of the rigid mass of the resonator and the mean radius of the ring are considered, 

respectively. The following ratio defining the elastic modulus of the soft coating is assumed 

/ 1 10a sE E   with 0.3a  . 

The acoustic band structures of both hexa- and tetra-chiral microstructures have been 

obtained in the first irreducible Brillouin zone (see Brillouin, 1953) though the discrete model 

(based of the Floquet-Bloch theory) formulated in Section 2. They are represented in the 

following in terms of the arch-length   in the dimensionless plane  1 2,k a k a  (see Figure 6(b) 

and 12(b)), and the dimensionless frequency s sa E  , being sE  the Young modulus of the 

ligaments and s  the mass density of the ring. The arch-length   detects the distance between a 

generic point of the boundary of the first irreducible Brilluoin zone and the origin point k 0  

(see Figure 6(b) and 12(b)). 

Firstly, the band structure of the chiral lattice without internal resonators is described. In 

this case, the degrees of freedom for each ring are three and the band structure comprises three 

dispersion curves in the first irreducible Brillouin zone. The dispersion functions have two 

acoustic branches and an optical branch beginning at a critical point (in which the group velocity 

is zero, i.e. 0gv  ) with an dimensionless angular frequency that can be derived from equation 

(14), i.e. 

 
2 2 2

sin cos
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s

s
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l r a lE



                          
  (45) 

being  2 2cos 2 sinl a r a    , and  n=4-6 for tetrachiral and hexachiral lattice, 

respectively. The angular frequency, which identifies the critical point and that influences the 

band structure of the beam-lattice increases with the angle of chirality  . Then, several cases 

having a different angle of chirality are examined in the presence of local resonators. Finally, 

some examples are considered with the aim to investigate the accuracy of the results provided by 

the equivalent continuum model, i.e. the micropolar generalized model formulated in Section 4. 

As this model is inherently formulated for the cases of moderately long waves, the comparison 
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between the results of the discrete model and those of the equivalent continuum model is 

displayed in a homothetic sub-region of the irreducible Brillouin zone (see Figure 6(c) and 12(c)). 

 
6.1. Hexachiral beam-lattice 

In the case of microstructure without resonators the Floquet-Bloch spectrum is shown in Figure 

6(a) in the first irreducible Brillouin zones shown in Figure 6(b) for three different values of the 

angle  . In these diagrams are visible both the acoustic branches and optical branch. In the case 

of achiral geometry ( 0  ) is observed for low frequencies both a crossing point, between the 

optical branch and the second acoustic branch, and a veering phenomenon, namely to repulsion 

of the dispersion branches (see Phani et al., 2006), between the optical branch and the first 

acoustic branch. For each of the three considered values of   a crossing of frequencies is 

observed for the dimensionless coordinate 1 4 3   . Finally, it is worth to note that the band 

structure of the three considered beam-lattices does not exhibit stop bands. 

The plane acoustic behavior of the chiral lattice with internal resonators in case of 

maximum chirality ( 23.6m    ) is shown in the diagram of figure 7(a) where the first three 

dispersive curves are plotted  for three different ratios /a s   between the mass density of the 

rigid mass of the resonator to the mass density of the rigid ring. It is worth to note that when 

/ 0a s    and / 0a sE E  , the Floquet-Bloch spectrum of the chiral lattice with resonator 

tends to that one of chiral lattice without resonator. In fact, the optical branches departing from 

the point with frequencies 3,4opt  and 6opt , are nearly independent of the wave number for small 

values of the ratios /a s   and identify the natural frequencies of the resonators. Moreover, an 

increasing of the ratio /a s   induces a decrease of the frequencies 3,4opt  and 5,6opt  from which 

the optical branches depart. As a consequence, the interaction of these branches is obtained with 

the acoustical ones and with the first optical branch. Such interaction between the branches of the 

spectrum can lead to the formation of frequency band-gaps. Indeed, it is noted that increasing the 

mass density of the resonator with respect to that one of the ring ( / 10a s   ), a band gap is 

obtained between the optical branch and the acoustical ones. This circumstance does not occur 

for / 1/10a s    and / 1a s    because the effect of the resonator is limited being the 

corresponding natural frequencies much higher than 5opt . As a consequence, a limited 
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interaction between the optical branches (departing from the frequencies 3,4opt  and 6opt ) with 

the first optical branch and the acoustic branches appears.The full band structure for the case 

/ 10a s    shows the presence of a second band-gap at higher frequencies for  5 3,opt opt    

between the third and the fourth optical branch. 

 

 

 
 

Figure 6. (a) Influence of the angle of chirality on the band structure of the hexachiral lattice 
without resonator in the irreducible Brillouin zone ( 0   red; 10    blue; 23.6m     

green). (b) Periodic cell and Brillouin zone (highlighted in orange the irreducible Brillouin zone);             
(c) Subdomain of the irreducible Brillouin zone. 
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crossing between the acoustical branches and the optical branch (see the diagrams in Figure 8(a)). 

Only in the case of high mass density of the resonator ( / 10a s   ) a band gap is obtained, 

which is shown in Figure 8(b) in the full band structure, located in between the first optical 

branch and the upper optical branches (associated to the vibration modes of the resonator) for 

 5 3,opt opt   . This outcome appears to be in analogy to the higher band gap obtained for the 

case of maximum chirality (figure 8(b)) previously considered. Furthermore, compared to the 

previous case of maximum chirality, in this case the low frequency band gap comprised in 

between the acoustical branches and the first optical branches is missing. 

In the hexagonal lattice ( 0  ) it is observed that the frequency 5opt , from which the 

first optical branch departs, decreases with the decrease of the angle   (see Figures 9(a)). The 

frequency 5opt  also depends on the ratio /a s   but so as the least relevant respect to angle  . 

In particular, this frequency tends to decrease with the increase of the ratio /a s  . In addition, it 

may be noted that for all the mass density ratios /a s   considered, the phenomena of veering 

and crossing between the acoustical and the first optical branch is observed. The full band 

structure shown in figure 9(b) for / 10a s    a wider band gap is obtained, though remaining 

unchanged the maximum frequency 3opt  which is independent of  , while depends on the ratio 

/a s  . 

With the assumed values of the geometric parameters, it has been obtained that higher 

values of the angle of chirality imply the formation of two band gaps, the first one at low 

frequency (i.e. between the acoustical branches and the first branch optical). On the other side, in 

case of achiral lattice (i.e. of hexagonal lattice) only a band-gap with wider frequency range and 

located between the first optical branch and the higher optical branches is obtained. From the 

comparison of the band structures obtained in case of local resonators (see Figures 7(b), 8(b) and 

9(b)) with those ones without resonators (see Figures 6(a)), shows the important effect of the last 

ones on the formation of the frequency band gaps. On the countrary, the effects of the chirality on 

the formation of the frequency band-gaps seem to be more limited. 
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Figure 7. Band structure of hexachiral lattice with resonators 23.6m    :  influence of the 

mass density ratio ( / 1a s    red; / 1 10a s    blue; / 10a s    green). (a) First three 

branches; (b) Full band structure ( / 10a s   ). 
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Figure 8. Band structure of hexachiral lattice with resonators 10   :  influence of the mass 

density ratio ( / 1a s    red; / 1 10a s    blue; / 10a s    green). (a) First three branches; 

(b) Full band structure ( / 10a s   ). 
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Figure 9. Band structure of hexagonal lattice with resonators 0  :  influence of the mass 

density ratio ( / 1a s    red; / 1 10a s    blue; / 10a s    green). (a) First three branches; 

(b) Full band structure ( / 10a s   ). 
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The accuracy of the generalized micropolar model derived in Section 5 is here analyzed 

for the case of maximum chirality 23.6m    . The band structure by the discrete model (for 

different values of the ratio /a s  ) is compared with the corresponding one from the continuum 

model, i.e. from the generalized micropolar model characterized by the overall elastic tensors s  

and sE  (with component S  of sE ) (see equations (27), (28)and (36)). To this end, wave vectors 

in a homothetic sub-region of the first irreducible Brillouin zone are considered (see Figures 

6(c)). The comparison is shown in the three dispersion diagrams in Figures 10(a), namely the two 

acoustic branches and the first optical branch. According to the property 

     3
, ,Hom Lag O   C k C k k  of the matrices of the discrete and continuum model, it 

follows that the accuracy of the generalized micropolar model seems to be acceptable with an 

error lesser than 10%  for dimensionless wave numbers 2 3a  k , i.e. for wavelengths 3a  . 

Differences lower than 5%  are obtained for 4 9a  k , i.e. for wavelengths 9 2a  . 

The same type of diagrams are shown in Figure 10(b) for the case in which the 

generalized micropolar model is characterised by the elastic tensor s
E  (with component S  ), see 

equations (27) and (29), obtained by assuming a first order approximation of the generalized 

displacement field. From this diagram it can be seen the low accurately of the continuum model 

to represent the optical branches, while a better approximation is obtained for the acoustic 

branches. 
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Figure 10. Dispersive functions for hexachiral lattice with resonator for 23.6 . Comparison 
between the discrete model (continuous line) and the generalized micropolar continuum model 

(dashed line) of the first three branches in a subdomain of the irreducible Brillouin zone 
( / 1a s    red; / 1 10a s    blue; / 10a s    green). (a) Constitutive constant S ;               

(b) Constitutive constant S  .  
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Finally, the comparison is extended in Figure 11 for propagation of harmonic waves along 

axis 1x  ( 2 0k  ,  1 0, 4 3k a     for hexachiral lattice 23.6  (see Figure 11(a)) and for 

hexagonal (achiral) lattice 0   (see Figure 11(b)), where in black dashed line is shown the band 

structure of the generalized micropolar model. 

 

 

 
Figure 11. Dispersive functions and band gaps for wave propagation along 1x  axis 

( / 1 10a s   ). Comparison between the discrete model (continuous line) and the generalized 

micropolar continuum model (dashed line). (a) 23.6m   , (b) 0  . 
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6.2. Tetrachiral beam-lattice 

The dispersion curves of the tetrachiral lattice without local resonators are shown for three 

different values of the angle   in the diagrams of Figure 12(a). In these diagrams, mapped in the 

first irreducible Brillouin zone shown in figure 12 (b), two acoustical and one optical branches 

may be identified. With respect to the band structure of the hexachiral lattice, the two acoustic 

branches appear here to be quite distinct. In particular, for  0,  , the first acoustic branch is 

associated to the shear wave propagation along axis 1x , while the second acoustic branch is a 

pressure wave. For 23.6m     the acoustic branch at higher frequency is very close to the 

optical branch in the range  , 2   . For the achiral tetragonal lattice the band structure appears 

to be similar to the first three branches obtained by Phani et al., 2006. For all the considered 

cases, band gaps are not observed. Moreover, for  0,   and at low frequency a crossing point 

between the optical branch and the second acoustic branch is observed, while for 

 2 , 2 2       a veering phenomenon between the optical branch and the second acoustic 

branch, i.e. a phenomenon of repulsion of the dispersion branches (see Phani et al., 2006), takes 

place. 

The acoustic behavior of the tetrachiral lattice with local resonators in case of maximum 

chirality ( 23.6m    ) is shown in the diagram of Figures 13(a), where the first three 

dispersion curves are plotted for three different ratios /a s  . As for the hexachiral lattice, 

frequency band-gaps take place only for / 10a s    (see Figures 13(b)). However, in this case a 

single band gap is obtained, in between the first optical branch and the upper one, in the range of 

frequencies  5 3,opt opt   . 
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Figure 12. (a) Influence of the angle of chirality on the band structure of the tetrachiral lattice 
without resonator in the irreducible Brillouin zone ( 0   red; 10    blue; 23.6m     

green); (b) Periodic cell and Brillouin zone (highlighted in orange the irreducible Brillouin zone); 
(c) Subdomain of the irreducible Brillouin zone. 
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Figure 13. Band structure of tetrachiral chiral lattice with resonators 23.6m    : influence of 

the mass density ratio ( / 1a s    red; / 1 10a s    blue; / 10a s    green). (a) First three 

branches; (b) Full band structure ( / 10a s   ). 
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For lower values of the chirality angle ( 10   ), a similar band gap is obtained for 

/ 10a s    with a band structure which is similar to the previous one. Moreover, some critical 

points (with vanishing group velocity 0gv  ) at the vertices of the first irreducible Brillouin 

zones are identified. In particular, for 2 2    the second acoustic branch and the first optical 

branch have the same angular frequency (see the diagrams in Figure 14(a)). From the diagrams of 

Figure 14(b) represented in the full Floquet Bloch spectrum, a band-gap is detects which appears 

to be wider than that shown in Figure 13(b) for 23.6  . In fact, with decreasing angle  , the 

frequency 5opt  decreases, while 3opt  does not change. It is worth to note that the frequency 

5opt  depends on the ratio /a s   although in a more limited than the chirality  . In particular, 

the frequency 5opt  tends to decrease with the increase of the ratio /a s  . 

In the tetragonal lattice ( 0  ), the band structure exhibits a further decrease of the 

frequencies of the first optical branch (see Figures 15(a)). Consequently, the full band structure 

for / 10a s   , shown in figure 15(b), has a wider band-gap. For the values of the geometric 

parameters considered here, it is noted the presence of a single frequency band-gap regardless of 

the chirality  . However, the decrease of   induces an increase of the band-gaps amplitude due 

to a decrease of the frequency 5opt  from which the first optical branch departs. From the 

comparison of the band structures obtained in presence of local resonators (see Figures 13(b), 

14(b) and 15(b)) with that of the chiral lattice without resonators (Figures 12(a)), it is remarked 

the important effect of the resonators on the formation of band-gaps in comparison to the effects 

of the chiral geometry of the lattice. 
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Figure 14. Band structure of tetrachiral lattice with resonators 10   :  influence of the mass 

density ratio ( / 1a s    red; / 1 10a s    blue; / 10a s    green). (a) First three branches; 

(b) Full band structure ( / 10a s   ). 
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Figure 15. Band structure of tetragonal lattice with resonators 0  :  influence of the mass 

density ratio ( / 1a s    red; / 1 10a s    blue; / 10a s    green). (a) First three branches;  

(b) Full band structure ( / 10a s   ). 
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In the diagrams of Figure 16(a), the band structure by the discrete model for 23.6   

and several values of the ratio /a s   is compared with that one by the generalized micropolar 

model, that depends on the  overall elastic tensors s  and sE  (with component S  of sE ) (see 

equations (27), (28) and (42)). This comparison is carried out in the homothetic sub-domain of 

the first irreducible Brillouin zone (see Figures 12(c)) and is shown in Figures 16(a) for the two 

acoustic branches and for the first optical branch, in analogy to Figure 10 referred to the 

hexachiral lattice. It is worth to note that the band structure by the generalized micropolar model 

is in good agreement with that obtained by the discrete model; in particular, a better 

approximation is obtained on the optical branches. By taking, however, the second elastic tensor 

s
E  (with component S  ) given by(29), the corresponding band structure is given in the diagrams 

in Figure 16(b), obtained by an approximation to the first order of the generalized displacement 

field. From this diagram it may be noted the low accuracy of such approximation in the optical 

branches, while the acoustic branches appear to be better approximated. In particular, the 

accuracy of the generalized micropolar model is within an error less than 10%  for 2 3a  k , 

i.e. for wavelengths 3a  . Differences lower than 5%  are obtained for 2 3a  k  i.e.  

6 2 a  . 

Finally, to get a better understanding of the accuracy of the continuum model, this 

comparison is shown in Figure 17 with reference wave propagation along the axis 1x , i.e. 

 0, 3  , for tetrachiral lattice ( 23.6  ), see Figure 17(a), and for tetragonal (achiral) lattice 

( 0  ), see Figure 17(b), where in black dashed line is shown the band structure by the 

generalized micropolar model. 
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Figure 16. Dispersive functions for tetrachiral lattice with resonator for 23.6 . Comparison 
between the discrete model (continuous line) and the generalized micropolar continuum model 

(dashed line) of the first three branches in a subdomain of the irreducible Brillouin zone  
( / 1a s    red; / 1 10a s    blue; / 10a s    green). (a) Constitutive constant S ;                   

(b) Constitutive constant S  .  
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Figure 17. Dispersive functions and band gaps for wave propagation along 1x  axis 

( / 1 10a s   ). Comparison between the discrete model (continuous line) and the generalized 

micropolar continuum model (dashed line). (a) 23.6  max chirality; (b) 0  . 
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6. Conclusions 

In this paper, a simplified model of periodic chiral beam-lattices containing local resonators has 

been formulated to obtain a better understanding of the influence of the chirality and of the 

dynamic characteristics of the local resonators on the acoustic behavior. In particular, the 

Floquet-Bloch spectrum and the occurrence of low frequency band-gaps are analysed through a 

discrete Lagrangian model. The simplified beam-lattices is made up of a periodic array of rigid 

heavy rings, each one connected to the others through elastic slender massless ligaments and 

containing an internal resonator made of a rigid disk in a soft elastic annulus. Two acoustic 

branches and two couples of optical branches characterize the band structure. The first couple 

branches off from a single critical point whose frequency 3,4opt  depends on the ratio between the 

mass of the resonator and the mass of the ring and the translational frequency of the resonator. 

The branches of the second couple depart from two different critical points with frequency 5,6opt  

depending also on the rotational frequency of the resonator and on the frequency of the lattice 

with no resonators. 

For prescribed geometry of the lattice, the dimensionless key parameters that control the 

acoustic behaviour and the wave propagation are: i) the ratio /a s  , between the mass density of 

the rigid mass of the resonator to the mass density of the rigid ring; ii) the ratio /a sE E , between 

the elastic modulus of the soft coating of the resonator to the elastic modulus of the slender 

ligaments. The optical branches departing from the points with frequencies 3,4opt  and 6opt  are 

nearly independent of the wave number for small values of the ratios /a s   and identify the 

natural frequencies of the resonators. Moreover, an increasing of the ratio /a s   induces a 

decrease of the frequencies 3,4opt  and 5,6opt  from which the optical branches depart. 

Consequently, the interaction of these branches with the acoustical ones and with the first optical 

branch is obtained, which may lead to the formation of frequency band-gaps. 

In hexachiral lattices, for high values of the chirality m    angle a low frequency band 

gap occurs between the first optical branch and the acoustical ones. A decrease of the chirality 

angle implies a progressively decrease of the optical branches starting from the frequencies 

5,6opt  with narrowing of this band gap. A higher band gap occurs between the first and the 

second optical branches departing from the critical point 3,4opt , that is independent on the 



 
 

43 
 

chirality angle. When decreasing the chirality angle, the lower bound of the higher band gap 

decreases and the band gap widens with a maximum amplitude for the achiral geometry. A 

similar behavior is observed for the tetrachiral geometry, with the difference that for high values 

of the angle of chirality only one band gap at high frequency is obtained, but not at low frequency 

(i.e. between the first optical branch and the acoustical branches). From the comparison between 

the band structures of lattices with internal resonators with those without resonators, within the 

simple model considered here, the important effect of the local resonators on the formation of the 

frequency band gaps is observed. On the contrary, the effects of the chirality seem to be more 

limited. 

By approximating the generalized displacements of the rings of the discrete Lagrangian 

model as a continuum field and through an application of the generalized macro-homogeneity 

condition, a generalized micropolar equivalent continuum has been derived, together with the 

overall equation of motion and the constitutive equation given in closed form. The dispersive 

wave propagation in the equivalent continuum representative of both the hexachiral and the 

tetrachiral lattices has been obtained. The accuracy of the generalized micropolar model has been 

analyzed by comparing the band structures obtained by this model with those obtained using the 

Lagrangian discrete model. This comparison has been carried out with reference to a homotetic 

subdomain of the first irreducible Brillouin zone for harmonic acoustic waves with wave-lengths 

3a  . A good approximation of the band structure of the discrete Lagrangian model is obtained 

by considering a second order approximation of the displacement field in the generalized 

micropolar model. Conversely, when considering a first-order approximation of the generalized 

displacement field, a good approximation of the acoustic branches is obtained with a lower 

approximation of optical branches. 
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Appendix A – The translational and rotational stiffness of the local resonator 

 

 

Figure A-1. Rigid disk contained in a soft elastic and isotropic annulus inserted into an external 

rigid body. 

 

The translational and rotational stiffness of the resonator shown in Figure A-1 is here derived. Let 

us consider first the translation u  under plane stress conditions of the rigid disk having radius R  

R

r
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surrounded by an homogeneous, elastic, isotropic annulus with Young’s modulus aE  and 

Poisson's ratio a , having external radius r (Figure A-1). The translational stiffness of the inner 

disk is evaluated through a FEM analysis by applying a distribution of forces with resultant F  to 

the internal disk. From the displacement u , coaxial with F , the stiffness dk F u  is derived. In 

Figure A-2(a) the dimensionless translational stiffness d ak E  as a function of the ratio R r  is 

diagrammatically shown for different values of the Poisson’s ratio a  having a weak effect on the 

translational stiffness d ak E . As expected, a decrease of the annulus thickness (i.e. an increase of 

the geometric ratio R r ) induces a great increase of the stiffness. 

The rotation   of the rigid inner disk without translation u  is analysed by applying to the 

disk a distribution of forces having resultant torque M  and vanishing resultant force F . Because 

the symmetry of the system, the displacement  u   at a point of the annulus at a distance   from 

the origin is tangent to the circumference of radius   (see Figure A-1). Similarly, the shear stress 

    at the same point is tangent to the same circumference. Since the torque is 

  2 2= 2 2 RM R         by noting that  
2

R

R 
     

, R  being the tangential stress on the  

internal boundary, and written the shear strain 
2

R

a

du u R

d G

 
        

 in terms of  R , with Ga the 

shear elastic modulus of the annulus. By integration of the ODE  
2

R

a

du u R

d G

 
      

, with 

boundary condition  u R R    , the displacement is obtained in the form 

 
2 2

2
R R

u
G

  
   


. The shear stress on the internal circumference is obtained by imposing 

the boundary condition   0u r    and takes the form 
2

2 2
2R

r
G

R r
  


. Then, the resultant 

torque is obtained 
2 2

2 2
=4

R r
M G

r R
 


 together with the rotational stiffness 

22 2
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1

R r
k G G r

r R

 
      

, with R r  . In Figure A-2(b) the dimensionless rotational 
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stiffness 2
ak E r  as a function of the ratio R r  is diagrammatically shown for different values 

of the Poisson’s ratio a . 

        

                       

Figure A-2: (a) Dimensionless translational stiffness ad Ek  in terms of the ratio R r ;              

(b) Dimensionless rotational stiffness 2
aE rk  of the ratio R r . Influence of the Poisson ratio a : 

blue line 0.2a  ; red line 0.3a  ; green line 0.4a  . 
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