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Abstract—Peaky and non-peaky signaling schemes have long
been considered species apart in non-coherent wideband fading
channels, as the first approaches asymptotically the linear-in-
power capacity of a wideband AWGN channel with the same
SNR, whereas the second reaches a nearly power-limited peak
rate at some finite critical bandwidth and then falls to zero as
bandwidth grows to infinity. In this paper it is shown that this
distinction is in fact an artifact of the limited attention paid in
the past to the product between the bandwidth and the fraction
of time it is in use. This fundamental quantity, that is termed
bandwidth occupancy, measures average bandwidth usage over
time. The two types of signaling in the literature are harmonized
to show that, for any type of signals, there is a fundamental
limit—a critical bandwidth occupancy. All signaling schemes
with the same bandwidth occupancy approach the capacity of
wideband AWGN channels with the same asymptotic behavior
as the bandwidth occupancy grows to its critical value. For a
bandwidth occupancy above the critical, rate decreases to zero
as the bandwidth occupancy goes to infinity.

Index Terms—Wideband regime, non-coherent fading channel,
peaky signals, bandwidth occupancy

I. INTRODUCTION AND RELATED WORK

Recently there has been great interest in wireless channels

with a large bandwidth, owing in part to the prospective invest-

ments onto the millimeter wave bands, where vast quantities of

new spectrum is readily available [2]. In a frequency selective

fading channel where there is no channel state information

at the receiver (CSIR) or the transmitter, the wideband ca-

pacity regime is affected by the growing uncertainty in the

channel impulse response. As bandwidth grows while power

is constrained, it becomes infeasible to estimate the channel

coefficients to a precision sufficient for coherent detection.

Moreover, if one would spread the transmitted signal power

across all the available bandwidth and time slots, the desired

signal would be buried by this channel uncertainty. Médard

and Gallager proved this [3] through an upper bound to rate

proportional to the ratio between the fourth moment of the sig-

nal (E
[

|x|4
]

) and its bandwidth (B), i.e., R <∝ E
[

|x|4
]

/B,

so that only by making the first infinite —that is, concentrating

the power of the signal distribution in a vanishing subset of

its coefficients— one could achieve rates above zero when

bandwidth goes to infinity. Telatar and Tse [4] related channel

A longer version [1] of this paper, giving detailed proofs and discussions,
has been submitted to the IEEE Transactions on Information Theory.

uncertainty to the number of independent paths, and showed

that in a rich scattering environment the rate grows with B
while power per path is sufficient, but it starts decreasing when

the number of independent paths is above its critical value.

This led to the thought that peaky signaling schemes [4]–[8]

are imperative to approach the linear-in-power capacity limit of

a wideband additive white Gaussian noise (AWGN) channel,

which in multi-input multi-output (MIMO) systems is

C∞ , lim
B→∞

C(B) = lim
B→∞

BNrSNR = NrP/N0, [nats/s],

where P is the power, N0 is the noise power spectral density

(PSD), Nr is the number of receive antennas, and SNR =
P/(BN0) is the signal-to-noise ratio (SNR) per degree of

freedom at each receive antenna.

However, peaky signals may have drawbacks, such as

high requirement on hardware and poor spectral efficiency

(nats/s/Hz). The former comes from the fact a signal with high

fourth moment is challenging to synthesize owing to hardware

non-linearities. The latter arises from the fact that rate of peaky

signalling approaches the capacity limit slowly as B→∞, thus

requiring considerable bandwidth to attain the same rate as

a coherent channel. This has been demonstrated in [5] via a

second order Taylor series expansion, showing that the second

derivative of capacity at SNR = 0 is finite for AWGN and co-

herent fading channels (which have perfect CSIR) but −∞ for

non-coherent scenarios. This abrupt distinction, where either

the channel is perfectly known or unknown, contrasts with

the intuition that, as the coherence length (Lc, determined by

coherence time and coherence bandwidth) of a fading channel

grows, estimating the channel becomes increasingly rewarding

and the capacity of the non-coherent channel converges to the

capacity of the coherent channel as Lc → ∞. This seeming

conflict has been resolved in [7], [8] by showing that in non-

coherent Rayleigh fading channels the capacity C(B) is

C(B)

B
≃NrSNR−

Nr(Nr+Nt)

2Nt
SNR1+α + o(B−(1+α)), (1)

where Nt is the number of transmit antennas and the exponent

α∈(0, 1) grows with increasing Lc. The first term is the power

limit as in C∞ and the second term SNR1+α vanishes with

B→∞ (dominating the second derivative). The third term

captures the fast-vanishing approximation error at large B.
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Note that SNR1+α is sub-quadratic, so the exact same spectral

efficiency as coherent schemes can not be achieved because

choosing α=1 would imply an infinite second derivative.

Peaky signaling as in these analyses is compulsory if our

requirement is to achieve C∞ when B → ∞. However, non-

peaky signals can suffice to approach the wideband capac-

ity limit within a bounded gap at some large—but finite—

bandwidth, even though the rate vanishes as bandwidth grows.

Lozano and Porrat [9] consider non-peaky signaling in the

single-input single-output (SISO) channel under a general

fading distribution. When bandwidth is not too large there is

a transitory first stage where rate grows with B, approaching

a maximum value of

SNR
(

1− ∆̃
)

, lim
Lc→∞

∆̃ = 0, (2)

where ∆̃ vanishes with increasing channel coherence Lc and

does not depend on SNR. This maximum is achieved at some

critical bandwidth Bcrit, beyond which rate decreases as B
grows, and ultimately rate goes to zero as B → ∞.

As argued above, although both peaky and non-peaky

signaling can approach the wideband capacity limit when

available bandwidth is abundant, it is not immediately clear

how the power-limited rate in [9] (shown in (2), developed

for SISO) is related to the polynomial near-power-limited rate

in [8] (shown in (1), developed for MIMO).

In this paper, we unify the study of peaky and non-peaky

signaling, showing that they are nothing but extreme cases

of a more fundamental trade-off that affects all types of

signals. We argue that the analyses in [8], [9] are merely

two different methods of representing system behavior. Our

analysis generalizes [9] to MIMO systems and introduces

a transmission duty-cycle to allow arbitrary levels of signal

peakiness. The peakiness parameter δ ∈ (0, 1] defines the

fraction of time the transmitter is active. We show that capacity

is a function of only the product of δ and B, namely δB
that we call bandwidth occupancy, and we prove that capacity

C(δB) increases as bandwidth occupancy approaches a critical

value (δB)crit. The capacity1 at (δB)crit is lower bounded by

RLB = NrP/N0 (1−∆) , (3)

with the same offset ∆ for all levels of peakiness δ ∈ (0, 1].
Using the relation between the main sublinear exponent α used

in (1) and the peakiness parameter δ=SNR1−α in [8], we show

that ∆∼SNRα at (δB)crit. This is, the multiplicative capacity

gap ∆ in [9] and the sub-linear polynomial approximation

SNRα in [8] represent the same behavior. Therefore, it is

possible to approach C∞ within the same capacity gap at

the same convergence speed by any signaling scheme within

the family using a bandwidth B ≥ Bcrit together with the

peakiness parameter δ ≃ Bcrit

B
as represented in Fig. 1.

The rest of this paper is organized as follows. We present in

Sec. II the system model that are essential to prove our main

results. Our unified results on wideband limit are presented

1The connection between capacity and mutual information bounds (used in
our analysis and in [9]) for ergodic channels was established in [10, Prop. 2.1].

Figure 1. All transmission strategies with the same bandwidth occupancy
δB=(δB)crit achieve the same polynomial approximation of C∞. The
transmission time and bandwidth are measured in terms of channel coherence
time Tc and coherence bandwidth Bc, respectively.

in Sec. III and conclusions are in IV. Omitted proofs can be

found in [1].

II. SYSTEM MODEL

We consider a rich scattering, frequency selective, block

fading, Nt × Nr MIMO wideband channel with an impulse

response h(t)(u,v) between antennas (u, v). For compactness

we assume that all channels experience a coherence time Tc
and a delay spread D and the channel frequency response

becomes uncorrelated for frequencies apart more than one

coherence bandwidth Bc = 1/D. We focus only on the fre-

quency signaling scheme since it is known [9] that differences

between frequency and time signaling only affect the scaling

with bandwidth in its vanishing higher order terms.

Our model represents a signaling scheme where every Tc
seconds, the transmitted signal x(u)[n] with bandwidth B/2
carries K=BTc complex samples on antenna u ∈ [0, Nt−1].
Taking a K-point DFT, the transmitted codeword is uniquely

defined by the NrK × 1 vector x that satisfies

1

KNt
E
[

|x|2
]

≤ PTc.

For i=kNt+u, the i-th coefficient of x, denoted as x(i),
corresponds to the transmitted signal on antenna u with DFT

index k ∈ {0, 1, . . . ,K−1}. For each pair of antennas (u, v),
the discrete samples of the channel h(u,v)[n] have M=BD
i.i.d. coefficients, with M/K=D/Tc=

1
BcTc

. After applying

K-point DFT to each discrete channel sequence h(u,v)[n],
we define a block-diagonal matrix H with K blocks of size

Nr ×Nt matrices,

H =







H[0] . . . 0
...

. . .
...

0 . . . H[K − 1]






, (4)



where H[k] contains in its (v, u)-th element the k-th DFT

coefficient of h(u,v)[n]. Each channel only has M i.i.d. coef-

ficients and any two blocks H[k] and H[k′] are correlated if

|k − k′| < BcTc and independent otherwise. We also define

the average gain of the n-th channel coefficient g
(u,v)
n =

E
[

|h(u,v)[n]|2
]

satisfying
∑M−1

n=0 g
(u,v)
n = 1.

Assuming D ≪ Tc, there is no inter-symbol interference

and the signal received on each fading realization, Tc, depends

only on the state of the channel and signal transmitted during

the same realization. Taking K-point DFT of the received

signal we can represent the system model as

y = Hx+ z, (5)

where y is a NrK×1 vector whose i-th element y(i),
i=kNr+v, corresponds to the signal received on antenna

v∈[0, Nr−1] with DFT coefficient index k. Where the

NrK × 1 noise vector z follows a Gaussian distribution

CN (0, INrKN0Tc) (with PSD N0).

Some references, such as [8], use a different type of system

model with fewer frequency bins, each experiencing indepen-

dent fading coefficients that repeat for many consecutive sym-

bols. We can prove (see [1]) that the two models are equivalent

at the continuous time level using concepts of Single-Carrier-

OFDM modulations, and our results are independent of the

model chosen.

The quintessential peaky signal distribution is the on/off

distribution. To make our signaling scheme peaky we choose

to make active only a fraction δ of the encoding symbols,

Pr(|x|2 = 0) = 1− δ. (6)

This converts the system into the time-alternation of an arbi-

trarily distributed scheme for a fraction δ of the time, achieving

a rate R(δ) with the power gain P ′ = P
δ

, and an idle stage

for a fraction 1 − δ of the time. When 1−δ
δ

> D/Tc the

idle stage serves also as “zero-padding prefix” that justifies

our approximation of no ISI. For a random signal a[n] drawn

from a stochastic sequence A[n], we will refer to its kurtosis

κ(A) =
EA

[

|a(t)|4
]

EA [|a(t)|2]2
, (7)

to measure the peakiness of the random distribution. Notice

that when a signal x is zero a fraction 1−δ of the time,

its kurtosis can be written as a function of the kurtosis of

the distribution of non-zero elements, κ(x) = κ(x 6=0)
δ

, and

therefore determining peakiness using the on/off ratio δ and

the kurtosis statistic κ are in accordance with each other.

III. THE BANDWIDTH OCCUPANCY LIMIT

Our analysis is a generalization of the SISO analysis with

non-peaky signaling in [9]. The analysis follows four steps,

represented in Fig. 2.

1) Find a bell-shaped lower bound RLB(B) ≤ I (X ;Y );
2) Determine the unique maximum of RLB(B), RLB(B∗);
3) Find a bell-shaped upper bound RUB(B) ≥ I (X ;Y );
4) Determine the two bandwidth values B+ and B− such

that B− ≤ B∗ ≤ B+ and RUB(B±) = RLB(B∗).

1

2

3

44

Figure 2. The four-step approach [9] to set the range of critical bandwidth.

The result of [9] is that capacity in a non-coherent fading

channel only grows with bandwidth below a critical bandwidth

Bcrit which falls into the range [B−, B+]. A system operating

with insufficient bandwidth B<Bcrit is less efficient in con-

verting available energy into data rate due to the convexity of

the logarithm function w.r.t. the SNR, and the achievable rate

grows with increasing bandwidth.

Our contribution is a generalization of this argument to

arbitrary levels of signal peakiness δ and identifying the

fundamental quantity bandwidth occupancy (δB). We obtain

bell-shaped lower and upper bounds on the achievable rate,

find the maximum (δB)∗ for the lower bound, and then

determine the range (δB)± that contains the unknown critical

bandwidth occupancy (δB)crit. For any B>Bcrit it is possible

to operate with peaky signalling with δ=Bcrit/B to bring the

system back into the same optimal operation point (δB)crit.

A. Lower bound

Lemma 1. Achievable rate in a wideband non-coherent fading

channel with duty cycle δ ∈ (0, 1] is lower bounded by

RLB(δB) =
PNr

N0

[

1− P (κ− 2 +Nt +Nr)

2δBNtN0

]

− δ
BNtNr

BcTc
log

(

1 +
P

δBNtN0
BcTc

)

,

(8)

where κ is the kurtosis of the channel.

Proof. The proof, detailed in [1, App. B-A], contains three

key steps:

• Use 1
Tc

I (X ;Y ) = 1
Tc

I (X,H ;Y )− 1
Tc

I (H ;Y |X);

• Lower bound 1
Tc

I (X,H ;Y ) ≥ 1
Tc

I (X ;Y |H);

• Use log det(I+A†A) ≥ tr(A†A)−tr((A†A)2)/2.

B. Maximum of RLB

Lemma 2. RLB(δB) is maximized at RLB((δB)∗) with

(δB)∗ ≃ P

N0Nt

√

BcTc
log(BcTc)

(κ− 2 +Nt +Nr), (9)

and

RLB((δB)∗)≥PNr

N0



1−
√

log(BcTc)

BcTc
(κ−2+Nt+Nr) log π



 .

(10)



Proof. Maximize (8) with respect to the joint variable (δB),
and follow the inequality of [9, Eq. 60]. See [1, App. B-B].

Below the optimal bandwidth occupancy (δB)∗, the third

term of (8) is smaller in absolute value than the second. Re-

placing the third by the second and substituting δ=SNR1−α,

α ∈ (0, 1) as in (1), gives the following corollary on sufficient

conditions.

Corollary 1. If δB ≤ (δB)∗, the achievable rate is lower

bounded by

RLB(δB) ≥ PNr

N0

[

1−
(

P

BN0

)α
(κ−2+Nt+Nr)

Nt

]

. (11)

C. Upper Bound

Lemma 3. Achievable rate of signalling schemes with duty

cycle δ∈(0, 1] in a wideband non-coherent Rayleigh fading

channel is upper bounded by

RUB(δB) =
PNr

N0

[

1− P

2δBN0
(12)

− δBNtN0

PBcTc
EH

[

log(1+
P

δNtBN0
BcTcgminψ)

]

]

+ o(
1

B
),

where gmin=minm,u,v |h(u,v)[m]|2 is the minimum non-zero

square channel gain among all delays and antenna pairs, and

ψ = λ∗

K
is the eigenvalue, normalized by K , of matrix ΞΞ†

that minimizes E
[

log(1 + P
δWN0

BcTcgminλm(ΞΞ†)/K)
]

for

all eigenvalues indexed by m. Here Ξ is a K×MNt circulant

matrix that contains in its first column the first K elements of

x after power normalization.

Proof. Letting Ξ be a representation of a-priori known x as a

“pilot” signal, the normalized eigenvalues ψK,ℓ =
λ{Ξ†Ξ}K,ℓ

K

are replaced by the one that gives the smallest I (H ;Y |Ξ) for

all K and ℓ, following the same trick in [9, Eq. 72].

D. Critical Bandwidth Occupancy

Lemma 4. In a wideband non-coherent Rayleigh fading

channel, the maximum rate in (10) is achievable at a critical

bandwidth occupancy (δB)crit that resides in the range

(δB)− ≤ (δB)crit ≤ (δB)+, (13)

where

(δB)− =
P

N0

1

2
√

(Nt +Nr) log π

√

BcTc
log(BcTc)

,

(δB)+ =
P

N0
2

√

(Nt +Nr)

N2
t

log π

√

BcTc
log(BcTc)

.

(14)

Proof. Define a pair of solutions (δB)− and (δB)+ such that

P

(δB)±N0
=

√

Ω
log(BcTc)

BcTc
+ o





√

log(BcTc)

BcTc



 , (15)

and solve for Ω the equality RUB(δB)± = RLB(δB)∗ +
o( 1

BcTc
). Detailed proof can be found in [1, App. B-D].

Above the critical bandwidth occupancy (δB)crit, the third

term of (8) is greater in absolute value than the second. This

means that capacity is smaller than (11), which leads to the

following corollary on necessary conditions.

Corollary 2. In Rayleigh fading (κ=2), if δ = SNR1−α and

R(δB) ≥ PNr

N0

[

1−
(

P

BN0

)α
(Nt +Nr)

Nt

]

, (16)

then the bandwidth occupancy satisfies δB < (δB)+.

E. Interpretation of the Result

Note that our capacity lower/upper bounds (8) and (12) are

both derived from I (X ;Y )=I (X,H ;Y )−I (H ;Y |X), which

leads to the following capacity expression

δ

Tc

[

Θ(K) log(1+Θ(
P/δ

N0B
))−Θ(M) log(1+Θ(

P/δ

N0B

K

M
))

]

=Θ(δB) log(1+Θ(
P/δ

N0B
))−Θ(

δB

BcTc
) log(1+Θ(

PBcTc
N0δB

)),

where the equality is due to substitution of K=BTc and

M=BD. The first term corresponds to the capacity in the

wideband regime, and the second term is due to penalty

from channel uncertainty. According to our derived channel

model, during a period of coherence time Tc, for each spatial

dimension we have K i.i.d. input symbols and M i.i.d.

channel coefficients. The penalty term resembles a “channel

estimation” setup where M unknown channel coefficients are

inferred based on K training symbols, resulting in a “power

gain” of K
M

= BcTc. As bandwidth B grows, both the number

of parallel channels and the number of independent channel

coefficients grows linearly with B, but the growth ratio is

Tc for the former and D for the later. That is, the penalty

term grows BcTc times slower than the first term. Since there

is also a “power gain” of BcTc in “channel estimation”, the

penalty term “catches up” with the first by an additional factor

log(BcTc). This explains the origin of
√
BcTc and

√

1
log(BcTc)

in the critical bandwidth occupancy proved in Lemma 4.

In Fig. 3(a) we represent the upper bound to capacity as a

field over the 2D plane (B, δ), and in the vertical cut for δ = 1
we have also represented the lower bound using triangular

bullets to illustrate the relation of this representation with

Fig. 2. On the B axis, we can see that for fixed values of δ
the capacity as a function of bandwidth is bell-shaped, grows

at small bandwidth, reaches a maximum and then decreases to

zero. Fig. 3(b) provides a better perspective on the value of ca-

pacity upper bounds as a function of the bandwidth occupancy,

where the optimal (δB)∗ that maximizes the capacity lower

bound RLB and the range [(δB)−, (δB)+] for the critical

bandwidth occupancy (δB)crit are also plotted. For bandwidth

occupancy close to (δB)crit, capacity is nearly power-limited.

For different level of peakiness δ, the peak values of capacity

are the same but appear at different bandwidth value B, and

in fact all points with identical value δB have the same

lower/upper bounds. Our analysis recovers the previous result

for non-peaky signals by selecting δ = 1, producing a finite
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Figure 3. Capacity upper bound over the plane (δ, B) with BcTc = 103

and P/N0 = 20dB. Range of critical bandwidth occupancy is also shown.

critical bandwidth. It also captures the classical results for

infinite-fourth-moment signals by taking δ → 0, which takes

the critical bandwidth occupancy point further into higher

bandwidths following limδ→0
(Bδ)crit

δ
= ∞.

IV. CONCLUSIONS

We have generalized the analysis in [9] with the introduction

of flash-signaling and MIMO. By defining the metric of

bandwidth occupancy, δB, it is possible to show that previous

results of limited bandwidth with non-peaky signaling [9] and

unlimited bandwidth with flash signaling [8], which have been

treated as very different phenomena, are merely two extreme

points in a family of transmission strategies that can obtain the

same nearly-power-limited capacity approximation as long as

they have the same amount of bandwidth occupancy.

Our result shows the existence of a fundamental limit on

the bandwidth occupancy in non-coherent channels for any

level of frequency and time peakiness of the signal. At the

critical bandwidth occupancy (δB)crit, capacity has the same

almost-linear-in-power value for all types of signals

C ≥ PNr

N0

[

1−
√

log(BcTc)

BcTc
(κ− 2 +Nt +Nr) log π

]

.

Moreover, we provide upper and lower bounds to (δB)crit.
The bounds have the same growth with BcTc and P

N0
, and they

differ by a multiplicative gap that only depends on Nt/Nr (the

ratio between the number of transmit and receive antennas).

We note that any signaling scheme obtains the same asymp-

totic behavior as long as the product δB remains constant. The

near-power-limited capacity can be written as a polynomial

of order 1+α by representing peakiness as δ = SNR1−α.

As the bandwidth occupancy approaches the critical value,

capacity approaches the power-limited wideband limit with a

speed of convergence determined by SNR1+α. And its speed

of convergence catches up with that of coherent channels as

the coherence length Lc → ∞. Furthermore, we have shown

in [1] that the relationship between polynomial capacity on

channel coherence Lc described in [8, Theorems 1-3] can also

be established following our analysis.

The criterion for selecting a level of peakiness to transmit

δ = SNR1−α is not valid if SNR > 1 (as δ < 1 by design),

whereas the concept of δB < (δB)crit is well defined for

all values of SNR. Below the critical point, the frequency-

selective channel is not in the wideband regime and regular

non-peaky transmissions with full bandwidth occupancy must

be employed. Above the critical point, the amount of peakiness

and the bandwidth may be chosen arbitrarily as long as the

maximum occupancy level is respected.
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