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ABSTRACT
We present a new technique that infers models of programs that ma-
nipulate relational databases. This technique generates test databases
and input commands, runs the program, then observes the resulting
outputs and updated databases to infer the model. Because the tech-
nique works only with the externally observable inputs, outputs,
and databases, it can infer the behavior of programs written in
arbitrary languages using arbitrary coding styles and patterns.

We also present a technique for automatically regenerating an
implementation of the program based on the inferred model. The
regenerator can produce a translated implementation in a different
language and systematically include relevant security and error
checks. We present results that illustrate the use of the technique
to eliminate SQL injection vulnerabilities and the translation of
applications from Java and Ruby on Rails to Python.

1 INTRODUCTION
Applications that access databases are ubiquitous in computing
systems. Such applications typically translate commands from the
application domain into operations on the database, with the ap-
plication constructing strings that it then passes to the database to
implement the operations. Web servers, which accept HTTP com-
mands from web browsers and interact with back-end databases
to retrieve or modify relevant data, are one particularly prominent
example of such applications.

Potential issues include applications written in obscure, obsolete,
or unpopular languages or frameworks and coding errors that can
impact robustness or leave applications vulnerable to security at-
tacks. Developers working with standard frameworks (such as Ruby
on Rails) may also implement commands in an inefficient style that
issues multiple simple database queries to traverse the database
tables. Issuing a single more sophisticated query reduces the num-
ber of interactions between the application and the database and
enables the database to optimize the query.

We present Hecate, a new system that interacts with the appli-
cation and its back-end database to infer a model of the application
behavior. Hecate can then regenerate the application, translating
the application into a new language and systematically applying
coding patterns and additional checks that are known to be safe. To
build up the model of the application behavior, the Hecate inference
algorithm systematically constructs test databases and test input
commands, runs the application with the database and commands,
then observes the resulting output and database. The inferred model
can sometimes represent the application more efficiently than the
original implementation.
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Because Hecate interacts with the application only via its in-
put, output, and database interfaces, it can infer and regenerate
applications written in any language or in any coding style or
methodology. In addition to generating secure applications, it can
also be used to port applications written in obsolete languages,
computing platforms, or coding styles to more modern languages,
platforms, or styles. And although we do not focus on this aspect
in this paper, it is also possible to generate comments and docu-
mentation explaining the structure and function of the regenerated
application.

This paper makes the following contributions:

• Inference Algorithm: It presents a new algorithm for inferring
the behavior of database-backed applications. The algorithm
repeatedly constructs test databases and input commands, runs
the application, and observes the resulting outputs and databases
to build up a model of the application behavior.

• Computational Pattern: The inference algorithm is designed
to work with applications that implement a specific computa-
tional pattern. With this pattern, the application behavior can be
represented as three stages: 1) a View stage, with checks that cer-
tain rows identified by the input parameters exist in the database,
2) a Join stage that applies join operations to database tables,
and 3) a Work stage that either prints, deletes, or inserts rows
that satisfy the preceding View and Join stages.
The inference algorithm and computational pattern are designed
together to enable an effective inference algorithm that, by choos-
ing appropriate test database and input command values, infers
each stage in turn separately from the other stages.

• Regeneration: This paper illustrates how to regenerate appli-
cations that contain safe computational patterns and appropri-
ate security checks. Because the regenerator encapsulates the
knowledge of how to safely use the database interfaces that many
languages provide, it reduces the amount of specialized knowl-
edge required for developers and eliminates classes of developer
errors (such as errors that produce SQL injection vulnerabilities).

• Experimental Results: We present experimental results using
Hecate to infer and regenerate applications written in Ruby on
Rails and Java. The results highlight the ability of our techniques
to infer and regenerate robust, safe Python implementations of
applications originally coded in other languages.

2 EXAMPLE
We illustrate the inference and regeneration of a database-backed
application, a student registration database application that allows
student users to check current classes, add classes, or drop classes.
This application is adapted from an application written by an inde-
pendent evaluation team hired by an agency of the United States
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Government to evaluate techniques for detecting and nullifying
SQL injection attacks. The application contains an SQL injection
vulnerability, purposefully inserted by the evaluation team, that
stems from insufficient validation of untrusted user inputs. The
application itself is written in Java and interacts with a MySQL
database [38] via JDBC [28].
Command Interface:The example application provides a command-
line interface with three commands:
• Command liststudentcourses (arg_s, arg_p). The appli-
cation first checks whether the student with ID arg_s has pass-
word arg_p in the database. If so, the application displays the
list of courses for which this student has registered, along with
the courses’ teachers.

• Command unregister (arg_s, arg_p, arg_c). The applica-
tion first checks whether the student with ID arg_s has pass-
word arg_p in the database. The application then checks if a
course with number arg_c exists. If both checks pass, the appli-
cation looks up the ID of the course and removes rows from the
registration table that have the student ID and the course ID.

• Command register (arg_s, arg_p, arg_c). The application
first checks whether the student with ID arg_s has password
arg_p in the database. The application then checks if a course
with number arg_c exists. If both checks pass, the application
looks up the ID of the course and inserts a row into the registra-
tion table with the student ID and the course ID.

Database Schema: The application interacts with a MySQL data-
base that contains the following tables and columns. (a) The student
table, which contains student ID (primary key), first name, last name,
and password. (b) The teacher table, which contains teacher ID (pri-
mary key), first name, last name. (c) The course table, which con-
tains course ID (primary key), name, course number, teacher ID (for-
eign key referencing the teacher table), etc. (d) The registration
table, which contains student ID (foreign key referencing the student
table) and course ID (foreign key referencing the course table).

The SQL injection vulnerability occurs in the following applica-
tion code. This Java code constructs the SQL command string that
the application passes to the database.

conn = new DataConnection ().initialize ();

stmt = conn.prepareStatement("SELECT * FROM

student WHERE id=? AND password='" + password

+ "'");

stmt.setInt(1, unregstudent.getId());

rs = stmt.executeQuery ();

Here password is a Java string derived from the input without
sufficient validation checks. For example, a malicious user can input
a password of the form “123’ or 1=1–”, which nullifies the password
check by disjoining the check with a tautology and commenting
out the remainder of the SQL command. This is a common SQL
vulnerability pattern caused by the insufficient validation of user
input.

2.1 Model
Hecate works with applications that process sequences of com-
mands. For each command, the application executes code that im-
plements the command; we call this code the command handler.

Command handlers implement the following behavior: first check
arguments against existing data, then join tables, and finally use
the selected data to perform print, delete, or insert operations. We
define a normalized model for this behavior and infer applications
that implement behavior consistent with this form:

Program -> Command+

Command -> 'case ' cmd arg+ ':' View* Work

View -> 'view ' table (col '==' arg)+

Join -> 'join ' table (JoinType table)+

Work -> Join 'print ' col+

| Join 'delete ' table

| Join 'insert ' table (col '=' Value)+

| 'insert ' table (col '=' Value)+

JoinType -> 'inner ' | 'left ' | 'right '

Value -> arg | col | auto inc | timestamp

• A Program has several Commands. Each Command has a name
cmd, a list of arguments arg, some View statements, and a Work
statement.

• A View statement performs input validation. It uses input ar-
gument values to select rows from a table where the values
of columns col equal the values of arguments arg. If no rows
are returned from the database, the command handler returns
immediately, without performing any further visible behavior.
Each command can have multiple View statements to validate
on multiple tables.

• A Join statement performs data selection. It selects all rows from
the specified tables where the foreign keys equal their primary
keys. If a join operation is an outer join, as specified by the
JoinType being left or right, the join operation selects rows
in a table even when the other table does not have rows with the
matching key. The Join statement selects only those rows that
satisfy the preceding View statements. If no rows are returned
from the database, the command handler returns immediately,
without performing any visible behavior.

• A Work statement performs visible behavior. It can either print
to standard output some Values, delete the joined rows from a
table, or insert rows into a table using Values.

• A Value can be input argument values, data from a column of
a selected row, or automatically-generated values such as auto-
increment keys and timestamps.

2.2 Inference
We next present how Hecate infers the functionality of the student
registration database application. After configuring a database with
appropriate tables and columns, Hecate performs three steps: input
filter inference, value inference, and join inference.

The basic idea of Hecate is to populate the database with special
values and execute the application with different arguments. The
externally visible behavior of each execution (outputs and database
updates) gives Hecate more information about the View, Join, and
Work statements that the application implements. We note that,
because Hecate interacts with the application only via its input,
output, and database interfaces, the application itself can be coded
in any arbitrary way as long as it implements behavior consistent
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with the View/Join/Work pattern. We next discuss how Hecate
infers the model for the three registration commands:

2.2.1 Command liststudentcourses. Inferring filters in
Views: The algorithm starts with an empty database. It first inserts
into each table a row such that: (a) non-foreign-key columns in all
tables have distinct values and (b) each foreign-key column has the
same value as its corresponding primary key. Denote this database
assignment as D0. This assignment ensures that any potential join
operation will never fail due to mismatched primary/foreign keys.

The algorithm then executes the command multiple times, each
time assigning the arguments arg_s and arg_p with a different
permutation of the values in D0. During these executions, only one
execution e produces visible behavior (all other executions fail the
View check):

e(arg_s) = D0(student.id)

e(arg_p) = D0(student.password)

This behavior indicates that the application first checks if the
student table contains a row where columns id and password
equal arg_s and arg_p, respectively.
Inferring values in Print: When the check passes, the visible
behavior o prints two values:

o = ⟨print, ⟨D0(course.id),D0(teacher.id)⟩⟩

This behavior indicates that the command contains a Print state-
ment and the columns are course.id and either teacher.id or
course.teacher_id.
Inferring tables and types in Join: Hecate then resets the data-
base contents with a set of new assignments DT , for each set of
tables T , from small to large. Each new assignment DT sets tables
t ∈ T to the same values as in D0, while setting other tables empty:

DT (c) =

{
D0(c), if c is a column of t , t ∈ T

Nil, otherwise

After each new database assignment, Hecate executes the com-
mand with arguments assigned as in e until it encounters the first
(smallest) set of tables

T1 = {student, course, registration}

that enables the registration application to produce the same out-
put. This behavior indicates that T1 is the set of tables required
for the print operation to succeed, so the command contains a
Join statement with these tables. Another consequence is that
the previously-inferred Print statement must refer to column
course.teacher_id rather than column teacher.id.

Since none of the database contents D {student,course} , contents
D {student,registration} , or contentsD {course,registration} enables
the registration application to produce any output, Hecate con-
cludes that the tables T1 are all inner joined.
Inferred application: Hecate concludes the command handler is
as follows:

case liststudentcourses (arg_s , arg_p):

view student (password == arg_p && id == arg_s)

join course inner registration inner student

print course.id, course.teacher_id

2.2.2 Command unregister. Inferring filters in Views: As
in Section 2.2.1, Hecate first resets the database with unique values
for non-foreign-key columns and executes the command multiple
times with arguments assigned to different permutations of the
inserted database values in D0. Only execution e produces visible
behavior:

e(arg_s) = D0(student.id)

e(arg_p) = D0(student.password)

e(arg_c) = D0(course.course_number)

This behavior indicates that the application first checks arguments
against the data in columns student.id, student.password, and
course_number.
Inferring Delete:When the check passes, the visible behavior o
deletes the row from table registration:

o = ⟨delete, registration⟩

This behavior indicates that the command contains a Delete state-
ment that removes a row from table registration when certain
requirements are met.
Inferring tables in Join: Hecate then, as in Section 2.2.1, resets
the database contents with a set of new assignments DT , for each
set of tables T . After each new database assignment, Hecate exe-
cutes the command with arguments assigned as in e . Among these
database assignments, only the assignment DT2 ,

T2 = {student, course, registration}

still enables the registration application to delete anything from
table registration. This behavior indicates that T2 is the set of
tables required for the delete operation to succeed, so the command
contains a Join statement with these tables.
Inferred application: The algorithm concludes the command han-
dler is as follows:
case unregister (arg_s , arg_p , arg_c):

view course (course_number == arg_c)

view student (password == arg_p && id == arg_s)

join course inner registration inner student

delete registration

2.2.3 Command register. Inferring filters in Views:Hecate
first infers that, as in Section 2.2.2, the application first checks argu-
ments against the data in columns student.id, student.password,
and course_number. When the check passes, the visible behavior
o is inserting a row into table registration:

o = ⟨insert, registration, ⟨student_id = e(arg_s),

course_id = D0(course.id)⟩⟩

This behavior indicates that the command contains an Insert state-
ment.
Inferring values in Insert: In the inserted row, the columns are
set to values of the argument arg_s and column course.id of the
selected row, respectively.
Inferring tables in Join: Hecate concludes the command handler
is as follows:
case register (arg_s , arg_p , arg_c):

view course (course_number == arg_c)

view student (password == arg_p && id == arg_s)
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insert registration (student_id = arg_s ,

course_id = course.id)

As these examples illustrate, a key insight is that representing the
inferred program as a sequence of View, Join, and Work steps en-
ables the inference algorithm to avoid having to infer the complete
program in one step. Instead, the inference algorithm strategically
populates the database with values that enable the decomposition
of the inference into three tractable steps: first the View, then the
Work, and finally the Join component.

2.3 Regenerated Application
The inferred model represents the logic of the application’s func-
tionality related to database interactions. Hecate generates a new
application with the same functionality, but with new peripheral
logic. In particular, the code generation produces a new application
in Python and uses SQLite connectors [5, 8] that contain automati-
cally inserted security checks for SQL injection attacks.

The regenerated application contains these parts: a command
interface that identifies the command and invokes the correspond-
ing handler, application-independent code for establishing database
connections, and database interactions and relevant application
logic as represented by the inferred model.
Command Interface: The regenerated Python application imple-
ments an interface that parses the commands and their arguments,
performs relevant input validation checks, then invokes the corre-
sponding command handler.
Database Interface: The regenerated Python application uses
SQLite connectors [5] to interact with the database. It first con-
nects to the database, then performs interactions, and finally closes
the connection appropriately to commit any changes. These actions
are implemented using standard techniques [5]. More generally,
each target language or platform has boilerplate database interac-
tion code that is largely independent of the application functionality.
These boilerplate code sequences are encapsulated in the Hecate
implementation and regenerated for each application.
Regenerated Views: For each View statement, the regenerated
application first queries the database with a SELECT statement to
select rows that satisfy the constraints. If no row is retrieved, the
generated application returns. For example, the register command
handler contains the following code for its two View statements:

query = "SELECT * FROM course WHERE course_number

= ?"

param = (arg_c , )

cursor.execute(query , param)

if cursor.fetchone () is None:

return

query = "SELECT * FROM student WHERE password = ?

AND id = ?"

param = (arg_p , arg_s)

cursor.execute(query , param)

if cursor.fetchone () is None:

return

Note that this code uses parameterized SQL statements (with
question marks as placeholders), as opposed to string concatena-
tions, to prepare the query strings. This coding pattern leverages

the SQL injection attack protection checks inside the Python SQL li-
brary [5]. Instead of constructing the SQL query string directly (as in
the original application), the regenerated code identifies potentially
user-controlled parameters with the “?” character. It then supplies
the values of the parameters in the following param = (argc, )
statement. The Python SQL library then applies all of the neces-
sary input validation checks to these parameters to ensure that the
application is not vulnerable to SQL injection attacks. Because this
code is automatically generated, our system selects coding patterns
known to correctly implement the necessary checks, thereby elimi-
nating the possibility of inadvertent developer error introducing
security vulnerabilities.

In this example the use of this coding pattern is sufficient to
protect the regenerated application against SQL injection attacks.
More generally, Hecate can generate whatever security checks are
appropriate into the regenerated application, typically for input
validation or sanitization, but also to apply whatever coding styles
or safe coding patterns are relevant.
Regenerated Delete, Insert, and Print: For Delete statements,
the regenerated application first queries the database, then uses
the retrieved values to specify the rows to delete in the appropriate
table. For example, the unregister command handler contains the
following code for its Delete statement:

query = "SELECT registration.student_id ,

registration.course_id FROM course INNER JOIN

registration ON course.id = registration.

course_id INNER JOIN student ON registration.

student_id = student.id WHERE course.

course_number = ? AND student.password = ? AND

student.id = ?"

param = (arg_c , arg_p , arg_s)

cursor.execute(query , param)

for row in cursor:

query = "DELETE FROM registration WHERE

student_id = ? AND course_id = ?"

param = (str(row [0]), str(row [1]))

cursor.execute(query , param)

The regenerated code for Insert and Print commands similarly
queries the database as appropriate (some Insert commands insert
data retrieved from other parts of the database), then either inserts
or prints the appropriate data.

3 INFERENCE AND REGENERATION
We next outline the inference and regeneration algorithms for pro-
grams that implement behavior consistent with themodel presented
in Section 2.1. These algorithms work with programs written in ar-
bitrary programming languages, coding styles, and implementation
patterns. They take as input the following information:
• An executable application, along with information on how to
locate the program’s external database. This information allows
our system to populate the database and observe the updated
database contents.

• The schema of the database tables and columns, including in-
formation of primary/foreign keys, columns with default values,
and columns that the user chooses to disregard for inference.
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• The interface for executing the commands of the application. In
particular, the user provides the list of commands along with (a)
their number of arguments and (b) how to feed the arguments
into the application. Our current implementation supports HTTP
and command-line interfaces. The user must also provide any
passwords required to access the application.

3.1 Inference Algorithm
The basic principle of the inference algorithm is to populate the
database with selected values, then execute the application multiple
times. Each execution systematically assigns arguments and data-
base contents to different selected values. Recall that the model in
Section 2.1 has three types of statements for each command handler:
View, Join, and Work. The inference algorithm infers these three
types of statements in three steps.
Inferring filters in Views: The algorithm first discovers the val-
ues that each argument must take for the command execution to
produce visible behavior. Here we define visible behavior to mean
either 1) the command prints output values, 2) the command inserts
rows into the database (as determined by observing the database
after the command executes), or 3) the command deletes rows from
the database (again as determined by observing the database after
the command executes).

In this step, the algorithm first populates the database contents
with distinct values, with the exception that all potential Join
statements must succeed. In other words, the corresponding foreign
keys and primary keys all have the same value in the populated
database. Denote this database assignment as D0. Let C be the set
of all columns. For a value v ∈ V0, let function which(v) denote the
column c such that D0(c) = v . Let K be the set of primary keys. Let
F be the set of foreign keys. Let N be the set of columns that are
neither primary keys nor foreign keys. For a foreign-key column
c ∈ F , let pk(c) ∈ P be the primary key that c references. Denote
the values that appear in this assignment as V0.

C = K ∪ F ∪ N , K ∩ F = K ∩ N = F ∩ N = ∅

∀c1, c2 ∈ K ∪ N , D0(c1) = D0(c2) ⇔ c1 = c2

∀c ∈ F , D0(c) = D0(pk(c))

The algorithm clears the database contents and inserts a row into
each table, where each column c in the inserted row has value
D0(c). This setting allows the command execution to produce visible
behavior if and only if the potential View statements succeed.

The algorithm next searches for the argument assignments that
allow potential View statements to succeed. To do so, it executes
the command multiple times, each time assigning the arguments
differently with the values in V0. These assignments may result
in various visible behavior. Let A be the set of arguments for the
command. Denote the set of all argument assignments as E0.

V0 = {D0(c) | c ∈ C}, E0 = {e | ∀a ∈ A, e(a) ∈ V0}

The algorithm executes the command once for each assignment of
arguments e ∈ E0. The algorithm collects lists el and ol, which
contain information about the executions that produce visible be-
havior.

def first_run(D0, E0):
el = [], ol = []

for each argument assignment e ∈ E0:
populate database with data D0
execute command with arguments e
if execution has visible behavior:

extract output values o
append e to el

append o to ol

return <el, ol >

To work with arbitrary output formats, Hecate implements a
straightforward output value extraction method regardless of out-
put formats. The distinct values for populating the database are
chosen to be special values that rarely appear in output templates
such as HTML and JSON. These values can be easily detected in the
outputs using string pattern matching. This feature enables Hecate
to work with the application as a black box, regardless of the output
techniques.

Hecate next infers the filters in View statements, specifically,
how argument values must correspond to the values of database
columns. In particular, Hecate first finds out which values in V0
must each argument take to allow visible behavior. Denote this
assignment of arguments as filter . For a list el collected above
and for an argument a ∈ A, let unique(el,a) denote whether all
assignments e ∈ el assign the same value to a.

unique(el,a) = True iff ∀e1, e2 ∈ el, e1(a) = e2(a)

filter(el,a) =

{
e(a), ∀e ∈ el, if unique(el,a)
Nil, otherwise

To speed up the search for filter , Hecate optimizes the search
order based on the observation that many real-world applications
use only a few (as opposed to all) input arguments in the View
statements. Typical examples are commands that check only the
user login and an item ID, but do not check many other input
arguments such as user-provided contents to insert into a table.
This observation allows Hecate to search by assuming increasingly
more input arguments to participate in Views. If any potential filter
allows the command execution to produce visible behavior, Hecate
can quickly narrow down the search.

The algorithm constructs the View statement for each argu-
ment a where filter(el,a) , Nil, associating a with column c =
which(filter(el,a)).

def construct_views (el):

vl = []

for each table t in database:

eql = []

for each argument a ∈ A if filter(el, a) , Nil:

c = which(filter(el, a))
if c is a column of t :

append <c , a> to eql

if eql is not empty:

append <View , t , eql > to vl

return vl

Inferring values in Work: Although the next upcoming statement
in the model is Join, we first present how to infer the values used in
Work statements. The algorithm infers where the visible output data
comes from, by tracking the sources of special values. In particular,
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the algorithm analyzes the list ol collected above to find out where
the output data are copied from. Denote this relation as copy. The
type of any visible behavior o ∈ ol indicates the Work statement’s
type (Print, Insert, or Delete).

Among the three types of Work statements, Delete does not
need to infer values. Hecate records the table to be deleted.
def construct_delete (ol):

t = inserted table in ol

return <Delete , t >

The other two types of Work statements, Print and Insert, need
to infer the value sources. For these statements, the output data in
o contains a list of values v ∈ V0, along with their locations printed
or inserted. Let L be the set of output locations. For a list ol of
visible behavior and for an output location l ∈ L, let unique(ol,a)
denote whether all visible behavior o ∈ ol outputs the same value
to l . For a list of execution assignments el, its corresponding list
of outputs ol, and a visible behavior o ∈ ol, let args(el, ol,o) ∈ el
denote the argument assignment that corresponds to the same
execution for o. For lists el and ol that correspond to the same list
of executions, for an argument a ∈ A, and for an output location l ∈
L, let match(el,a, ol, l) denote whether all executions producing
visible behavior o ∈ ol produced for location l the same value as
argument a in the corresponding assignment el. Let copy(el, ol, l)
denote the column or the argument that an output location l always
copies from.

L =

{
slots of printed output, if command has Print
columns of inserted table, if command has Insert

unique(ol, l) = True iff ∀o1,o2 ∈ ol, o1(l) = o2(l)

match(el,a, ol, l) = True iff
∀o ∈ ol, o(l) = args(el, ol,o)(a)

copy(el, ol, l) =


which(o(l)), ∀o ∈ ol, if unique(ol, l)
a ∈ A s.t. match(el,a, ol, l), if exists
Nil, otherwise

For a Print statement, the output values are always copied
from database contents or input arguments. Hecate associates each
output location l with c = copy(el, ol, l), which is either a column
or an input argument.
def construct_print (el, ol):

cl = []

for each location l of printed output in ol:

c = copy(el, ol, l )
append c to cl

return <Print , cl>

For an Insert statement, the output values can come from
database contents, input arguments, or other values automatically
generated by the environment such as auto-increment keys or
timestamps. Hecate associates each output location l with c =
copy(el, ol, l) if c is not Nil. If c is Nil, Hecate checks if the value is
generated by the environment.
def construct_insert (el, j, ol):

cl = []

t = inserted table in ol

for each column l of t :
c = copy(el, ol, l )
if c is not Nil:

append <l , c > to cl

else:

mark column l of t as generated by the

environment , such as auto -increment keys

or timestamps

return <Insert , t , cl>

Inferring tables and types in Join: Hecate then finds out which
tables participate in joins. It sets the command arguments to values
consistent with the inferred filters, so that all View statements will
succeed unless the table is empty (see below). In particular, let the
argument assignment be any e ′ ∈ el.

Hecate then executes the command on a set of new database
contents, where the goal is to determine which set of tables are
required to have an appropriate row for the Join statement to
succeed. Each new assignment to the database contents DT sets
tables t ∈ T to have the same contents of D0 and sets other tables
to empty.

DT (c) =

{
D0(c), if c is a column of t , t ∈ T

Nil, otherwise

Hecate executes the command once for each new assignment of
database contents DT . Hecate finds the smallest set T of tables
that allows the command execution produce the same output val-
ues (except for automatically generated timestamps) in the visible
behavior.
def tables_joined(e′):

populate database with data D0
execute command with arguments e′

the execution must produce visible behavior

o′ = extracted interesting output values

for each set of tables T , from small to large:

populate database with data DT
execute command with arguments e′

if execution produces visible behavior and is

same as o′:
return T

return the set of all tables

Hecate next infers the order in which the tables in T join each
other, along with the types of each join operation. To do this, Hecate
first analyzes the database schema to generate a graph of prima-
ry/foreign key relations. In this graph, each node is a table. Two
tables have an edge if and only if they have a primary/foreign key
reference. The algorithm collects all chains that connect T . Denote
these chains as G. Each chain д ∈ G represents a potential order
that these tables may join each other.

Hecate next executes the command with a set of database con-
figurations, where the goal is to collect basic information about
the join types for each potential chain д ∈ G. In particular, it starts
to maintain hypothetical join types for each potential chain. Each
potential join operation that connects tables tl , tr ∈ д has a pair
of flags for dimentionality (dl ,dr ). Inner join corresponds to both
dimentionality flags being “one”. Left outer join corresponds to dl =
“many” and dr = “one”. Right outer join corresponds to dl = “one”
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and dr = “many”. The algorithm initializes each dimentionality
flag to “one”. If a table t appears in an earlier View statement, then
change any dimentionality flag to “maybe” if the flag is in a join
operation on table t and the flag connects with t . After this initial-
ization, Hecate removes each table t ∈ T in turn in the database
assignment (i.e. populates data DT−{t }). It executes the command
once for each table t ∈ T using database contents DT−{t } . If exe-
cuting the command with data DT−{t } still produces visible output,
Hecate marks the relevant join operations as outer joins. By this
time, each potential chain д ∈ G has a list of potential join types in
the dimentionality flags. Denote this list as dim.

dim(д, tl , tr ) =

{
(dl ,dr ), if tl , tr are connected in д
Nil, otherwise

dl =


many, if DT−{tr } allows visible behavior
one, if DT−{tr } no visible behavior and tr not in View

maybe, if DT−{tr } no visible behavior and tr in View

dr =


many, if DT−{tl } allows visible behavior
one, if DT−{tl } no visible behavior and tl not in View

maybe, if DT−{tl } no visible behavior and tl in View

Because some tables participate in Views, Hecate at this point
needs more information to determine the join types for the hy-
pothetical chains. These join operations are marked with “maybe”
flags. Hecate replaces these “maybe” flags for further analysis as fol-
lows. If a potential chain д has a dimentionality flag being “maybe”,
then chain д has two possible join types – replace the “maybe” flag
with “one” in one copy of the join types and replace with “many” in
the other copy. By this time, each potential chain д ∈ G has one or
more possible lists of potential join types. Denote this list as types.

types(д) = {dim′ | p′(dim′(д, tl , tr ), dim(д, tl , tr )),

∀tl , tr connected in д}

p′((d ′l ,d
′
r ), (dl ,dr )) = True iff d ′l ∈ p(dl ) and d ′r ∈ p(dr )

p(d) =


{many}, if d = many
{one}, if d = one
{many, one}, if d = maybe

We call each pair of a potential chain д ∈ G and one of its possible
lists of join types dim′ ∈ types(д) as a potential joining chain.

Hecate then executes the command with another set of database
configurations, where the goal is to rule out incorrect hypothetical
joining chains and types. Each new assignment to the database
contents Dc

T sets a foreign key c ∈ F to a fresh, mismatched, value
while keeping other columns to have the same values ofDT . Hecate
executes the command once for each new assignment Dc

T . It then
determines whether the observed visible behavior is consistent
with each hypothetical joining chain. After examining all the hypo-
thetical joining chains and all the assignments Dc

T for each foreign
key c ∈ F , there may remain multiple hypothetical joining chains
that are always consistent. In this case, Hecate chooses the strictest
joining chain that has the fewest outer join operations.
def construct_join (e′, T ):

G = set of chains in T
for each table t in T :

populate database with data DT−{t }

execute command with arguments e′

compute dim based on visible behavior

compute types
for each foreign key c in F :

populate database with data Dc
T

execute command with arguments e′

discard <д, dim′> if behavior inconsistent

<д, dim′> = the strictest remaining joining chain

return <Join , д, dim′>

3.2 Regeneration Algorithm
The model inferred in Section 3.1 represents the functionality of
the application’s command handlers, characterizing their database
interactions and relevant program logic. We present a straight-
forward way to regenerate a new implementation for this inferred
program, potentially in another programming language (such as
Python).

For each View statement, the regenerated program first queries
the database to select rows that satisfy the constraints. If no row is
retrieved, the generated program returns.
def regenerate_views(vl):

code = []

for each <View , t , eql > in vl:

append "select from database table t the rows

that satisfy eql" to code

append "if no row is retrieved , return

immediately" to code

return code

For the Join statement, the regenerated program first queries
the database enforcing that (a) foreign keys equal to their primary
keys, (b) join operation types are as inferred, and (c) the constraints
in previous View statements are met. If no row is retrieved, the
generated program returns.
def regenerate_join(j):

<Join , д, dim′>

eql = []

for each <View , t , eql '> in vl:

append eql ' to eqls

code = []

append "select from database the join of tables

<д, dim′> the rows that satisfy eql and that

the corresponding foreign keys and primary

keys have the same value" to code

append "if no row is retrieved , return

immediately" to code

return code

The Print statement uses the rows retrieved by the Join state-
ment. For each row, the generated program prints the values of the
specified columns to screen.
def regenerate_print(vl, j, p):

<Print , cl> = p

code = regenerate_join(j)

append "for each retrieved row , print the

columns cl" to code
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return code

The Delete statement executes only if the Join statement re-
trieved at least one row. The regenerated program uses the retrieved
values to specify the rows to delete in the specified table.
def regenerate_delete(vl, j, d):

<Delete , t> = d

code = regenerate_join(j)

append "for each retrieved row , first extract

the values for table t and then delete from

t the rows that have these values" to code

return code

The Insert statement may or may not have a preceding Join
statement. If the inferred joining chain consists of only the tables
that are used in Views and the table to be inserted, then discard the
Join operation. Otherwise, the Insert statement executes only
if the Join statement retrieved at least one row. The regenerated
program first queries the database to collect the data needed for
insertion. In particular, if the value in a table is needed, the program
first identifies the table’s row using previous View statements. From
the retrieved data, the program then extracts the value needed. The
program then uses this data, along with input arguments, to insert
a row into the specified table.
def regenerate_insert(vl, j, i):

<Insert , t , cl> = i

code = []

if j contains tables other than t and those in

vl:

code = regenerate_join(j)

for each <l , c > in cl if l is a column:

tl = table that l belongs to

eqll = eql ' of the <View , t , eql '> in vl s.t. t
= tl

append "select from database table tl the rows

that satisfy eqll " to code

append "extract the value of column l and

store into a variable" to code

append "insert into table t a row using values

cl" to code

return code

In summary, the algorithm to infer and regenerate code for each
command handler is as follows.
def regenerate_command ():

<el , ol> = first_run(D0, E0)
vl = construct_views(el)

e′ = an assignment in el

if ol behavior is print:

p = construct_print(el, ol)

j = construct_join(e′, tables_joined(e′))
return regenerate_print(vl, j, p)

if ol behavior is delete:

d = construct_delete(ol)

j = construct_join(e′, tables_joined(e′))
return regenerate_delete(vl, j, d)

if ol behavior is insert:

i = construct_insert(el, ol)

j = construct_join(e′, tables_joined(e′))
return regenerate_insert(vl , j, i)

In addition to the new implementation for each command, the
regenerated program also contains (a) an interface that parses the
commands and arguments and invokes the corresponding command
handlers and (b) standard code that connects to the database and
commits updates.
Augmented checks: Hecate regenerates programs using parame-
terized SQL statements to prepare the query strings. The Python
SQL library [5] then applies all of the necessary input validation
checks to these parameters, some of which are user-provided inputs,
to ensure that the regenerated program is not vulnerable to SQL
injection attacks.

Hecate also adds sanity checks for input arguments, based on the
data types inferred from the column-argument relations in Views. If
the original application checks input argument a against a column
c , Hecate infers that a has the data type of c in the database schema.
The regenerated command handler checks that a has the correct
format of the data type. For example, it is straightforward for the
regenerated command handler to enforce that integer arguments
must consist of numbers and that string argumentsmust not contain
certain special characters.

4 EXPERIMENTAL RESULTS
Our experimental investigation was driven by the following re-
search question:Howmany of the commands in practical applications
can Hecate infer?

We investigate this question via case studies on several applica-
tions drawn from the open source community. Note that whether
Hecate can infer relevant commands is the critical research question
— if Hecate can infer a command, it can generate efficient, correct
translated code that implements the command.

4.1 Kandan Chat Room
Kandan [3] is an open source chat room application built with Ruby
on Rails, with over 2700 stars on Github. The server receives HTTP
requests, interacts with the database accordingly, and responds
with JSON objects that contain data retrieved from the database
and HTML templates to display the JSON data. Hecate infers and
regenerates the following commands:
get_channels (username): After a user logs in with a username
and password, the Kandan web page issues this command to the
server to retrieve the contents of the chat room for display in the
main window. The server responds with details of each channel,
the activities that each channel contains, and the author of each
activity. For this command Hecate infers the following Python code,
where the question mark is used by the Python SQLite library to
fill in the parameter username.
query = "SELECT activities.id, users.email , users.

first_name , users.username , users.id , channels

.id, channels.name , users.last_name ,

activities.content FROM users RIGHT JOIN

activities ON users.id = activities.user_id

RIGHT JOIN channels ON activities.channel_id =

channels.id WHERE users.username = ?"

param = (username , )
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cursor.execute(query , param)

for row in cursor:

print str(row)

post_channels_id_activities (username, content, id):Af-
ter a user logs in with a username, the user may send a message
with some content in an existing channel identified by id. The
Kandan web page issues this command to the server to post the
new message as an activity. The server first checks that the channel
exists. The server then inserts a row into the activities table with
a new activity ID, the message content, the id, the ID of the cur-
rent user, and the timestamp that this message was created. Hecate
infers SQL that implements this behavior.

4.2 Kanban Task Manager
Kanban [2] (distinct from Kandan) is an open source task manager
built with Ruby on Rails, with over 500 stars on Github. The server
receives HTTP requests and responds with JSON objects. Hecate
infers and regenerates the following commands, all of which are
issued by the Kanban web page to the server after a user logs in
with an email and password.
get_api_board (email): This command retrieves the contents of
the user’s tasks for display when the user clicks on corresponding
links. The server first checks all boards that the current user is a
member of, then responds with all the boards. For each board that
contains lists, the server also responds the lists. For each list that
contains cards, the server also responds the cards. For each card
that contains comments, the server also responds the comments.
For this command Hecate infers the following Python code, where
the question mark is used by the Python SQLite library to fill in the
parameter email.

query = "SELECT boards.name , boards.id, cards.

position , card_comments.id, lists.position ,

lists.id , users.id, users.full_name , cards.

description , cards.id, lists.title , boards.

description , users.email , users.bio ,

card_comments.content , cards.title FROM

card_comments RIGHT JOIN cards ON

card_comments.card_id = cards.id RIGHT JOIN

lists ON cards.list_id = lists.id RIGHT JOIN

boards ON lists.board_id = boards.id INNER

JOIN board_members ON boards.id =

board_members.board_id INNER JOIN users ON

board_members.member_id = users.id WHERE users

.email = ?"

param = (email , )

cursor.execute(query , param)

for row in cursor:

print str(row)

One difference between the inferred program and the original Kan-
ban server is that the Kanban server performs multiple separate
SQL queries to retrieve the relevant tables. In contrast, the regener-
ated program issues a composite join query. This coding pattern
replaces multiple server/database interactions with a single inter-
action (reducing inter-component communication overhead) and
allows the database engine to optimize query performance.

post_api_lists (email, title, board_id): This command
enables the user to create a new list with title on the board iden-
tified by board_id. The server first checks if the current user is
a member of the specified board, then inserts a row into the lists
table with a new list ID, the list title, the board_id, a new list
position in the board, and the timestamp when this list was created.
For this command Hecate infers the following Python code, where
the question mark is used by the Python SQLite library to fill in the
parameters email, board_id, and title.

query = "SELECT * FROM users INNER JOIN

board_members ON users.id = board_members.

member_id INNER JOIN boards ON board_members.

board_id = boards.id WHERE users.email = ? AND

boards.id = ?"

param = (email , board_id)

cursor.execute(query , param)

if cursor.fetchone () is None:

return

query = "INSERT INTO lists (board_id , title)

values (?, ?)"

param = (board_id , title)

cursor.execute(query , param)

get_api_cards_id (email, card_id): This command retrieves in-
formation of a card that the user clicks on. This command is simi-
lar to get_api_boards, except that (a) the tables cards, lists, and
board_members are inner joined and that (b) the condition in the
WHERE clause also specifies a card ID.

query = "SELECT card_comments.id, lists.id, users.

id , users.full_name , cards.description , cards.

id , cards.position , users.email , users.bio ,

card_comments.content , cards.title FROM

card_comments RIGHT JOIN cards ON

card_comments.card_id = cards.id INNER JOIN

lists ON cards.list_id = lists.id INNER JOIN

boards ON lists.board_id = boards.id INNER

JOIN board_members ON boards.id =

board_members.board_id INNER JOIN users ON

board_members.member_id = users.id WHERE users

.email = ? AND cards.id = ?"

param = (email , card_id)

cursor.execute(query , param)

for row in cursor:

print str(row)

get_api_users_current (email): This command retrieves the
current user information for display on the top menu bar.
post_api_cards (email, title, list_id): This command en-
ables a user to create a new card with title on the list identified
by list_id. This command is similar to post_api_lists.

4.3 Lobsters Forum Application
Lobsters [4] is an open source online forum application built with
Ruby on Rails, with over 1400 stars on Github. The server receives
HTTP requests, interacts with the database accordingly, and re-
sponds to the client with an HTML page that contains the data
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retrieved from the database. Hecate infers and regenerates the fol-
lowing commands:
get_s_id (story_short_id): This command retrieves a story
and information about the story (including author name and com-
ments) given the unique 6-character token, story_short_ID, that
identifies the story. For this command Hecate infers the following
Python code, where the question mark is used by the Python SQLite
library to fill in the parameter story_short_id.

query = "SELECT stories.story_cache , stories.

short_id , users.username , stories.

markeddown_description , stories.description ,

comments.short_id , stories.title , comments.

markeddown_comment FROM users INNER JOIN

stories ON users.id = stories.user_id LEFT

JOIN comments ON stories.id = comments.

story_id RIGHT JOIN users ON comments.user_id

= users.id WHERE stories.short_id = ?"

param = (story_short_id , )

cursor.execute(query , param)

for row in cursor:

print str(row)

get_home (): This command retrieves the author name and story
information for forum posts. The inferred program contains an
inner join operation on tables stories and users.
post_stories (email, title, description): After a user logs
in with an email and password, the user may create a new story
with a title and a description. When the web page issues this
command, the server inserts a row into the stories table, with a new
story ID, the title, the description, the current user ID, and the
timestamp when the story was created.
post_comments (email, story_short_id, comment): After a
user logs in with an email and password, the user may create
a new comment under an existing story identified by a unique
6-character token, story_short_id. This command is similar to
post_stories.

One difference between the inferred programs and the original
Lobsters server is that the Lobsters server will crash whenever the
author ID of a comment or a story is not present in the users table.
Hecate, in contrast, produces a program that is resilient to these
lookup errors (because of the use of outer joins).

4.4 Blog application
The blog application is a standard example on the Ruby on Rails
“Getting Started” website [1]. The server receives HTTP requests,
interacts with the database accordingly, and responds the client with
an HTML page that contains the data retrieved from the database.
Hecate infers and regenerates the following commands:
articles (): The blog server returns a page with all article text,
titles, and IDs.
article (arg_url): The blog server uses the input arg_url as
an article ID and returns the article details. If the article has com-
ments, the server also returns the list of comments with body and
commenter information.

For this command Hecate infers the following Python code,
where the question mark is used by the Python SQLite library
to fill in the parameter arg_url.

query = "SELECT comments.body , articles.title ,

articles.id, articles.text , comments.commenter

FROM articles LEFT JOIN comments ON articles.

id = comments.article_id WHERE articles.id = ?

"

param = (arg_url , )

cursor.execute(query , param)

for row in cursor:

print str(row)

new_article (arg_title, arg_text): The blog server creates a
new article with title arg_title and content arg_text. It inserts a
new row into the articles table with a new article ID, the arg_title,
the arg_text, and the timestamp that this article was created.
new_article_comment (arg_commenter, arg_body, arg_url):
The blog server creates a new comment under an article identified
by arg_url. The server inserts a new row into the comments table
with a new comment ID, the commenter name arg_commenter, the
comment arg_body, the article ID arg_url, and the timestamp that
this comment was created.
destroy_article (arg_url): The blog server deletes a row from
the articles table, using arg_url as the article ID.
destroy_article_comment (arg_url1, arg_url2): The blog
server deletes a comment for an article, using arg_url1 as the
article ID and arg_url2 as the comment ID. It deletes a row from
the comments table, as long as the article and the comment both
exist.

4.5 HTTP Server
This application is written in Java. It was developed by the same
evaluation team as the student registration applications (see Section
2) for the same purpose. The server receives HTTP requests and
updates the database accordingly. Hecate infers and regenerates
the following commands:
insert (arg_value): The server inserts a new row into a table
with a new ID and the value in arg_value.
delete (arg_id): The server deletes a row from the table that has
ID arg_id.

4.6 Student registration system
There are two versions of the student registration database sys-
tem, both written in Java by the evaluation team for testing SQL
injection detection and nullification techniques. Version one is pre-
sented in Section 2. Version two has mostly the same behavior as
version one on benign inputs, except that version two does not
check the student’s password for command register. For both
versions, Hecate infers and regenerates the following commands:
liststudentcourses, register, and unregister, all of which
described in Section 2.

4.7 Extensions
We next describe several extensions to the main algorithm. As
described below, these extensions enable Hecate to support a wider
range of applications and application features.
Composite Commands: Some applications implement composite
commands with multiple operations. For example, the Kandan login
command updates a table timestamp, which Hecate could model as
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Table 1: Number of executions and database resets

Benchmark Tables Columns Command Args Executions DB resets Inference time

Kandan chat room 3 18 − 3 = 15 get_channels 1 19 + 9 = 28 1 + 9 = 10 253 s
post_channels_id_activities 3 362 + 6 = 368 3 + 6 = 9 1582 s

Kanban task manager 6 34 − 7 = 27 get_api_users_current 1 31 + 2 = 33 1 + 2 = 3 68 s
get_api_board 1 31 + 17 = 48 1 + 17 = 18 140 s
get_api_cards_id 2 931 + 22 = 953 1 + 22 = 23 1543 s
post_api_lists 3 2702 + 16 = 2718 3 + 16 = 19 4324 s
post_api_cards 3 1832 + 23 = 1855 3 + 23 = 26 2893 s

Lobsters forum 13 44 − 8 = 36 get_home 0 1 + 5 = 6 1 + 5 = 6 25 s
get_s_id 1 51 + 9 = 60 1 + 9 = 10 44 s
post_stories 3 153 + 57 = 210 4 + 57 = 61 281 s
post_comments 3 5052 + 10 = 5062 3 + 10 = 13 768 s

Blog server 2 11 − 1 = 10 articles 0 1 + 2 = 3 1 + 2 = 3 9 s
article 1 11 + 6 = 17 1 + 6 = 7 20 s
new_article 2 3 + 2 = 5 4 + 2 = 6 16 s
new_article_comment 3 33 + 3 = 36 4 + 3 = 7 20 s
destroy_article 1 11 + 3 = 14 2 + 3 = 5 14 s
destroy_article_comment 2 111 + 5 = 116 2 + 5 = 7 23 s

HTTP server 1 2 − 0 = 2 insert 1 2 + 2 = 4 3 + 2 = 5 8 s
delete 1 2 + 3 = 5 2 + 3 = 5 8 s

Registration 4 14 − 3 = 11 liststudentcourses 2 133 + 12 = 145 1 + 12 = 13 60 s
(version one) unregister 3 1354 + 11 = 1365 2 + 11 = 13 535 s

register 3 1354 + 8 = 1362 2 + 8 = 10 535 s

Registration 4 14 − 3 = 11 liststudentcourses 2 133 + 12 = 145 1 + 12 = 13 58 s
(version two) unregister 3 1354 + 11 = 1365 2 + 11 = 13 541 s

register 3 255 + 11 = 1362 3 + 11 = 10 101 s

a Delete followed by an Insert (Hecate currently supports only a
single Delete or Insert per table per command). Some commands
that create new rows not only perform the Insert actions, but also
return the new inserted row and/or change other metadata tables.
For example, the Lobsters post_stories and post_comments com-
mands, in addition to inserting new stories and comments, also
print the inserted story or comment and maintain other metadata
in the keystores table. Since these actions span multiple tables and
output channels, they do not overwrite each other. Thus, it is suffi-
cient to observe each of these actions separately. These commands
can be supported by extending the algorithm to represent them as a
group of separate commands that we already support individually.

Some commands print two tables without joining them, which
is useful when web pages generate side bars or top bars with rela-
tively constant information. For example, Kandan’s get_channels
command always returns the information of the current logged
in user, even if the user never authored any activity. Hecate could
support such commands by populating multiple rows into each
table and observing whether rows that are not selected by joins
show up in the outputs.
Sorting/Limiting Data: Some commands do not return all rows
selected by the filtering criteria. They instead sort the selected
rows and/or return only the top rows. For example, Kandan’s
get_channels, Lobsters’ get_home, and Lobsters’ get_s_id com-
mands return only rows with the most recent creation timestamps
or largest IDs (which increment automatically for new rows). Ex-
tending Hecate to populate multiple rows into the relevant tables
and use binary search to infer the number limits and sorting criteria
would enable Hecate to infer these criteria.

Input Length Checks: Some applications check the lengths of
input strings for commands that take string arguments and perform
Insert operations. For example, the blog application and the Lobsters
application both enforce a minimum length for the titles of new
articles or stories. This behavior can be supported if we extend
the algorithm to assign string arguments with strings of different
lengths and to use binary search to infer the length requirements.
Computation Before Storing/After Retrieving Data: Some ap-
plications that output date and time do not directly output the date
and time format stored in the database. They instead translate the
data into English and relative time, such as “Monday” or “3 minutes
ago”. Hecate could support such behavior with a more elaborate
date and time model.

Many applications store passwords as encrypted hashes. The
Lobsters post_stories and post_comments commands insert not
only the contents of the new story or new comment, but also other
computed data including a unique 6-character token that works as
a short ID, a markdown augmented version of the main text, and a
floating point number that represents the estimated hotness. The
Lobsters search feature performs string pattern matching, rather
than simple equality checking. Although it is generally difficult
to infer arbitrary computations, these computations are relatively
simple and would be supported by extending the inference algo-
rithm with a knowledge base of popular cryptographic and hashing
functions, string operations, and numerical operations that are
commonly used in database-backed web applications.
Counting: Some applications have commands that increment or
decrement a column in the database. For example, the Kandan server
maintains login counts for users. The Lobsters forum has buttons
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to “upvote” or “downvote” stories and comments. These features
can be supported if we extend the algorithm to infer counts.
Multiple Joins Per Table Per Command: The Kanban command
get_api_board prints, in addition to the data presented above, the
authors of each card and each comment. These authors may come
from potentially different rows in the users table and differ from
the logged in user. Similarly, Lobsters supports sending private
messages to other users. Each message joins the users table twice,
once using the sender’s ID and the other time using the recipient’s
ID. The two joins use different criteria. These commands query a
single table multiple times using different criteria. Extending the
algorithm to populate multiple rows into tables to distinguish the
outcomes of different queries would enable Hecate to infer this
behavior.

4.8 Execution time
We implemented the inference and regeneration algorithms pre-
sented in Section 3. The inference process repeatedly constructs a
test database and executes test input commands, then observes the
resulting outputs and database contents to systematically build up
the model of the application behavior. Our implementation checks
the database contents after each command execution. It resets the
database in the following situations: (a) When inferring View and
Work statements, the algorithm restores the database to D0 when-
ever it observes that the execution changes the database contents
(by deleting or inserting) and (b) when inferring Join statements,
the algorithm populates the database once for each interesting
database configuration.

We present the number of program executions, database reset
operations, and timing data in Table 1. The columns are: benchmark
application (Benchmark), number of tables in the benchmark’s
database schema (Table), number of columns in the database tables
(each entry is of the form X − Y = Z , where X is the total number
of columns for inference, Y is the number of foreign key columns,
and Z is the number of columns excluding foreign key columns),
command name (Command), number of input arguments for the
command (Args), number of command executions during infer-
ence (Executions), number of database reset (and server restart)
operations during inference (DB resets), and the inference time
in seconds (Inference time). Each row represents a command of
an application. The columns Executions and DB resets are writ-
ten in the form X + Y = Z , where X is the number of application
executions to infer the View and Work stages, Y is the number of
executions to infer the Join phase, and Z is total number of appli-
cation executions. We ran experiments for Kandan, Kanban, and
Lobsters on an Ubuntu virtual machine that uses 1 core and has
1 GB memory. We ran experiments for blog server and student
registration on an Ubuntu virtual machine that uses 2 cores and
has 2 GB memory. The host machine uses a processor with 4 cores
(2.6 GHz Intel Core i5) and has 8 GB 1600 MHz DDR3 memory.

After inferring the computation patterns of an application, our
implementation regenerates a new version for the program. The
regenerated program implements a handler function for each com-
mand, systematically applying coding patterns and security checks
to ensure secure execution. The regenerated program also con-
tains a main function that parses input arguments and invokes

the handlers. Our implementation regenerates the benchmarks in
Python using the SQLite3 database connector library. The regen-
erated versions eliminate any SQL vulnerabilities present in the
original applications and translate all applications into Python.
We are happy to make the full inference and regeneration imple-
mentations, benchmark applications, and regenerated applications
available on request (and will also make these publicly available).

5 RELATEDWORK
The closest related work uses black box techniques to derive and
regenerate models of programs that store and retrieve data from
maps [29]. Hecate differs in that 1) it infers and regenerates pro-
grams that work with relational databases, not maps, 2) it works
with computations whose behavior is captured by View, Join, and
Work phases, not computations that store and retrieve data from
maps, and 3) Hecate exploits its ability to observe and modify the
database to obtain a more powerful inference algorithm. Previous
research, in contrast, works with programs with hidden internal
maps that are not accessible to the inference algorithm.
Partial model learning: State machine learning algorithms [7, 9,
12, 13, 16, 18, 22, 25, 27, 36, 37] construct partial representations of
program functionality in the form of finite automata with states
and transition rules. State fuzzing tools [6, 15] hypothesize state
machines for given program implementations. One goal is to aid
developers in discovering bugs such as spurious state transitions.
Network function state model extraction [39] performs program
slicing and models the sliced partial programs as packet-processing
automata. These algorithms extract partial models of the given
programs. Our approach, in contrast, extracts a complete repre-
sentation of the database computation patterns, which, in turn,
enables the regeneration (and replacement) of the initial program
and represents the inferred programs as commands and database
operations, which can capture a wide range of database-backed
applications.
Statelessmodel extraction:Model extraction algorithms use queries
to construct representations for given programs, where the repre-
sentations are stateless functions such as decision trees [14, 35] or
symbolic rules [34]. Model compression algorithms [11, 21] use ma-
chine learning models, such as neural networks, to mimic a given
machine learning model, typically by generating inputs (training
data) and observing the outputs from the given model. Our ap-
proach, in contrast, infers stateful models that store state in an
external database and regenerates a new program that implements
the inferred computation pattern potentially in new languages or
for execution on new computation platforms.
Program synthesis: Program synthesis algorithms often generate
programs by solving constraints[20, 24], working with input/out-
put examples [10, 17, 19, 23, 26, 30], or applying templates [31–33].
These techniques do not work with existing implementations, but
require (partial or complete) specifications in other forms. Our ap-
proach, in contrast, works with an existing program rather than
abstract specifications, automatically executes the given program as
needed to infer the database computation patterns, can work with
programs that contain defects, and automatically regenerates aug-
mented programs that implement the computation pattern without
defects or vulnerabilities.
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Counterexample-guided inductive synthesis (CEGIS) [31] uses
finite programs (whose input is bounded and terminate on all inputs
after a bounded number of operations) as specifications, to generate
more efficient implementations that always produce the correct
outputs. Oracle-guided program synthesis [23] uses hypothetical
I/O oracles (which always return the correct results) to guide the
synthesis of loop-free programs. Our approach, in contrast, works
with stateful programs that interact with a database (as opposed
to finite programs that implement functions) and regenerates new
programs that can use new programming languages or computing
platforms.

6 CONCLUSION
Applications that translate commands into database operations are
pervasive in modern computing environments. Potential issues
that arise in this context include defects and applications written in
obsolete languages or programming styles. We present techniques
that automatically infer and regenerate these programs. Results
from our implementation highlight the use of the techniques to
translate applications from legacy languages such as Ruby on Rails
into more modern Python implementations as well as the regener-
ation of robust implementations that eliminate defects such as SQL
injection vulnerabilities. The presented techniques therefore hold
out the promise of improving the security and long-term viability
of this important class of applications.
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