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Abstract

We propose new methods for automatic segmentation of images based on an atlas of manually 

labeled scans and contours in the image. First, we introduce a Bayesian framework for creating 

initial label maps from manually annotated training images. Within this framework, we model 

various registration- and patch-based segmentation techniques by changing the deformation field 

prior. Second, we perform contour-driven regression on the created label maps to refine the 

segmentation. Image contours and image parcellations give rise to non-stationary kernel functions 

that model the relationship between image locations. Setting the kernel to the covariance function 

in a Gaussian process establishes a distribution over label maps supported by image structures. 

Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome 

of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in 

two clinical applications: the segmentation of parotid glands in head and neck CT scans and the 

segmentation of the left atrium in cardiac MR angiography images.
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I. Introduction

Atlas-based segmentation extracts information from image collections with manual labels to 

facilitate the automatic segmentation of new images. Methods that use atlas information can 

be broadly classified into two groups. The first group employs registration to align training 
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images with the test image and to propagate the training labels. The training images are 

either summarized in a single probabilistic atlas that is registered to the test image [1]–[3] or 

the training images are directly registered to the test image [4]–[8]. Multi-atlas approaches 

tend to outperform single-atlas segmentation strategies when the anatomical variability is 

too large to be represented by the mean statistics [4]–[6].

The second group of atlas-based techniques infers label maps by comparing local image 

regions. For each voxel in the test image, the surrounding patch is compared to patches in 

the training images. With the rationale that similar patches tend to share the segmentation 

label, weighted voting among the most similar patches promises to produce accurate 

segmentations [9], [10]. Alternatively, classifiers can be trained on the manually labeled 

images [11]. Classification of patches in the test image yields the segmentation. Patch- and 

registration-based approaches are also used in combination to improve the segmentation 

[12].

High anatomical variability presents a serious challenge for atlas-based segmentation. 

Registration-based approaches may fail to warp structures that vary significantly in shape 

due to regularization constraints. Such inaccuracies mainly cause segmentation errors at 

organ boundaries. Similarly, patch-based methods experience difficulties when labeling 

regions close to the boundaries. Fig. 1 illustrates this problem for a patch-based 

segmentation of the left parotid gland. To further investigate the source of errors, we 

examine patches in the atlas that are the most similar to the one example patch in the image. 

According to the manual labeling, the selected patch belongs to the left parotid gland. 

However, all of the closest patches in the repository vote for background, yielding a wrong 

result. Since all of the nearest neighbor patches have a very similar appearance overall, the 

problem is not in the retrieval but is inherent in patch-based segmentation; patches that are 

very similar may not share the same label due to slight variations. This is most problematic 

close to organ boundaries, where this can cause segmentation errors.

The contributions of this article include a Bayesian framework for creating label maps in 

atlas-based segmentation and a contour-driven refinement of initial label maps with 

Gaussian process regression. Bayesian inference with the Laplace approximation enables us 

to derive location-, region-, and image-wise voting schemes for inferring the final label 

maps. The combination of these schemes with different distributions for the label and image 

likelihood, including voxel- and patch-wise image similarities enables modeling commonly 

used registration- and patch-based segmentation methods. For the refinement of initial label 

maps, we extract image contours and use them to learn correlations across image locations. 

The label fusion procedure in atlas-based segmentation generally relies on intensity 

differences between images and votes independently for each location.1 We construct kernel 

functions that model the interaction of locations based on image contours. The kernel acts as 

a covariance function in a Gaussian process, which defines a distribution over image-

specific label maps. Conditioning this distribution on the initial label maps leads to 

segmentation results that are consistent with image contours while also accommodating the 

1The label fusion procedure assumes independence. Regularization constraints in registration may introduce dependencies between 
voxels.
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vote of the atlas. We propose two different kernel functions. First, we use intervening 

contours [13] to define the kernel based on the boundaries in the image. Second, we define a 

kernel based on the parcellation of the image, yielding a voting scheme on superpixels.

As a motivating example, we present the result of intensity-weighted label fusion [8] for the 

left atrium of the heart in Fig. 2(a). We observe an undersegmentation of the left atrium. The 

segmentation does not follow the image contours. Fig. 2(b) shows a refinement of the 

segmentation by considering image contours, which faces challenges in identifying the 

correct boundaries especially for smooth intensity transitions. As a result, certain parts are 

oversegmented while others, e.g., the veins, are cut off. We propose to refine the label map 

by combining contours extracted from the image and the initial label map. This approach 

leads to the most accurate segmentation of the left atrium in Fig. 2(c).

A. Clinical Applications

The contour-driven refinement helps to delineate structures of high variability, which are 

challenging to segment with atlas-based techniques. We present results for two clinical 

applications, radiation therapy and cardiac ablations, that necessitate segmentation of such 

structures with strong variations. The first application requires the segmentation of parotid 

glands of patients undergoing radiation therapy. Radiation therapy planning aims to 

maximize the dose in the target region while minimizing the radiation dose in the 

surrounding tissue. Intensity modulated radiation therapy enables more effective 

administration of the radiation dose to reduce the damage to healthy tissues. During the 

planning phase, experts delineate most critical structures, also called organs at risk, to ensure 

low radiation in these regions. The parotid glands are organs at risk for head and neck cancer 

treatment because they are the most important salivary glands. Irradiation of the parotid 

glands can lead to xerostomia, resulting in difficulties for mastication, deglutition, and 

speech of the patients. The low soft-tissue contrast in CT images and the high anatomical 

variability of the parotid glands make the automatic segmentation challenging.

The second clinical application involves ablation of ectopic foci, which is the common 

treatment for patients with atrial fibrillation [14]. In atrial fibrillation, the left atrium of the 

heart no longer pumps blood into the left ventricle efficiently because it quivers in an 

abnormal rhythm. Atrial fibrillation accounts for 15% of all strokes [15]. Accurate 

segmentation of the left atrium and its pulmonary venous drainages in contrast-enhanced 

magnetic resonance angiography (MRA) images is essential for planning and evaluating 

ablation procedures. The segmentation of the left atrium is challenging because it exhibits 

strong variations in the shape of the cavity and in the number and location of pulmonary 

veins [16].

B. Related Work

Our work builds on atlas-based segmentation. We review atlas-based segmentation in 

greater detail in Section III, when we introduce the Bayesian framework for inference of 

labels maps. Here, we focus on studies that are relevant to the label refinement. In [17], [18], 

graph cuts was used to refine the segmentation, where we use Gaussian process regression to 

infer the refinement. Regression has been previously used to estimate correlations of errors 
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for atlas-based segmentation [19]. In later work [20], the correlation between atlases is 

estimated with a linear appearance model. Instead of refining the segmentation through the 

integration of image information in a post-processing step, we consider image and label 

information jointly in the graph Laplacian. Moreover, we work on image contours that 

potentially have advantages over comparing intensities [13]. Label refinement based on the 

hypothesis of atlas-based under-segmentation was proposed in [21]. Our probabilistic 

approach uses Gaussian processes, which arise in numerous fields of machine learning [22] 

and computer vision, e.g., image denoising [23], interpolation [24] and registration [25]–

[27]. In [28], Gaussian processes were applied for image segmentation of natural images. In 

contrast to our work, the identity covariance function was used, samples from the Gaussian 

process were thresholded, and no atlas information was available.

When focusing on our clinical applications, atlas-based segmentation of parotid glands with 

deformable registration was demonstrated in [29], [30]. In [31], the atlas images were used 

for training an active shape model of parotid glands. The refinement of head and neck 

segmentations based on classification with features was proposed in [32]. For the left atrium, 

a segmentation method was proposed by extracting the blood pool with intensity 

thresholding [33]; this method is sensitive to intensity variations. Intensity-weighted label 

fusion achieved accurate results for the segmentation of the left atrium in [16]. We treat this 

label fusion technique as a baseline for comparison. A preliminary version of this work was 

presented at conferences [34], [35].

II. Problem Statement

Given a novel image I, we aim to infer its segmentation S based on an atlas that contains 

training images  with segmentations . A probabilistic 

label map  specifies the likelihood for each label l ∈ {1, ..., η}

(1)

We obtain the estimated segmentation Ŝ(x) by choosing the label with highest probability for 

each voxel x on the image grid Ω

(2)

A perfect label map assigns probability one to the correct label for each location. In Section 

III, we discuss the construction of the initial label map Lo based on the atlas. In Section IV, 

we define a prior over label maps p(L) based on contours in the test image I to improve the 

initial label map. Maximization of the posterior yields the refined label map

(3)

which is used in Eq. (2) to get a refined segmentation.
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III. Atlas-Based Segmentation

In this section, we propose a Bayesian framework for atlas-based segmentation, which 

enables a unified review of existing segmentation approaches. We start with multi-atlas 

approaches [4]–[8], where each training image in the atlas  is aligned to the test image I, 

yielding deformation fields Φ = {ϕ1, ..., ϕn}. We condition the segmentation probability 

 on the deformation fields, leading to . The deformation 

fields are commonly estimated with registration tools that seek the mode

(4)

The likelihood of the segmentation S is approximated by inserting the mode of the 

deformation fields 

(5)

The drawback of working with the mode is that it does not incorporate the uncertainty in 

registration. For nonlinear registration, we potentially estimate a large number of 

parameters, yielding a high uncertainty. Bayesian inference circumvents this loss by 

marginalizing the latent deformation fields

(6)

(7)

Working with the mode corresponds to approximating the prior on the deformation field 

with a delta function

(8)

Since the delta function selects a single deformation field, only a single location in the 

training image affects the voting. This approximation is valid if  has a sharp peak 

at , which is questionable for deformation fields because there can be more unknowns than 

observations.

In general, computing the integral in Eq. (7) is intractable. In [36], Markov chain Monte 

Carlo sampling of deformation fields was presented to improve segmentation results. We 

propose to apply the Laplace approximation, which uses a normal distribution centered at 

the mode as the prior distribution over deformation fields , 

yielding

(9)
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where τ2 is the variance and I is the identity matrix. This approximation weighs 

segmentations that are proposed by deformation fields Φ according to the distance to the 

mode . Deformations that are closer to the mode have larger influence on the segmentation.

The Laplace approximation reduces segmentation errors that are caused by incorrect 

registrations. The distribution over similar transformations translates to a distribution over 

similar locations in the case of deformation fields. Instead of comparing location x to , 

the surrounding region  in the training image is also considered, as illustrated in Fig. 

3.  denotes a local neighborhood centered at the location . Although the normal 

distribution has in theory infinite support, most of the mass of the distribution lies within a 

neighborhood dependent on the variance. The variance τ2 and the size of neighborhood Nx 

are set to reflect the expected accuracy of the registration. It is possible to estimate them by 

aligning the training data and using the manual labels to quantify the registration 

uncertainty. If local estimates of registration accuracy exist, it is also possible to work with a 

locally varying variance τ2(x) and neighborhood size.

Considering the asymptotics of the prior over deformation fields, for τ2 → 0 we obtain the 

delta function and approximation with the mode in Eq. (5). For τ2 → ∞ or the 

approximation with a uniform distribution , we arrive at non-local methods. 

This flat prior on deformation fields assigns the same probability to mapping to any location 

in the training image. The search region is therefore no longer limited to a local 

neighborhood around the mode, but covers the entire image domain of the training image Ω 

in Fig. 3. Such non-local methods do not require the alignment of images.

A. Label and Image Likelihood

We follow the derivation of locally weighted voting in [8] by splitting the segmentation 

probability  into the label and image likelihood term. The independence of 

spatial locations in the test image is part of the derivation. In contrast to [8], our derivation 

includes the integration over deformation fields

(10)

(11)

(12)

We list the corresponding voting methods for different approximations of the deformation 

prior  in Tab. I. The integration over discrete image grids yields the summation. 

For region-wise voting, this summation is limited to a region , as discussed earlier. 
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Below, we state possible models for label likelihood p(S(x)|Si) and image likelihood p(I(x)|

Ii).

1) Label Likelihood—The label likelihood p(S(x) = l|Si(ϕi(x))) expresses the conditional 

probability that location x belongs to organ l, given the segmentation of the i-th training 

image at the corresponding location ϕi(x). The discrete model for the label likelihood is

(13)

An alternative model uses the logarithm of odds (LogOdds), which is based on the signed 

distance function [37].  denotes the signed distance transform of label l of the 

segmentation Si, which is positive inside the organ. The label probability for the LogOdds 
model is

(14)

with the slope constant κ > 0 and the partition function .

2) Image Likelihood—Fixing the image likelihood across all images to a constant, p(I(x)|

Ii) ∝ c, ignores the image likelihood and yields majority voting. Fixing the image likelihood 

within a single image to a constant, p(I(x)|Ii = ci, models atlas selection [38], [39]. Instead of 

globally expressing the similarity between test and training image, a local estimation enables 

better differentiation across image regions. In a first approach, we consider a univariate 
Gaussian distribution over single intensities

(15)

with variance ν2. Multivariate models promise to be more discriminative than a univariate 

comparison. We consider a local neighborhood Mx centered at location x and the 

corresponding patch P(x) = I(Mx). Similarly, a patch in the i-th training image is Pi(x) = 

Ii(Mϕi(x)). For volumetric images, patches correspond to sub-volumes. We reshape each 

patch into a vector with linear indexing, yielding the multivariate Gaussian distribution 

over patches

(16)

with covariance matrix Ψ. The covariance matrix accepts patch specific distances. For 

instance, we can emphasize the center locations of the patch by setting the diagonal entries 

accordingly. The special case of a spherical Gaussian distribution [9], [10]
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(17)

corresponds to the common L2 distance. Patches are more discriminative than voxels, which 

is helpful for voting schemes that pool the information from local regions Nϕi(x) or the entire 

image grid Ω.

In a further extension, the patch P(x) in the multivariate distribution can be replaced by a 

feature vector F(x) that is extracted from the image. Examples of such features include 

Gabor wavelet features [40], [41], local binary patterns [42], Haar-like features [43], and 

histograms of oriented gradients [44]. Results of an empirical study that compared several 

features for non-local means segmentation [45] indicates good results for features that 

compute image gradients and local entropies [46], [47].

B. Atlas voting methods

In the last sections, we presented three voting strategies (location-, region-, and image-wise), 

two label likelihood models (discrete and LogOdds), and three image likelihood models 

(constant, intensity-, and patch-wise). In principle, it is possible to combine all of these 

variants arbitrarily, although some combinations may not be very sensible. We use this 

framework to describe several existing voting schemes, grouped by local and non-local 

approaches.

1) Local—Local methods require the images to be registrated, yielding deformation fields 

. We obtain standard majority voting [4], [5] by location-wise voting with a constant 

image likelihood and discrete label probabilities. Majority voting with LogOdds seems also 

plausible. The selection of location-wise voting with the univariate image likelihood and the 

LogOdds label probabilities leads to label fusion with intensity-weighted voting [8], also 

referred to as locally-weighted voting.

An extension of intensity-weighted voting is patch-weighted voting [12], [19], [48], which 

replaces the univariate intensity likelihood with the multivariate patch likelihood and the 

spherical Gaussian model in Eq. (17). In addition, we consider the extension due to the 

Laplace approximation, which leads to a region-wise voting. We combine the region-wise 

voting with two different image likelihoods, the univariate intensity and multivariate patch 

model. We refer to them as region intensity voting and region patch voting. A similar 

voting scheme was described in [49], where the spatial weighting is heuristically integrated 

in the label likelihood. In contrast, it is treated as an independent factor in our derivation 

based on the Laplace approximation.

2) Non-local—For non-local approaches, we work with non-local means (NLM) 

segmentation [9], [10] and the application of a random forest classifier [11], [50]. Both 

approaches do not depend on the registration of the images and work with the discrete label 

likelihood.

In NLM, the initial label map is a weighted sum [9]
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(18)

with

(19)

In our framework, NLM corresponds to the image-wise voting scheme with a patch image 

likelihood. While NLM is a non-local method, the search window in [9], [10] is restricted to 

small regions of 93 to 153 voxels, which assumes a coarse correspondence between test and 

training image. This spatial restriction makes the practical implementation of NLM very 

similar to the region patch voting. Explicit modeling of the spatial distance to the center 

location, , is the main difference between our approach and NLM. 

Restricting the search to small regions of interest can be interpreted as implicit location 

information. Results indicate that increasing the search window size in NLM deteriorates the 

segmentation accuracy and necessitates explicit integration of location information [45].

In a second non-local approach, a random forest (RF) classifier [11], [50] is trained to 

predict the initial label map

(20)

where pt(S(x)|P(x)) is the posterior distribution of the t-th tree. Similar to NLM 

segmentation, the RF classifier considers all patches in the training images, but a training 

stage is required.

IV. Contour-Driven Label Refinement

In this section, we present a new approach for the contour-driven refinement of the initial 

label map Lo created in Section III. We assume additive, heteroskedastic Gaussian noise in 

the initial label maps

(21)

with the underlying true label map L̄. Note that label maps are numerical variables that 

indicate the probability of an organ being present at a specific location. Setting the diagonal 

entries of the covariance matrix Cxx = σ2(x) yields the multivariate distribution 

. We estimate the variance σ2(x) from Lo by calculating the entropy across 

label maps, .
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A. Contour-Driven Regression with Gaussian Processes

In contrast to most label fusion methods that make decisions at each voxel independently2 

and do not consider contour information, we define a distribution that models the 

relationship between locations by exploiting image contours. Stochastic processes offer a 

versatile framework to model interactions between a possibly infinite number of random 

variables. We treat label maps as realizations of a Gaussian process with mean m and 

covariance k, . Gaussian processes are entirely characterized by the mean 

and covariance functions; every finite subset is distributed according to a multivariate 

Gaussian distribution [22].

To obtain the posterior distribution over label maps, we condition the distribution of label 

maps p(L) on the initial label map Lo implied by the atlas

(22)

with mean and covariance

(23)

(24)

The mean vector m and the kernel matrix K are constructed from the mean function m and 

kernel function k, respectively. We use the Cholesky factorization to perform the matrix 

inversion. The maximum a posteriori label map coincides with the mean label map for 

Gaussian distributions,

(25)

Performing this estimation for all label maps yields the segmentation

(26)

The mean function m causes a constant additive shift of all label maps μl and therefore does 

not influence the segmentation result Ŝ, motivating the choice of m = 0. Fig. 4 illustrates the 

key steps of the segmentation process.

B. Kernel function

The kernel function k gives rise to a covariance function that models the relationship 

between locations in the label map. We propose two different constructions of the kernel 

function based on image contours and based on image parcellations into superpixels. The 

computation of image contours and parcellations is described in Section IV-C. Both 

definitions yield non-stationary covariance functions.

2The models presented in Section III combine the information from local neighborhoods in the training image but treat each location 
in the test image independently, cf. Eq. (10).
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First, we employ image contours Γ to compute entries of k for in-plane points x and x′, based 

on the concept of intervening contours [51], by identifying the maximum response along the 

line 

(27)

We consider locations within a radius r, where we set r = 10 pixels. A small radius increases 

the sparsity of the kernel matrix and therefore decreases the computational complexity. A 

radius of 10 pixels is a compromise between computational efficiency and modeling 

correlations with a large enough spatial extent. High values are assigned to pairs of points 

that are not separated by a contour. These points are subsequently encouraged to share the 

same label. Fig. 4 shows samples drawn from the distribution p(L), where we overlay the 

manual segmentation for reference. We observe that the distribution promotes label maps 

that follow image structures. In this example, labels are propagated to the thin ends of the 

left parotid gland, which improves the segmentation in comparison to the initial labeling.

Second, we employ a parcellation of the image with superpixels Πj, which are an exact 

cover of the image domain . We define the kernel for in-plane points x and x′ with 

superpixels Πj

(28)

After permutation, the resulting kernel matrix K has a block diagonal structure, where each 

entry in the block is the reciprocal of the corresponding superpixel size. This matrix acts as a 

projection operator with the property that KK = K, causing the Moore-Penrose-

Pseudoinverse of the kernel matrix to be the kernel matrix itself, K† = K. The computation of 

the mean in Eq. (23) reduces to

(29)

for a label noise with zero covariance, C = 0. Due to the block diagonal structure of the 

kernel matrix, the multiplication by the label map K · Lo is equivalent to averaging within 

superpixels

(30)

This identity facilitates the inference of label maps on image parcellations.

C. Contour Extraction and Superpixels

Contours—Essential for the label refinement is the reliable extraction of the contour Γ in 

the test image I. We use concepts from spectral clustering [52] to perform contour 

extraction. Image and texture cues are combined across several scales to achieve a reliable 

contour estimate [51], [53], which outperforms other contour detectors [51]. The global 
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probability of boundary gPb = mPb + sPb is the sum of a multi-scale probability of 

boundary mPb and a spectral probability of boundary sPb, illustrated in Fig. 5. The multi-

scale probability of boundary considers intensity and texture information and is described in 

details in the Appendix. The spectral probability of boundary results from spectral 

clustering. Given a weight matrix W, the generalized eigenvalue decomposition

(31)

leads to eigenvectors {vk} that partition the image, with the degree matrix . We 

consider two settings for the weight matrix: W = WI and W = WI + WLo, based on the 

definitions

(32)

(33)

where lPb is the label probability of boundary computed on the initial label map Lo (see Fig. 

5). The first definition of W only considers image contours, the second definition combines 

the image and the label cues.

We obtain the spectral boundary sPb by summing up the gradients of the 16 eigenvectors 

corresponding to the smallest non-zero eigenvalues λk [51]

(34)

While mPb contains responses to all edges, sPb only captures the most salient structures in 

the image. Fig. 5 illustrates the probability of the boundary on an image from the left atrium. 

We employ mPb and gPb as contours Γ in Eq. (27).

Superpixels—For the kernel function in Eq. (28), we estimate the superpixels of the 

image. In this work, we compute superpixels based on the image contour Γ, but other 

superpixel algorithms, e.g., SLIC [54] could be used. We apply the oriented watershed 

transform on the contour Γ to create the finest partition of the image [51]. To adapt the 

superpixel size, we use the strength of the contours to build a hierarchical segmentation. The 

ultrametric contour map (UCM) [51] represents the hierarchy. Fig. 5 shows that superpixels 

form an oversegmentation of the image. The superpixel size is subject to a trade-off. Large 

regions provide stability in the face of errors in the initial label map, but they are also more 

likely to miss the organ boundary. The advantage of the hierarchical segmentation is that 

thresholding the UCM with ρ enables adaptation of the superpixel size. At the lowest level, 

we have the finest partition of the image, and the higher levels contain larger regions 

implied by stronger contours.
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V. Experiments

We evaluate the methods by performing segmentation of the parotid glands and of the left 

atrium. We compare two non-local and five local methods to create initial label maps. For 

each of these label maps, we infer contour-driven label refinements with image boundaries 

and superpixels.

A. Parotid Glands

In the first set of experiments, we segment the left and right parotid glands in the head and 

neck CT images. The standardization with Hounsfield units supports patch-based 

approaches, since intensity values are comparable among patients. Each of the 16 CT scans 

contains between 80 and 200 axial slices with a slice thickness of 2.5mm; the in-plane 

resolution is 0.9mm; the slice size is 512 × 512 pixels. All 16 images have the left parotid 

gland labeled by a trained anatomist for treatment planning. The right parotid gland was 

consumed by a tumor in one patient. We quantify the segmentation quality by evaluating the 

Dice volume overlap score [55] and the modified Hausdorff distance [56] between the 

automatic and manual segmentations.

1) Non-local Labels—We first consider non-local, patch-based approaches for the 

segmentation (Section III-B2). To avoid training and testing on the entire image, we define 

regions of interest (ROI) around the parotid glands. These ROIs can be obtained either from 

a coarse registration or by template matching of the mandible bone, which is adjacent to the 

parotid glands. We train the random forest (RF) classifier on patches within the ROI of 8 

randomly selected subjects. Tests are performed on the remaining 8 datasets for the left 

parotid gland and 7 for the right. We choose 500 trees per random forest with 12 predictors 

sampled for splitting at each node. We perform experiments with three different patch sizes: 

7 × 7 × 3, 7 × 7 × 5, and 9 × 9 × 5. The patch dimensions account for the anisotropic image 

resolution. Similarly, experiments are performed with non-local means (NLM). Fig. 6 

presents the statistical analysis of the results (left bar in each group). The random forest 

classifier yields better results than the NLM strategy, which is mainly due to many false 

positives in the NLM labels. Moreover, larger patch sizes tend to slightly improve the 

segmentations. The left column of Fig. 7 illustrates one slice with the labels created by both 

methods.

For each of the six initial label maps resulting from three patch-sizes and two methods, we 

apply the contour-driven regression. We evaluate mPb and gPb as contour estimates Γ for 

the kernel in Eq. (27). For gPb, we use the image-based weight matrix (W = WI) and the 

weight matrix that includes label contours (W = WI + WLo), referred to as gPb label. 

Additionally, we evaluate the kernel based on superpixels in the ultrametric contour map 

(UCM) in Eq. (28). We consider UCM based on image information only and UCM label 

that integrates label information. We create superpixels from the ultrametric contour maps 

by thresholding at ρ = 0.2 and setting the covariance of the label noise to C = σ2I with σ = 

1.5. Fig. 6 reports the results for different contour-driven refinement strategies for each of 

the initial label maps. Fig. 7 illustrates the refinement of the initial label maps with UCM 

and mPb.
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The contour refinement leads to a significant improvement over the initial segmentation for 

almost all techniques. The refinement that lacks statistical significance is UCM on RF labels 

and NLM labels on the right parotid when evaluated for volume overlap. Generally, the 

regression with gPb and mPb leads to a clear improvement in Dice score and Hausdorff 

distance across all initial segmentations for the left and right parotid glands. The integration 

of the label information in the contour with gPb label does not further improve the results 

over gPb. In contrast, we observe a substantial improvement for UCM label over UCM for 

most cases. In particular, the refinement of NLM label maps with UCM results in an outlier 

with low Dice score for one subject. This is characteristic for the refinement with 

superpixels; they can yield large improvements but also produce substantial degradation if 

the regions are not well defined. The combination of image and label contours in UCM label 

helps to extract more meaningful superpixels, as indicated by the results. The improvement 

of UCM label over UCM is also illustrated qualitatively in Fig. 2.

We further study the dependence of the segmentation result on the threshold ρ for the 

creation of superpixels. Fig. 8 reports volume overlap for the refinement of the initial label 

map with the UCM label for different values of threshold ρ. The initial label map was 

created with the random forest classifier with patch size 7 × 7 × 3. The segmentation results 

show only slight variations for a range of different threshold parameters. We continue using 

ρ = 0.2 for the remainder of the manuscript.

2) Local Labels—As a second approach, we evaluate local voting techniques (Section III-

B1). The deformable registration is performed with Plastimatch using B-splines [57]. The 

best results were obtained with mutual information (MI) as similarity measure. Following a 

leave-one-out strategy, one of the images is selected as a test image and all of the remaining 

15 images are registered to it. We compare several voting schemes to create the initial 

labels: majority voting, intensity-weighted voting, patch-based voting, and region-based 

voting. We work with discrete label probabilities in all cases. For intensity-weighted voting, 

we set the variance of the image likelihood to ν = 45. For patch-based voting, we work with 

patches of size 7 × 7 × 5 and ν = 20. For region-based voting, we set the spatial variance τ2 

= 1 and consider two different region sizes: 7 × 7 × 3 and 17 × 17 × 9 (denoted as “large”). 

For the large region, we set the step size to 2 to limit computational costs. For the region-

based voting, we use single intensities and patches in the image likelihood.

After the initial label maps are created, we apply five different contour-driven refinement 

techniques. Fig. 9 presents the statistical analysis of the results. Again, we consider the 

refinement with contours and superpixels. In contrast to the previous experiment, we also 

evaluate the local noise model for label maps with spatially varying variances σ2(x), cf. Eq. 

(21), denoted as “local” in the figure. We only report results for UCM label in this 

experiment because of the superior performance in the previous experiment.

We note an improvement in the volume overlap measures for the application of more 

sophisticated voting schemes. Region patch voting on regions of size 7 × 7 × 3 yield the best 

results for the left parotid. For the right parotid, the median is highest for region patch voting 

on large regions. A possible reason for this difference is that the right parotid generally 

yields lower Dice scores than the left parotid so that searching over a larger region has more 
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potential to improve results. When examining the Hausdorff distance, the performance is 

similar across all voting schemes for the left parotid. For the right parotid, region patch 

voting on the larger region yields the lowest median.

When investigating the Dice scores for the different refinement techniques of the left 

parotid, we observe a very similar performance of gPb and mPb. The local noise model and 

the inclusion of label information lead to similar results. Except for majority and intensity 

voting, the Dice score for UCM label is lower than for the boundary refinement methods. 

Small regions with intensity- and patch-based voting refined by gPb and mPb obtain the 

overall highest Dice score. All improvements for the left parotid gland are statistically 

significant. Regarding the modified Hausdorff distance for the left parotid, UCM label is the 

only method that yields consistently significant improvements over the initial labels and 

outperforms other refinement strategies. For the right parotid, voting on large regions with 

patches in combination with the contour refinement reaches the highest Dice score. 

Generally, the Dice score of UCM label on the right parotid is higher than that for the left 

parotid. The refinement with mPb and mPb local is not signifiant for the initial label maps 

created with majority, intensity, and both region intensity voting schemes. In terms of 

Hausdorff distance, superpixel voting with UCM label yields the significantly best results.

B. Left Atrium

In the second experiment, we automatically segment the left atrium of the heart in a set of 16 

electro-cardiogram gated (0.2 mmol/kg) Gadolinium-DTPA contrast-enhanced cardiac MR 

angiograpy images (CIDA sequence, TR=4.3ms, TE=2.0ms, θ=40°, in-plane resolution 

varying from 0.51mm to 0.68mm, slice thickness varying from 1.2mm to 1.7mm, 

512×512×96, ± 80 kHz bandwidth, atrial diastolic ECG timing to counteract considerable 

volume changes of the left atrium). The left atrium was manually segmented in each image 

by an expert.

Contrast agents used in MR angiography cause intensity variations that complicate purely 

patch-based approaches. With registration-based methods it is possible to compensate for 

these variations by fitting a transfer function during the registration. Specifically, we work 

with a variant of the diffeomorphic demons algorithm [58] and a polynomial transfer 

function [16]. The transfer function is estimated during the registration and corrects for 

intensity variations caused by the contrast agent. After the intensity correction, we normalize 

the intensities to be between zero and one. We evaluate various voting strategies together 

with the contour refinement. We perform leave-one-out experiments by treating one subject 

as the test image and the remaining 15 subjects as the training set.

We employ majority, intensity, patch, region intensity, and region patch voting. For intensity 

voting, we set the LogOdds slope constant to κ = 1.5 and intensity variance to ν = 0.5. For 

patch voting, we use a patch of size 2 × 2 × 1 with ν = 0.1. For region voting, we set the 

region size to 7 × 7 × 3 and set the spatial variance to τ2 = 1. We work with superpixels 

from the ultrametric contour map by thresholding at ρ = 0.2. The statistical analysis of the 

results in Fig. 10 shows an improvement in the Dice scores for intensity voting with respect 

to majority voting. Patch voting further improves the result. The best results are achieved for 
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region voting. The results for intensities or patches within the regions are similar. The 

evaluation with the Hausdorff distance produces similar results.

We employ the superpixel-based inference for the refinement of the initial segmentations, 

where the superpixels in UCM are constructed based on image and label contours (UCM 

label). The refinement yields a statistically significant improvement in Dice score and 

Hausdorff distance for majority, intensity, and patch-based voting. For the region-based 

voting, the refinement still yields an improvement, but it is no longer significant. The higher 

initial segmentation accuracy of the region-based voting makes it more difficult to achieve a 

significant refinement. Region voting with the refinement yields the overall best results.

Fig. 11 illustrates the segmentation results for majority and intensity-weighted voting 

together with the UCM refinement for several subjects. We see that the refined segmentation 

better captures the organ boundary. This is supported by the clearly lower Hausdorff 

distances in Fig. 10. On the images for Subject 1 in Fig. 11, we observe that the refinement 

achieves a better separation between the veins and atrium. This case is particularly 

challenging because the gap is small and registration errors of misaligning either the vein or 

the atrium lead to a closure. Integrating image and label cues together with voting on 

superpixels yields a more accurate segmentation. Fig. 2 presents another example, where we 

compare the result of intensity voting to the refinement with UCM and UCM label.

VI. Discussion

In general, purely patch-based strategies tend to be well suited for handling structures with 

significant variations because there exist no regularization constraints as in registration-

based techniques. Standardized intensity values, as in CT images, facilitate patch-based 

approaches because the image intensities are comparable across subjects. However, the 

independent voting for each voxel increases the risk of false positives and isolated islands. 

The proposed refinement strategies improve these initial segmentations based on the 

covariance between voxels based on image contours.

For the segmentation of the parotid glands, the performance of registration-based 

approaches is better than that of purely patch-based techniques (Random forest, NLM). The 

integration of patches into the registration-based voting schemes generally improves the 

results. The region-based voting with patches leads to the best performance, where the 

optimal region size varies from the left to the right parotid. Region-based voting is a 

compromise between non-local methods and location-wise voting schemes, promising to 

benefit from both.

For the refinement techniques, we noted little differences between the mPb and gPb 

boundaries as contour estimates. The inclusion of the label information or a local noise 

model did not change the results much. For the superpixel voting with the ultrametric 

contour map, we noted a clear improvement by defining the parcellation based on image and 

label cues. Generally, the contour-driven refinement techniques yield a clear improvement 

over the initially created label maps.
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VII. Conclusion

We presented a Bayesian framework for voting in atlas-based segmentation that spans the 

range from local to non-local methods. This framework enabled us to review existing 

methods and to propose novel voting schemes. To improve the initial label maps, we 

proposed a refinement with Gaussian process regression. The key contribution is a contour-

driven distribution over label maps that is supported by structures in the image. Inference of 

the posterior distribution yields the MAP estimate of label maps and the refined 

segmentation. Our segmentation experiments for the parotid glands and the left atrium 

demonstrate improved performance for the new voting schemes and the contour-driven 

refinement.

Acknowledgements

We thank Michal Depa for algorithmic help, Martin Reuter for discussions, and Ehud Schmidt for providing image 
data. This work was supported in part by the Humboldt foundation, the National Alliance for Medical Image 
Computing (NIH NIBIB NAMIC U54-EB005149), the NeuroImaging Analysis Center (NIH NIBIB NAC P41-
EB-015902), and the Wistron Corporation.

Appendix

Multi-scale Probability of Boundary

The calculation of the multi-scale probability of boundary mPb consists of several steps. 

First, the oriented gradient signal G(x, θ) is computed on image I [59]. The oriented gradient 

signal robustly estimates the image gradient by calculating the χ2 distance between the 

histograms of two half-discs at each location x for various orientations θ. Depending on the 

size of the disc, we obtain gradient estimates on multiple scales. We work with eight equally 

spaced orientations between 0 and π. A successive Savitzky-Golay filtering enhances local 

maxima and reduces multiple detection peaks [60]. Texture provides an additional channel 

to calculate the gradient signal. We convolve the image with 17 Gaussian derivative and 

center-surround filters [53]. We obtain 64 different textons with a K-means clustering in the 

17-dimensional space. The multi-scale probability of boundary for each orientation is 

calculated by summing the oriented gradient signal of the intensity GI and texture GT 

channel across different scales s

(35)

The maximum across orientations leads to the boundary strength for each location

(36)

Finally, a non-maximum suppression [51] yields thinned contours, illustrated in Fig. 4.
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Fig. 1. 
Left: CT image with segmentation of left parotid (yellow: patch-based, red: manual). Right: 

Magnification of the blue patch (top) with manual segmentation (bottom). The four most 

similar patches in the repository vote for background (black at the center location), although 

the patch belongs to the left parotid. Image patches are intensity normalized for 

visualization.
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Fig. 2. 
Example segmentations of MR angiography images of the left atrium of the heart (yellow: 

automatic, red: manual). The initial atlas-based segmentation is established with intensity-

weighted label fusion. We compare the refinement that only uses contour information from 

the image and the refinement that combines contours from the image and those from the 

label map.
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Fig. 3. 
Three different voting schemes for labeling the location x in the test image (top) using the 

training image (bottom) and image transformation . Left: Only the information in the 

training image at the single location  is considered. Middle: Information in a local 

region  centered at  is included, with higher weighting towards the center. Right: 

A non-local approach that integrates information from the entire image grid Ω.
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Fig. 4. 
Gaussian process segmentation of the left parotid gland. The initial label from the atlas-

based segmentation (bottom left) only partially agrees with the manual segmentation (top 

left). We extract contours from the image (top center) and use them to construct the kernel 

function k, see Eq. (27). The kernel defines a distribution over label maps 

supported by the image. Samples drawn from the Gaussian process illustrate possible 

segmentations of the image (bottom center). The manual segmentation is overlaid for 

reference. The samples exhibit sharp boundaries necessary for segmentation, and the 

correlation of locations in the parotid gland. The mode of the posterior distribution results in 

the refined segmentation, overlaid on the intensity image (top right) and on the initial label 

map (bottom right).
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Fig. 5. 
Overview of the atlas-based segmentation with region-based voting on superpixels for left 

atrium. The test image and the initial label map Lo serve as input. First, contours are 

extracted from both input images, yielding mPb and lPb. Both are combined for the 

calculation of the spectral contour sPb and global boundary gPb. The contour gives rise to a 

hierarchical parcellation of the image, represented with the ultrametric contour map (UCM). 

Thresholding the UCM at level ρ yields superpixels at a specific granularity. Gaussian 

process inference with the kernel in Eq. (28) yields superpixel-wise voting and the final 

segmentation.
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Fig. 6. 
Dice volume overlap (top) and modified Hausdorff distance (bottom) for the segmentation 

of left parotid (left) and right parotid (right) glands. Initial labels are created with a random 

forest (RF) classifier and non-local means (NLM) for different patch sizes. The refinement 

of label maps is done with contours (gPb, mPb) and superpixels (UCM), where we also 

evaluate the integration of label map contours (label). Center line indicates median, the 

boxes extend to the 25th and 75th percentiles, and the whiskers reach to the most extreme 

values not considered outliers (crosses).
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Fig. 7. 
Examples slices for the patch-based segmentation and contour-driven refinement of the left 

parotid gland. Automatic segmentation results are shown in yellow, manual delineations are 

shown in red. The initial label maps created with non-local means (NLM) and random 

forests (RF) are shown in the left column. The superpixel refinement with UCM and the 

contour refinement with mPb are shown in the second and third column, respectively.
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Fig. 8. 
Mean Dice score of the refined segmentation with UCM label as a function of the superpixel 

threshold ρ. The initial label map was created with the RF classifier on 7 × 7 × 3 patches for 

the left parotid gland.
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Fig. 9. 
Dice volume overlap and modified Hausdorff distance for the segmentation of left (top two 

graphs) and right (bottom two graphs) parotid glands. Initial label maps are created with 

atlas-based voting schemes (majority, intensity, patch, region intensity, and region patch 

voting). For the contour-driven refinement, we set gPb and mPb as contour estimates. We 

further compare to using a local noise model (local) and incorporating label contours (label). 

For the superpixel refinement, we use UCM with label contours. Center line indicates the 
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median, the boxes extend to the 25th and 75th percentiles, and the whiskers reach to the most 

extreme values not considered outliers (crosses).
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Fig. 10. 
Dice volume overlap (left) and modified Hausdorff distance (right) for the segmentation of 

the left atrium. Initial label maps are created with atlas-based voting schemes (majority, 

intensity, patch, region intensity, and region patch voting). The label maps are refined with 

the superpixels in UCM with the label map contours information (UCM label). Center line 

indicates median, the boxes extend to the 25th and 75th percentiles, and the whiskers reach to 

the most extreme values not considered outliers (crosses).
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Fig. 11. 
Examples slices for the atlas-based segmentation and contour-driven refinement of the left 

atrium. Automatic segmentation results are shown in yellow, manual delineations are shown 

in red. The initial label maps were created with majority and intensity-weighted voting. The 

label maps for intensity-weighted voting are refined with the superpixels in UCM also 

considering label map contours (UCM label).
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TABLE I

Overview of different voting schemes for atlas-based segmentation obtained by varying approximations of the 

deformation field prior .

Voting scope Approximation of p(Φ ∣ I , I) Type Posterior probability p(S (x) ∣ I , I, S)

Location Delta function Local ∑i=1
n p(S (x) ∣ Si(ϕ̂i

(x))) ⋅ p(I (x) ∣ Ii(ϕ̂i
(x)))

Region Normal distribution Local ∑i=1
n ∑y∈N ϕ̂i(x)

p(S (x) ∣ Si
(y)) ⋅ p(I (x) ∣ Ii

(y)) ⋅ N(y ∣ ϕ̂i
(x), τ 2I)

Image Uniform distribution Non-Local ∑i=1
n ∑y∈Ω p(S (x) ∣ Si

(y)) ⋅ p(I (x) ∣ Ii
(y))
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