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Abstract

Infeasible network �ow problems with supplies and demands can be characterized
via violated cut-inequalities of the classical Gale-Ho�man theorem. Written as a
linear program, irreducible infeasible subsystems (IISs) provide a di�erent means of
infeasibility characterization. In this article, we answer a question left open in the
literature by showing a one-to-one correspondence between IISs and Gale-Ho�man-
inequalities in which one side of the cut has to be weakly connected. We also show
that a single max-�ow computation allows one to compute an IIS. Moreover, we
prove that �nding an IIS of minimal cardinality in this special case of �ow networks
is strongly NP-hard.

Keywords � �ow network, irreducible infeasible subsystem, Gale-Ho�man theorem, infeasibility
analysis, witness, max �ow�min cut, NP-hardness

1 Introduction

Sometimes a linear program (LP) turns out to be infeasible, e.g., because of modeling errors
or structural reasons. In this case, one would like to �nd the cause for its infeasibility. One
way is to study irreducible infeasible subsystems (IISs), i.e., infeasible subsystems such that each
proper subsystem is feasible. IISs might help to identify the reason of infeasibility and are basic
structures in infeasibility analysis.

In this article, we study the special case of a �ow system for a simple, directed graph G =
(V,A) with upper �ow bounds u ∈ RA, lower �ow bounds ` ∈ RA, and a supply vector b ∈ RV .
Thus, we consider the system

x(δ+(v))− x(δ−(v)) = b(v) ∀ v ∈ V, (F)

` ≤ x ≤ u,

where, for S ⊆ V and S̄ := V \S, we use the following standard notation: δ+(S) := {(v, w) ∈ A |
v ∈ S, w ∈ S̄}, δ−(S) := {(v, w) ∈ A | v ∈ S̄, w ∈ S}, and δ(S) := δ+(S) ∪ δ−(S); we also
abbreviate δ+(v) := δ+({v}) and similarly for δ−(v) and δ(v). Moreover, for some vector y ∈ RI
with �nite index sets I and I ′ ⊆ I, we use y(I ′) :=

∑
i∈I′ yi and often write y(i) := y({i}) = yi.

We assume throughout the article that 0 ≤ ` ≤ u in order to avoid trivial infeasibilities.
A characterization of feasibility for this �ow system is well known:
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2 A Characterization of IISs in Flow Networks

Theorem 1 (Gale and Ho�man [11, 18]). The network �ow system (F) is infeasible if and only
if there exists S ⊆ V such that

b(S) > u(δ+(S))− `(δ−(S)). (1)

A natural question is how IISs in the �ow case and the Gale-Ho�man-inequalities (1) (GH-
inequalities) are related. In this article, we show that the IISs of (F) correspond to exactly those
violated inequalities (1) for which the induced subgraph G[S] is weakly connected, i.e., the undi-
rected version of G[S] is connected. This implies, for instance, that there can be exponentially
many IISs; see Corollary 9. The corollary follows with a result by Wallace and Wets [28], who
showed that a GH-inequality is nonredundant if and only if S and S̄ are weakly connected. This
was generalized for multicommodity �ows by Zullo [29].

Further related work in the literature includes Greenberg [14], who discusses the analysis of
infeasible �ow systems (see also [13]). He presents several heuristics to �localize� the cause of
infeasibility, i.e., he tries to isolate small sets S with violated GH-inequalities. In [15], Greenberg
further gives an example of a violated GH-inequality that does not lead to an IIS and states
that �there is presently no theory to construct an IIS from a violating cut, other than general
methods [. . . ]�. The missing link is connectivity of one of the sides of the cut corresponding to
a GH-inequality; see Section 2.

The problem of �nding small sets S with violated GH-inequalities was investigated by Ag-
garwal et al. [1]. They call S a witness of infeasibility and show that the problem of �nding a
minimum witness (i.e., one of smallest cardinality) is strongly NP-hard. They further design an
e�cient algorithm to �nd a minimal witness (w.r.t. inclusion) based on pre�ow-push algorithms.

IISs and witnesses in �ow networks can both be used to reveal a smaller portion of the
network �witnessing� the infeasibility. For witnesses, the number of nodes is relevant, while for
IISs, the number of constraints corresponding to both nodes and arcs count. In Section 4, we
further discuss the relation of IISs and witnesses. With respect to computational complexity,
IISs have similar properties as witnesses: We show, in Section 5, that the minimum IIS problem,
i.e., to �nd an IIS of smallest cardinality, is strongly NP-hard, extending the result that this
problem is strongly NP-hard for linear inequality systems [3]. An IIS, however, can be computed
in polynomial time using one maximum �ow computation; see Section 3.

For the analysis of general infeasible inequality systems, many approaches have been devel-
oped � we refer to the book of Chinneck [9] for an overview and only mention selected references
here. The term IIS was coined by van Loon [27] as a means to analyze infeasibilities in lin-
ear programs. Gleeson and Ryan [12] gave a characterization of IISs related to an alternative
polyhedron. The analysis of infeasible linear programs was further discussed by Greenberg and
Murphy [16], including the case of �ow networks. Dravnieks and Chinneck [10] and Chinneck [7]
developed heuristics to isolate IISs (see also [5] for an application to �ow systems). An overview
of these approaches appeared in [6]. Finally, Ryan [25] investigated combinatorial properties of
IISs.

Related topics are methods to �nd maximum feasible subsystems (which are complementary
to covers of IISs). Chinneck [4, 8] develops heuristics for this problem. An exact algorithm
appears in [23], based on [3]. Moreover, McCormick [22] studies the related problem of �nding
least infeasible �ows.

The remainder of this paper is structured as follows: In Section 2, we show the mentioned
correspondence between IISs and GH-inequalities. Section 3 shows that an IIS can be computed
in polynomial time, using a single max-�ow computation. In Section 4, we discuss the relation of
minimum/minimal witnesses and IISs. Section 5 shows that, even in the �ow case, it is strongly
NP-hard to compute an IIS of minimum cardinality. We close with an outlook on future research
in Section 6.

2 IISs Correspond to Connected Gale-Ho�man-Inequalities

To show the correspondence between IISs and GH-inequalities, we need the following de�nition,
where a node set is called weakly connected if it is connected in the underlying undirected network.
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De�nition 2 (GH-cuts). For S ⊆ V , a cut δ(S) is called a GH-cut if b(S) > u(δ+(S))−`(δ−(S)).
A GH-cut is connected if G[S] := (S, A[S]) is weakly connected, where A[S] := {(u, v) ∈ A |
u, v ∈ S}. For a GH-cut δ(S), we call the system

x(δ+(v))− x(δ−(v)) = b(v) ∀ v ∈ S, (2)

xa ≥ `a ∀ a ∈ δ−(S),

xa ≤ ua ∀ a ∈ δ+(S),

a GH-subsystem, denoted by I(S), and S the associated GH-set.

The characterization of infeasible network problems in Theorem 1 could just as well have
been given in terms of the complementary form of the violated GH-inequalities:

−b(S) > u(δ−(S))− `(δ+(S)).

We call this the demand form, since it belongs to a subset with an unsatis�ed demand, whereas
the form stated in Theorem 1 corresponds to a subset with an unmet supply. It is obvious that
if for a subset S ⊆ V the supply form is violated, S̄ violates the demand form, and vice versa.
However, S might be connected, while S̄ is not, and conversely. This means that we have to
take both forms into account when determining IISs. To this end, the GH-demand-subsystem is
de�ned analogously to De�nition 2:

x(δ+(v))− x(δ−(v)) = b(v) ∀ v ∈ S,
xa ≥ `a ∀ a ∈ δ+(S),

xa ≤ ua ∀ a ∈ δ−(S).

Obviously, every GH-subsystem is infeasible.
We need some more notation: Let σv refer to the �ow conservation constraint for a node

v ∈ V , µa to the constraint xa ≤ ua, and λa to the constraint xa ≥ `a for a ∈ A. Moreover, for
a subset J of constraints of (F), we de�ne S(J ) := {v ∈ V | σv ∈ J }.

The following observation will be used in the proofs below: Every subset J of constraints
of (F) itself de�nes a network problem, consisting of the nodes v ∈ S(J ) and incident arcs. For
arcs with a missing endnode, we introduce an auxiliary node r; missing bounds are replaced by
±∞. Hence, this network is given by G(J ) := (V (J ), A(J )) with

V (J ) := S(J ) ∪ {r},
A(J ) := {(v, w) ∈ A | v, w ∈ S(J )} ∪

{(v, r) | (v, w) ∈ δ+(S(J ))} ∪ {(r, w) | (v, w) ∈ δ−(S(J ))} ∪
{(r, r)a | µa ∈ J , a ∩ S(J ) = ∅} ∪ {(r, r)a | λa ∈ J , a ∩ S(J ) = ∅}.

Here, (r, r)a refers to a loop indexed by arc a ∈ A. The construction implies that for each arc
a ∈ A(J ) there exists a unique arc ã in A from which a originates (but not conversely). We
then inherit the bounds for arcs represented in J and use ±∞ otherwise. Thus, we obtain for
a ∈ A(J ) and corresponding ã ∈ A:

u(J )a :=

{
uã, µã ∈ J ,
∞, µã /∈ J ,

`(J )a :=

{
`ã, λã ∈ J ,
−∞, λã /∈ J .

Finally, the (balanced) supply/demand for v ∈ V (J ) is de�ned as follows:

b(J )v :=

{
bv, v ∈ S(J ),

−
∑
v∈S(J ) bv, v = r.

Example 3. Figure 1 shows an example for the construction of G(J ), where J is

x13 + x14 = 10, x13 ≤ 2, x56 ≥ 1,

−x42 = −2, x14 ≥ 1, x45 ≤ 1,

−x14 − x34 + x42 + x45 = −2, 1 ≤ x34 ≤ 2.
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Figure 1: Example for the construction of a network problem (G; b, u, `) describing an

infeasible subset of constraints J with S(J ) = {1, 2, 4}; node labels b, arc labels [`, u].

The above construction allows us to apply Theorem 1 to a constraint subset J . Note that a
GH-inequality cannot involve in�nite bound values, otherwise it would not be violated.

Lemma 4. J is infeasible if and only if there exists a violated GH-inequality in G(J ).

Proof. Ignoring in�nite bounds, every constraint arising from the network problem for (G(J );
b(J ), u(J ), `(J )) is also a constraint in J , with the exception of the �ow conservation constraint
for r. Thus, J is infeasible if and only if the network problem for (G(J ); b(J ), u(J ), `(J )) is
infeasible. By Theorem 1, this holds if and only if there exists a violated GH-inequality.

The following lemmas will show that connected GH-cut systems and IISs are equivalent (see
Theorem 8 below).

Lemma 5. Every IIS of (F) is a GH-subsystem.

Proof. Let J be an IIS. Then S(J ) 6= ∅ (by the assumption ` ≤ u). Since J is infeasible,
there exist at least two GH-sets S′ and S̄′ in G(J ) by Lemma 4. W.l.o.g. let r ∈ S̄′, whence
S′ ⊆ S(J ). Because bounds not in J are in�nite, I(S′) ⊆ J , since otherwise the corresponding
GH-inequality would automatically be satis�ed. Then, if I(S′) = J (i.e., S′ = S(J ) and all
bounds on A(J )[S(J )] are in�nite), we have a GH-subsystem for J . Otherwise the infeasible
I(S′) would be a proper subset of J , and J would not be irreducible.

We can now use the fact that every IIS has the form I(S) (see De�nition 2). In the following,
∪̇ denotes a disjoint union.

Lemma 6. The GH-cut for an IIS is connected.

Proof. Let I(S) be an IIS and suppose S is disconnected, i.e., there is a nontrivial partition
S1 ∪̇S2 = S, with A[S1] ∪̇A[S2] = A[S] and δ(S1) ∪̇ δ(S2) = δ(S). Consider the systems I1 :=
{σv | v ∈ S1} ∪ {λa ∈ I | a ∈ δ(S1)} ∪ {µa ∈ I | a ∈ δ(S1)} and I2 := {σv | v ∈ S2} ∪ {λa ∈ I |
a ∈ δ(S2)} ∪ {µa ∈ I | a ∈ δ(S2)}. Note that I1 and I2 are proper subsets of I(S). Thus, they
must have feasible solutions x1 and x2, respectively. But then

xa :=

{
x1a, a ∈ A[S1] ∪ δ(S1),

x2a, a ∈ A[S2] ∪ δ(S2)

gives a feasible solution for I(S), because δ(S1) ∩ δ(S2) = ∅; a contradiction.

Lemma 7. Every connected GH-subsystem is an IIS.

Proof. Let I := I(S) be a connected GH-subsystem (and hence infeasible by De�nition 2), and
suppose I is reducible. Then there exists an infeasible I ′ ⊂ I.

Suppose �rst that I ′ is obtained from I by dropping at least one node constraint σv, and
consider the network problems on G(I) and G(I ′). G(I ′) results from G(I) by removing v and
redirecting incident arcs to the root node r. By Lemma 4, the graph G(I ′) must contain a
GH-set S′ with S′ ⊂ S. Since I is a GH-subsystem, ua = ∞ and `a = −∞ for all a ∈ A(I)[S].
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Because S is connected, there exists a ∈ δ(S′)∩A(I)[S]. But then u(δ+(S′))− `(δ−(S′)) =∞ >
b(S′), i.e., I ′ would be feasible.

Now suppose I ′ contains at least one fewer bound on some a ∈ δ(S) than I, i.e., the
graph G(I ′) is obtained from G(I) by setting ua = ∞ or `a = −∞, respectively. Again,
b(S) <∞ = u(δ+(S))− `(δ−(S)) and no GH-cut exists. As a consequence of Theorem 1, every
subset of I is feasible, so I is indeed irreducible.

Using Lemma 5, Lemma 6, and Lemma 7, we have proven the following theorem:

Theorem 8. A subsystem I of the network �ow system (F) is an IIS if and only if I is the
GH-subsystem of a connected GH-cut.

Corollary 9. There can be exponentially many IISs of (F).

Proof. As mentioned in the introduction, Wallace and Wets [28] proved that the GH-inequalities
are nonredundant if and only if both sides of the cut are weakly connected. Moreover, they
showed that there can be exponentially (in the number of nodes) many nonredundant GH-cuts.
Hence, there can be exponentially many IISs of (F).

3 Computing IISs in Flow Networks

An IIS of a linear program can be computed in weakly polynomial time by �nding a vertex
of the alternative polyhedron (Gleeson and Ryan [12]). For network �ow problems, this can
even be done in strongly polynomial time; see Tardos [26]. In the following, we show that
performing a single max-�ow computation su�ces to �nd an IIS, yielding a strongly polynomial
time combinatorial algorithm.

First suppose that a GH-cut δ(S) has been found. If S is weakly connected, we have found
an IIS by Theorem 8; otherwise, we can extract an IIS in roughly the time needed to compute
the connected components:

Proposition 10. Let I(S) be a GH-subsystem, where S is disconnected. Then there exists a
connected component (S1, A[S1]) with S1 ⊂ S such that I(S1) is an IIS.

Proof. Let I(S) be a GH-subsystem, and suppose there are k ≥ 2 connected components
(S1, A[S1]), . . . , (Sk, A[Sk]) with S = S1 ∪̇ · · · ∪̇Sk. W.l.o.g., we assume

b(S1)− u(δ+(S1)) + `(δ−(S1)) ≥ b(Si)− u(δ+(Si)) + `(δ−(Si)) (3)

for all i = 2, . . . , k. Since by assumption δ(Si) ∩ δ(Sj) = ∅ for all i 6= j, we have

0 < b(S)− u(δ+(S)) + `(δ−(S)) =

k∑
i=1

(
b(Si)− u(δ+(Si)) + `(δ−(Si))

)
(3)

≤ k
(
b(S1)− u(δ+(S1)) + `(δ−(S1))

)
.

Thus, we have b(S1) > u(δ+(S1)) − `(δ−(S1)) and I(S1) is an IIS by Theorem 8. For I(S) in
demand form, the proof runs analogously.

Therefore, to obtain an IIS, we essentially just need to �nd a violated GH-inequality. It is well
known [2] that this can be done by computing a maximum (s-t)-�ow for the following extended
network G′ = (V ′, A′) with source s, sink t, and capacities u′: The nodes are V ′ := V ∪ {s, t}.
For each v ∈ V , let

dv := bv −
∑

a∈δ+(v)

`a +
∑

a∈δ−(v)

`a.

The arcs are
A′ := A ∪ {(s, v) | dv > 0} ∪ {(v, t) | dv < 0}.
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For each arc of the form a = (s, v), de�ne u′a := dv > 0. For each arc a = (v, t), de�ne
u′a := −dv > 0. For every arc a ∈ A, set u′a := ua − `a. All lower bounds in G′ are 0.

Let D :=
∑
v∈V :dv>0 dv. If the maximum (s-t)-�ow in G′ has value < D, the original instance

is infeasible. In fact, we show that every GH-set in G corresponds to a cut in G′ with capacity
< D. Aggarwal et al. [1, Lemma 1] proved a similar result for the witness problem. Our result
is an extension to problems with lower bounds and holds w.r.t. IISs.

Lemma 11. There is a one-to-one correspondence between GH-sets S ⊆ V in G and sets
S′ = S ∪ {s} ⊆ V ′ with a cut value u′(δ+(S′)) < D in G′.

Proof. In the following, we will use the notation S+ := {v ∈ S | dv > 0} and S̄+ := {v ∈ V \ S |
dv > 0}, and analogously S−, S̄− for the demand nodes. Furthermore, [V1 : V2] := {(v1, v2) ∈
A | v1 ∈ V1, v2 ∈ V2}.

Let S ⊆ V and S′ := S ∪ {s}. Then

u′(δ+(S′)) = u′(δ+(S)) + u′([s : S̄+])

= u(δ+(S))− `(δ+(S))− d(S−) + d(S̄+).

In the last line, all values are with respect to the graph G.
Note that for every U ⊆ V , we have d(U) = b(U) − `(δ+(U)) + `(δ−(U)). Moreover, D =

d(S+) + d(S̄+), i.e., d(S̄+) = D − d(S+) = D − b(S+) + `(δ+(S+))− `(δ−(S+)). Thus,

u′(δ+(S′)) = u(δ+(S))− `(δ+(S))− b(S−) + `(δ+(S−))− `(δ−(S−))

+D − b(S+) + `(δ+(S+))− `(δ−(S+)).

We observe that `(δ+(S−))− `(δ−(S−)) + `(δ+(S+))− `(δ−(S+)) = `(δ+(S))− `(δ−(S)). Since
b(S+) + b(S−) = b(S), this leads to

u′(δ+(S′)) = u(δ+(S))− `(δ−(S)) +D − b(S).

Therefore, u′(δ+(S′)) < D if and only if u(δ+(S)) − `(δ−(S)) < b(S), which concludes the
proof.

We have thus shown that we can �nd GH-cuts with a max-�ow algorithm:

Corollary 12. An IIS for a network �ow problem can be computed in the time needed to compute
a maximum �ow.

In Proposition 10 we have seen that every (disconnected) GH-cut yields an IIS for at least
one connected component. It turns out that every connected component yields an IIS if the
GH-cut is computed using a max-�ow algorithm.

Theorem 13. Let x be a maximum (s-t)-�ow in G′ with value < D, and let G′x be its residual
graph. De�ne S := {v ∈ V | v reachable from s in G′x}, and suppose that G[S] has k weakly
connected components S1, . . . , Sk. Then every I(S1), . . . , I(Sk) is an IIS.

Proof. We �rst observe that the demand form of the GH-inequalities is irrelevant in this setting:
By construction of G′ and Si, we have d(Si) > 0. Thus, for every i ∈ [k] := {1, . . . , k},

0 < d(Si) = b(Si)− `(δ+(Si)) + `(δ−(Si)) ≤ b(Si)− `(δ+(Si)) + u(δ−(Si)),

i.e., the demand form (see Section 2) cannot be violated.
Consider the arcs a = (v, w) ∈ δ+(Si) in G. Since Si is a connected component, w /∈ S.

Thus, xa = ua, i.e., x(δ+(Si)) = u(δ+(Si)). Similarly, for arcs a = (v, w) ∈ δ−(Si), v /∈ S. If
a ∈ [(V \ S) : Si], we have xa = 0. Moreover, since Si is reachable from s in G′x, there must be
unsaturated arcs (s, w) for w ∈ Si, i.e., x(δ−(Si)) < d(Si). We obtain

0 = x(δ−(Si))− x(δ+(Si)) = x(δ−(Si))− u(δ+(Si)) < d(Si)− u(δ+(Si)).

This yields

0 < b(Si)− `(δ+(Si)) + `(δ−(Si))− u(δ+(Si))

⇒ u(δ+(Si))− `(δ−(Si)) < b(Si)− `(δ+(Si)) ≤ b(Si).

Hence, I(Si) is infeasible, and, since Si is connected, an IIS.
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Figure 2: Examples for the di�erence between witnesses and IISs; node labels specify b,
arc labels give u; all lower bounds ` are 0.

Note that Theorem 13 does not rely on a particular max-�ow algorithm, but holds for any
of them, since we only use arguments in the residual graph.

4 A Comparison of IISs and Witnesses

IISs in �ow networks and the witness concept share certain similarities, especially since they are
both intended to highlight a smaller portion of the network exposing the infeasibility, and rely
on the GH-inequalities. The di�erence is that in the witness problem, one minimizes the number
of nodes (in minimum or minimal meaning), while IISs minimize both nodes and arcs.

Note that a witness conforms with our notation of a GH-set.

Lemma 14. Every minimal witness is connected, but not every connected GH-set is a minimal
witness.

Proof. The �rst part follows from the proof of Proposition 10. An example for the second
statement is given in Figure 2(a).

Thus, while connectedness of the GH-set is necessary and su�cient for IISs, it is necessary,
but not su�cient for minimal witnesses. In the following proposition, we will summarize their
connection.

Proposition 15.

1. I(W ) is infeasible for every witness W , but S(I) is not necessarily a witness for every
infeasible I.

2. I(W ) is an IIS for every minimal witness W , but S(I) is not necessarily a minimal witness
for an IIS I.

3. For a minimum witness W , I(W ) is not necessarily a minimum IIS and for a minimum
IIS I, S(I) is not necessarily a minimum witness.

Proof.

1. Since a witness W is a GH-set, I(W ) is a GH-subsystem per de�nition and therefore infeasi-
ble. Conversely, an infeasible I can contain an infeasible GH-subsystem and arbitrarily more
node constraints, whence b(S(I)) ≤ u(δ+(S(I)))− `(δ−(S(I))) might hold.

2. Follows from Lemma 14.
3. An example in which the minimum IIS and the minimum witness are di�erent is given in

Figure 2(b).

Algorithmically, IISs and minimal witnesses have a further di�erence: While an IIS can be
computed with any max-�ow algorithm (unmodi�ed), the minimal witness computation is only
known to work with pre�ow-push algorithms with certain adaptions in the labeling procedure
(see [1] for details).
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5 Minimum IIS in Flow Networks

Greenberg [14] pointed out that, in a practical application, the chance to understand the cause
for the infeasibility is increased if an IIS is small. In our setting, it is thus interesting to ask for a
minimum cardinality IIS (minIIS). For linear inequality systems, this problem was shown to be
strongly NP-hard in [3]. We will extend this result to also hold for the special case of network
�ow systems.

First, notice that minimum IISs for �ow networks can be characterized as follows:

Corollary 16. Every minimum IIS of the network �ow system (F) is given by a GH-subsystem
I(S), where S is an optimal solution of

min
S⊆V

|S|+ |δ(S)| (4)

s.t. b(S) > u(δ+(S))− `(δ−(S)) or − b(S) > u(δ−(S))− `(δ+(S)).

Proof. By Theorem 8, a minimum IIS is the GH-subsystem of a connected GH-cut with a
minimum number of nodes plus arcs. Furthermore, any S optimal for (4) is necessarily connected:
Suppose there exists a proper connected component T ⊂ S such that δ(T )∩ δ(S \T ) = ∅, which,
by Proposition 10, induces an IIS I(T ). Then |I(T )| = |δ(T )| + |T | < |δ(S)| + |S| = |I(S)|,
contradicting the optimality of S.

We can use this characterization for a reduction from the maximum clique problem on regular
graphs (more precisely, the respective decision problem). Aggarwal et al. [1] showed that the
clique problem remains strongly NP-hard when restricted to regular graphs, by the observation
that it is equivalent to the independent set problem on the complement graph, and independent
set is NP-hard even on planar cubic graphs.

Theorem 17. Given a network �ow problem and a positive integer k̃, it is NP-complete in the
strong sense to decide whether an IIS of size at most k̃ exists.

Proof. Note �rst that the problem is in NP by Theorem 8: We can check in polynomial time
whether a given subsystem I has size at most k̃, whether I has the form of a GH-subsystem,
and whether the induced graph of S(I) is connected.

We reduce the strongly NP-complete regular maximum clique problem: Given an r-regular,
undirected graph G′ = (V ′, E′), with |V ′| := n, |E′| := m, and a positive integer k, does there
exist a clique C ⊆ V ′ (i.e., G′[C] is a complete graph) such that |C| ≥ k? For the reduction, we
will construct a network �ow problem instance (V, A, b, u, `) that has an IIS I of size at most
k̃ := k + 2k(r − k + 1) + kn2 if and only if G′ has a clique of size k. Note that k ≤ r + 1 ≤ n.

First, we take all nodes in V ′ and assign a supply of r− k + 3 to each, and we replace every
edge in E′ by a pair of oppositely directed arcs with an upper bound of 1 and a lower bound
of 0. We need an additional n4 copies of V ′, yielding a set of intermediate nodes Va, each copy
connected to the next one by forward arcs A3. The �rst n2 nodes in Va are connected to the
corresponding node in V ′ by arcs A2. Moreover, we add a sink node t connected to the last copy
of V ′; see Figure 3 for an illustration of the construction.

The resulting directed graph G = (V,A) is formally de�ned by its arc set A := A1 ∪A2 ∪A3

and node set V := V ′ ∪ (V ′ × [n4]) ∪ {t} ([s] := {1, . . . , s}), where we write (v × j) for the nodes
in V ′ × [n4], with

A1 := {(v, w) | {v, w} ∈ E′} ∪ {(w, v) | {v, w} ∈ E′},
A2 := {

(
v, (v × j)

)
| v ∈ V ′, j ∈ [n2]},

A3 := {
(
(v × j), (v × j + 1)

)
| v ∈ V ′, j ∈ [n4 − 1]} ∪ {

(
(v × n4), t

)
| v ∈ V ′}.

Furthermore, let ` := 0 and

bv :=


r − k + 3, v ∈ V ′,
−n(r − k + 3), v = t,

0, otherwise,

ua :=


1, a ∈ A1,
1/n2, a ∈ A2,

n(r − k + 3), a ∈ A3.
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V ′ V ′ × 1 V ′ × 2 V ′ × n2 V ′ × (n2 + 1) V ′ × n4

1

2

3

4

r − k + 3

1

1,1

2,1

3,1

4,1

0

1,2

2,2

3,2

4,2

0

n(r − k + 3)

· · ·

· · ·

· · ·

· · ·
0 0

n(r − k + 3)

· · ·

· · ·

· · ·

· · ·
0

t −n(r − k + 3)

n(r −
k
+
3)

1/n2

Figure 3: Sketch of the construction for the reduction; `a = 0, ua = n(r−k+3) for solid,

1 for dotted, and 1/n2 for dashed arcs a.

A clique C with |C| = k in an r-regular graph has |δ(C)| = k(r − k + 1) (every clique node
has r incident edges, from which k − 1 are connected to nodes inside the clique). Hereby, the
�if�-direction is easy: Consider a clique C ⊆ V ′ in the constructed graph G. Then

b(C) = k(r − k + 3) > k(r − k + 1) + kn2 1

n2
− 0 = u(δ+(C))− `(δ−(C)).

Thus, since G[C] is connected, I(C) is an IIS by Theorem 8. It has size k̃ = k+2k(r−k+1)+kn2,
since we have k nodes, k(r− k+ 1) out- and ingoing arcs, respectively, and for every node, there
are n2 arcs in A2.

For the converse, suppose there exits an IIS I with |I| ≤ k̃. First, assume that t ∈ S :=
S(I), which is the only possibility for the demand case. Then V ′ × {j} ⊂ S for all j ∈ [n4],
since otherwise, there would exist a ∈ δ−(S) ∩ A3 with ua = n(r − k + 3) ≥ −bt, rendering
the subsystem feasible (by Theorem 8, an IIS must yield a violated GH-inequality). Then
|I| > n5 + 1 ≥ (n+ 1)4/8 ≥ k̃, as can be easily veri�ed (in particular, the last inequality
becomes apparent from bounding k̃ from above using r + 1 ≤ n and maximizing the resulting
expression w.r.t. k ≤ n); this is a contradiction. Consequently, t /∈ S, and only the supply form
can occur.

Moreover, if there exists a node (v × j) ∈ S for v ∈ V ′ and j ∈ [n4], we would necessarily
have u(δ+(S)) ≥ n(r − k + 3) ≥ b(S). It follows that S ⊆ V ′.

Let k′ := |S|. If k′ > k, then

|I| > k′ (n2 + 1) = (k′ − k)(n2 + 1) + k(n2 + 1) > n2 + 1 + k(n2 + 1)

> 2k(r − k + 1) + k(n2 + 1) = k̃,

since 2k(r− k+ 1) ≤ 2k(n− 1− k+ 1) ≤ n2, which can be seen by some easy calculations. This
is again a contradiction, so we conclude that k′ ≤ k. Suppose that k′ < k. Then,

u(δ+(S)) ≥ k′n
2

n2
+ k′(r − k′ + 1) = k′(r − k′ + 2) ≥ k′(r − k + 3) = b(S),

which contradicts the infeasibility of I.
Eventually, consider k′ = k, and suppose that no clique of size at least k exists in G′.

Hence, there must be at least one more pair of oppositely directed arcs in δ(S) than for a clique.
Consequently,

|I| = k + |δ(S)| ≥ k + 2k(r − k + 1) + 2 + kn2 > k̃,

again a contradiction. In conclusion, a clique of size at least k has to exist.
Finally note that the encoding length of the resulting instance is clearly polynomial in that

of the graph G′. In fact, all numbers occurring in the instance are bounded by a polynomial
in n, which proves strong NP-completeness.
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Corollary 18. Computing a minIIS in �ow networks is strongly NP-hard.

Remark 19. Aggarwal et al. [1] used the regular clique problem to show NP-hardness of the
minimum witness problem; the above proof relies on their idea and uses the fact that the number
of arcs leaving a clique is constant in a regular graph for each �xed clique size. Our auxiliary
graph, however, needs to be much larger than theirs, since we cover the demand form, while the
witness problem is conveniently de�ned only w.r.t. subsets of a GH-cut with a positive supply.

One can also consider a weighted version of minIIS, where we minimize the product of a
weight-vector with the incidence vector of constraints in the IIS. An application of this problem
is found in the computation of maximum feasible subsystems (maxFS), i.e., the largest number
of constraints of the system with a solution. The maxFS problem on a system with r constraints
can be formulated as

max

r∑
i=1

yi∑
i∈I

yi ≤ |I| − 1 ∀ I ∈ I (5)

y ∈ {0, 1}r,

where I is the set of all IISs of the system. Amaldi et al. [3] showed that the separation over (5),
also called IIS-inequalities, is NP-hard in the general case of linear systems. The proof works
via a reduction from minIIS, where an IIS of size at most k is linked to the separation of a vector
y = (1− 1

k+1 )1. If we replace the hardness result for minIIS with Theorem 17, this proof works
without further changes for the �ow case, whence we have the following result:

Corollary 20. The separation problem for IIS-inequalities on �ow networks is NP-hard.

6 Outlook

The results of this paper characterize IISs in terms of connected Gale-Ho�man-inequalities. This
can possibly be used for general mathematical programs that contain �ows as a substructure. In
fact, one motivation for this article was the analysis of infeasible systems arising in stationary
gas transportation, where the systems are nonlinear, nonconvex and can contain discrete vari-
ables [21]. For instance, in such general systems on networks, the components corresponding to
IISs are necessarily connected [19]. Other generalizations will be the topic of future research; a
�rst topic might be multicommodity �ows using [29].

The infeasibility characterizations developed in this paper might also be relevant for network
reliability [24] and survivable network design [17].

Another open issue is to obtain inapproximability results for determining a minimum IIS.
For the general case, strong inapproximability results exist [3]. Moreover, the related problem
to compute a cover of IISs of smallest cardinality is interesting as well [19, 20].
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