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1. Abstract 

Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation. 

Quenching below the melting temperature gives rise to propagation of the crystal growth front into the 

C50 melt from a crystalline polyethylene surface. By tracking the location of the crystal-melt interface, 

crystal growth rates between 0.02-0.05 m/s were observed, for quench depths of 10-70 K below the 

melting point. These growth rates compare favorably with those from a previous study by Waheed et al 

(2005). Next, surface nucleation was identified with the formation of two-dimensional clusters of 

crystalline sites within layers parallel to the propagating growth front. Critical nucleus sizes, waiting 

times and rates for surface nucleation were estimated by a mean first passage time analysis. A surface 

nucleation rate of ~0.05 nm-2ns-1 was observed, and it was nearly temperature-independent. Post-critical 

“spreading” of the surface nuclei to form a completely crystallized layer slowed with deeper 

supercooling.  
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2. Introduction 

Crystallization from polymer melts has numerous practical applications1,2 and is a crucial step in the 

manufacturing of the vast majority of commodity and many specialty plastics. Of long-standing interest is 

the development of morphological structure during the transition from an initial, fully amorphous state to 

the semicrystalline state.3,4 The microstructure in a semicrystalline polymer material ultimately 

determines its material properties, including bulk strength, impact resistance, and stiffness.5  The 

characteristic microstructural feature of many crystallized polymer materials is the spherulite, a 3-

dimensional, radially symmetric arrangement of stacked crystalline lamellae interspersed by regions of 

amorphous polymer. Despite the abundance of research into the structure of the spherulite and its 

evolution during crystallization,4,6,7,8,9 a clear description of its development remains elusive.10 Refined 

models for lamellar crystal growth within spherulites and other microstructures would greatly improve the 

ability to predict morphological structure and target the evolution of novel morphologies for enhanced 

material properties.  

Lauritzen and Hoffman (LH) first proposed the concept of surface nucleation11 to explain the growth of 

the lamellar polymer crystals.12,13 According to LH theory, propagation of the crystal growth front 

proceeds in two steps: (1) an activated surface nucleation event, characterized by a crystalline stem 

depositing on the leading edge of the crystal growth front, and (2) lateral spreading of the surface nucleus 

through the addition of crystalline stems to complete a crystalline layer of the growing lamella. LH theory 

is supported by experimental results that indicate the lamellar thickness obtained during isothermal 

crystallization increases with crystallization temperature Tc (i.e. shallower supercooling, ΔT=Tm–Tc), and 

by the existence of three distinct regimes of temperature-dependent growth14 represented schematically in 

Figure 1. LH argued that the regimes were consistent with surface nucleation, arising out of a competition 

between relative rates for the initial deposition of a crystalline stem (i.e. surface nucleation) and 

subsequent spreading of the crystal across the surface by the addition of more stems. LH theory has been 

widely applied to interpret the rate of crystal growth in numerous common polymers such as PE,15 PEO16 
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and i-PP.17 Growth rates in these polymer systems have been observed to exhibit all three regimes of 

growth.  

 

Figure 1. Growth rate G on the surface of a lamella as envisioned in the classical theory proposed by 

Lauritzen and Hoffman. Lamellae are represented looking down the molecular chain axis of deposited 

stems. Stem deposition occurs at a rate i on an available surface. Additional stems add to the nucleus, 

spreading at a rate s. Competition among s and i result in three distinct regimes of growth. 

 

However, LH theory is not without its critics. Since its inception, much debate has surrounded the 

mechanism of molecular attachment during nucleation and subsequent lateral spreading, and the 

consequences of such mechanisms. LH theory assumes that a fully-extended segment of the chain equal 

to the lamellar thickness serves as the critical nucleus, and subsequent stems attach also as fully-extended 

segments. Below a critical lamellar thickness lmin, the attachment of subsequent stems results in a net 

increase in free energy and an unstable lamella. In the LH theory, the observed lamellar thickness l* is that 

which grows fastest and therefore dominates crystallization. Frank and Tosi proposed a variant of LH 

theory that allows for deposition of the stem via single repeat unit attachment (or detachment) stages.18 

The length of the crystal stem increases with deposition of additional repeat units until it reaches the 

observed lamellar thickness, at which point a fold is introduced, and repeat unit addition continues into 
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the next stem. Point proposed a model that allows for repeat unit attachment/detachment and folding at 

any point during the deposition of the initial stem;19 in his model, subsequent stems attach as one unit, 

with a stem length equal to the initial nucleated stem. Detachment of subsequent stems can also take 

place, allowing the nucleus to grow or shrink and thereby change the lamellar thickness. Point’s model 

addressed a shortcoming of LH theory in which an infinite lamellar thickness was predicted at very deep 

supercoolings. For further information regarding the extensive history of polymer crystallization theories, 

the review by Armistead and Goldbeck-Wood is recommended.20 

In contrast to LH theory, others have proposed models that do not rely on an enthalpic surface nucleation 

barrier for crystal growth.  Sadler and Gilmer proposed an entropic barrier model21 based upon kinetic 

Monte Carlo simulations of polymer crystallization. In their model, the growth face explores many 

configurations, only a small fraction of which result in successful propagation of the growth front. Using 

a more sophisticated kinetic Monte Carlo model that incorporated free energy costs for the polymer to 

extend beyond the edges of the previous crystalline layer as well as for a stem to be shorter than lmin, Doye 

and Frenkel concluded that lamellar propagation would converge towards growth with constant 

thickness.22 Binsbergen has also challenged the strict requirements of the surface nucleus, adding that the 

LH theory ignores alternative pathways with lower energy barriers to creating a new layer.23 Like Sadler 

and Gilmer, Binsbergen stressed the stochastic nature of crystal growth.  

More recent models have argued for intermediate stages during crystal growth. For example, Keller and 

co-workers showed that crystal growth in PE could proceed with the formation first of a hexagonal phase 

at short stem length, which then transition to a more stable orthorhombic phase as the lamella 

thickens.24,25 Strobl also proposed a multi-step mechanism for lamellar crystallization.26 In his model, the 

initial step is the formation of a “mesomorphic” layer on the lateral growth face. Essentially, chain 

sequences attach without completely ordering, such that the density of this initial layer is slightly greater 

than that of the melt. When this mesomorphic layer reaches a critical thickness in the growth direction, it 

solidifies through a cooperative structural transition. The result is a series of “granular crystals”, preceded 
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by a roughly ordered, mesomorphic layer. In the final step, granular crystals merge to form the 

characteristic lamellar structure. The evidence supported by the models of Keller and Strobl is consistent 

with “two-step nucleation” models that have become prevalent in other areas of crystallization 

study.27,28,29 

Despite these numerous efforts, however, none of the foregoing models is capable of describing polymer 

crystallization using parameters that can be derived solely from chemical architecture and first principles. 

All rely to some degree on empirical parameterization. The experimental evidence is obtained in the form 

of macroscopic growth rates and inferences based upon crystalline lamellar thickness. It remains unclear 

what molecular processes are occurring at the crystal growth front or exactly what the critical nucleation 

event looks like, since current experimental techniques are incapable of such fine spatiotemporal 

resolution. These limitations have prompted the pursuit of alternative routes toward the investigation of 

polymer crystallization. Molecular simulation provides an invaluable alternative for the study of polymer 

crystallization from the solution or melt. Most importantly, one can observe nucleation,30,31,32 lateral 

spreading33 and propagation of the growth front34,35,36 separately through careful selection of simulation 

conditions and appropriate data analyses.  

Crystal growth of C20H42,35 C50H102 and C100H202
33 was previously examined using molecular dynamics 

simulations in a series of papers by Waheed and Rutledge. In that work, the crystal surface was modeled 

using a corrugated potential that mimicked the parallel alignment of stems, and crystal growth rates were 

measured by tracking the midpoint in an orientational order profile that varied from almost unity (for the 

crystal phase) to zero (for the amorphous melt phase). Molecular ordering within layers normal to the 

surface was analyzed through snapshots of the system. Evidence obtained from these simulations 

supported the formation of a small surface nucleus as part of the growth mechanism. However, the 

simulated spatial scale was too small to prevent early onset of finite size effects during layer ordering, 

prohibiting a deeper analysis of surface nucleation phenomena. Additionally, the analysis of surface 
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ordering was only conducted in the three layers closest to the artificial, rigid surface, so artifacts could 

have been significant.  

In this study, we rectify the shortcomings of Waheed and Rutledge, and extend our analysis to the 

quantitative description of surface nucleation and spreading mechanisms. The analysis performed in this 

work draws upon the techniques used by Yi and Rutledge in studies of primary nucleation of alkanes 

from the homogeneous melt. 32,37,38 A two-dimensional analogue of the mean first passage time concept 

previously employed in three dimensions to study primary nucleation is applied here to study the 

mechanism of nucleation on a surface at the leading edge of a crystal growth front. Surface nucleation and 

lateral spreading are examined layer by layer, to characterize the mechanism of crystal growth.  

 

3. Theory  

In classical nucleation theory, as it applies to primary nucleation, the rate of nucleation is the number of 

successful nucleation events arising per unit volume per unit time, and is expressed as the inverse of 

sample volume and a characteristic induction time. By analogy, the notion of surface nucleation implies 

that there exists a surface with area A upon which a nucleus of crystallizable material develops, with a 

characteristic induction time τn. The rate at which such nuclei develop is the surface nucleation rate i, 

 i = 1
τ nA

 (1) 

According to transition state theory, the surface nucleation rate i is given by, 

 i = i0 exp −βEd( )exp −βΔG*( )  (2) 

where Ed is the activation energy for chain diffusion to (or perhaps across) the surface, ΔG* is the free 

energy barrier to the formation of a critical surface nucleus, and io is a prefactor that is only weakly 

temperature-dependent. β=1/kBT, where kB is Boltzmann’s constant. 
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According to LH theory, the surface nucleus develops as a single, atomic layer of chains. Single-stem 

clusters spontaneously attach at the leading edge of a growing lamella and spread to form a full molecular 

layer of crystallized material. Consistent with LH theory, we adopt here the notion of a surface nucleus as 

a pseudo two-dimensional cluster of crystallized material that is approximately one molecule thick, 

developing at the growth front; however, extending the analysis to clusters and layers that are two or more 

molecules thick, such as the “cylindrical cap” used by Howard and Milner39, should be straightforward.  

To characterize the surface nucleation event, a mean first passage time (MFPT) analysis is applied to the 

largest cluster nmax observed on a surface. As shown by Wedekind et al. for homogeneous nucleation,40 

the MFPT of the largest cluster size in a system, τ(nmax), takes the form of the first term on the right hand 

side (rhs) of Eq. (3), as long as the critical free energy barrier is large relative to the thermal energy (ΔG* 

>> kBT), and the subsequent growth (or spreading) of the nucleus is very much faster than the nucleation 

rate: 

 τ (nmax ) = 1
2τ

* 1+ erf Z π nmax − n
*( )⎡

⎣
⎤
⎦{ }+τ s nmax( )H Δn( )  (3) 

where τ* is the waiting time, n* is the critical nucleus size, and  

 Z = β
2π

d 2G(n)
dn2

 (4) 

is the Zeldovich factor, which is related to the local curvature at the height of the nucleation free energy 

barrier. Note that we distinguish between the induction time τn, which characterizes the likelihood of 

nucleation on an existing surface of crystallized area A, and the waiting time τ*, which includes 

additionally the time required for the crystal growth front to propagate to the layer where nmax is 

measured. 

To account for cases where the subsequent growth (or spreading) rate of the cluster is not much faster 

than the rate of nucleation itself, Yi et al. added the second term on the rhs of Eq. (3), of the form Δτ = 
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τs(nmax)H(Δn), that triggers once the critical nucleus size is reached; H(x) is the Heaviside function, and Δn 

= nmax – n* is the extent of supercriticality. They employed this modified equation to analyze MFPT data 

for homogeneous, primary nucleation in long chains (C150 and higher), for which the rate of nucleation 

was found to be on the same order of magnitude as the rate of growth. 32,37,38 Surface nucleation in n-

alkanes experiences a similar issue, so we employ a similar ad hoc correction in this work.  

The particular form of the spreading function τs(nmax) is determined by the shape evolution of the nucleus. 

In general, one can write: 

 τ s nmax( ) = bs
nmax
α − n*( )α
hρn( )α

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (5) 

where s is the spreading rate, h is the thickness of the layer and ρn is the number density of sites in the 

crystalline material. b and α are parameters that depend on nucleus shape. In LH theory, where the surface 

nucleus comprises a single, fully extended stem and spreading proceeds by the subsequent deposition of 

adjacent, full length stems, b = α  = 1. For a circular, disk-like nucleus that grows with a constant, 

isotropic radial spreading rate, b = (2π1/2)-1 and α  = 1/2.  

According to the surface nucleation mechanism, propagation of the growth front into the melt proceeds 

layer by layer, with each crystalline layer nucleating and spreading on the layer before it, in a self-similar 

manner. Therefore, for a given layer k, the substrate surface is considered to be the crystallized area in the 

previous layer k – 1. Eq. (1) can thus be applied to calculate the surface nucleation rate i in layer k, given 

τn and the crystallized area of the substrate layer Ak-1. A defining feature of this problem is that Ak-1 is not 

constant, but continues to increase during the nucleation induction period for layer k, due to spreading 

and/or additional surface nucleation events. The dynamic nature of the substrate area must be taken into 

account. We do this here by integrating the area Ak-1 over the induction period for layer k. The time 

window of interest begins when the k – 1th layer nucleates (waiting time τk-1
*) and concludes when the kth 
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layer nucleates (waiting time τk*). The following expression is then used in lieu of Eq. (1) to evaluate the 

surface nucleation rate ik for layer k, 

  ik =
1

Ak−1(t)dtτ k−1
*

τ k
*

∫
 (6) 

 

4. Simulation Method 

Alkane chains were modeled with a united atom force field originally developed by Paul, Yoon and Smith 

(PYS)41 and subsequently modified by Waheed et al.33,35 In this model, CH2 and CH3 monomers are 

represented as united atom (UA) beads; chemical details of the alkane chain are otherwise fully 

maintained. The PYS model has been shown to reproduce important physical properties of the melt phase 

including dynamical properties and chain distributions. The melting temperature and enthalpy of fusion of 

the n-alkane rotator phase are accurately represented by this model.37 Crystal transitions to orthorhombic 

(polyethylene) or monoclinic (n-alkane) phases are typically not captured by the PYS model as a 

consequence of its UA nature.  

Simulations were performed using the LAMMPS molecular dynamics software package.42 In LAMMPS, 

the convention for the dihedral angle is that φtrans = 180° which differs from the PYS forcefield, where the 

convention is φtrans = 0°. This change of convention was implemented through a simple geometric 

transformation that does not affect the energy pre-factors for the dihedral potential. All results are 

presented for simulations in an NPT ensemble with pressure P = 1 atm. Pressure and temperature were 

maintained at their set point values using a Nosé-Hoover barostat and thermostat; the damping 

frequencies used were ωP =1/(1000 fs) for the barostat and ωT = 1/(10 fs) for the thermostat. The forces 

were integrated using the rRESPA multiple time step integrator, with the time step for the pairwise 

nonbonded force calculations set to 5 fs and the time step for all other force interactions (bond, angle, 

dihedral) set to 2.5 fs. The integration method allowed the use of a large time step for pairwise interaction 



 11 

calculation while ensuring energy conservation by implementing more frequent intra-molecular 

interaction calculations. For all simulations, an orthorhombic simulation box was used, with all side 

lengths allowed to vary independently and periodic boundary conditions applied. 

The simulations used to characterize the melting point Tm of n-pentacontane (C50H102 or C50) were 

performed on systems containing 288 C50 chains. The chains were initially arranged as fully extended 

chains in a pseudo-hexagonal packing with their chain axes parallel to the y-direction. Approximately 75 

percent of the chains were melted to introduce a crystal-melt interface along the xy plane. Selective 

melting was achieved by manipulating the force field using a technique proposed by Bai et al.43 and 

previously used by Yi and Rutledge.37 The energy pre-factors for the bond stretch, angle bending, 

dihedral, and van der Waals interactions of the designated crystal phase were doubled to elevate the 

melting temperature artificially to Tm’. Amorphization of the unmodified chains was then achieved by 

increasing the temperature above Tm yet below Tm’. Upon formation of a flat crystal-amorphous interface, 

all chains were restored to the original force field parameters for subsequent simulation. Five molecular 

dynamics simulations were run at each of several temperatures between 365 and 375 K. From the increase 

(T > Tm) or decrease (T < Tm) in total crystallinity of the partially amorphized C50 with time, Tm was 

determined. 

The simulated system used to characterize crystal growth and surface nucleation in C50 comprised two 

distinct components. The first component was the n-alkane phase, which consisted of 364 C50 chains, 

arranged identically to the initial system of crystalline C50 chains in our melting point simulations, 14 

chains making up a single layer in the xy plane, and 26 layers in the z-direction. The second component 

was a crystalline polyethylene phase constructed solely of methylene sites and arranged initially in the 

conventional orthorhombic PE unit cell. Bonds between methylene groups along the chain axis in the 

chains of the polyethylene phase were continued across the periodic boundary in the y-direction, to create 

chains of infinite length. The chains were tilted by 9 degrees from the y-direction in the xy plane, so that 

crystal stem segments were not bonded with themselves through the periodic boundary condition. 
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Without this tilt, abnormally rapid diffusion along the chain axis was observed. The thickness of the PE 

phase in the z-direction was 1.6 nm, large enough to screen molecular interactions in the n-alkane phase 

on either side (Lennard-Jones cutoff distance = 1 nm). The initial dimensions of the simulation cell were 

6.72 nm x 6.5 nm x 12.45 nm.  

Amorphization of the C50 component was again achieved using the technique of Bai et al.43 In the first 

step, the energy pre-factors for the bond stretch, angle bending, dihedral, and LJ interactions of the PE 

crystal phase were doubled to elevate artificially the melting temperature of the PE component while 

equilibrating the as-constructed crystal C50 at room temperature (300 K) for ~0.5 ns. Then, the 

temperature was increased to 500 K to induce melting of the C50 component, while maintaining a 

relatively rigid crystal PE phase. The simulation at 500 K was continued for 20 ns, the first 10 ns of 

which was sufficient to erase all memory of the original crystalline structure in C50. Complete transition 

to an amorphous state was confirmed by monitoring the relaxation of Rg from its fully extended 

conformation value to one compatible with a random coil. Additionally, the melt density was 0.76 g/cm3, 

which is comparable to the melt density of similar n-alkanes at these temperatures.44 The last 10 ns of the 

simulation at 500K was used to generate 20 independent configurations to serve as starting points for 

subsequent quenching and crystal growth simulations. Figure 2(a) illustrates a typical system after 

amorphization of the C50 component.  
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Figure 2 (a) Simulation box before the quench step; a crystalline PE phase (blue) alternates with an 

amorphous melt of C50 chains (grey). Snapshots from MD simulation viewed down the y-axis following 

a quench from 500K to 360 K after (b) 0 ns, (c) 30 ns, (d) 60 ns and (e) 90 ns of elapsed time. 

 

Crystallization was induced by instantaneously quenching all 20 configurations to the desired 

crystallization temperature, Tc, and allowing the systems to evolve isothermally. Crystal growth was 

monitored through the use of a local p2 order parameter. The order parameter p2(i) for UA bead i was 

defined as 

 p2 i( ) =
3cos2θij −1

2
j

 (7) 

where θij is the angle between the vector spanning the midpoints of the bonds on either side of the ith UA, 

and that spanning the bonds of the jth  UA. The average is taken over all of the j neighboring UAs that lie 

within a cutoff distance rij < rp2 of the ith UA bead. The value of rp2 was chosen to be 2.5σ, where σ is the 

Lennard-Jones interaction range parameter. This choice is consistent with previous crystallization studies 

of n-alkanes.37,38 The p2(i) was averaged over the entire simulation cell in order to determine the total 

crystallinity in the simulations used to estimate Tm. 

z 

xy t = 0 ns t = 30 ns t = 60 ns t = 90 ns 

(a) (b) (c) (d) (e) 
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Surface clusters were identified within slices of material taken normal (xy plane) to the growth direction 

(z). The thickness of each slice was approximately equal to the thickness of a single layer of chain 

segments in the C50 crystal (0.4 nm). Slices were defined starting at the original PE crystal interface and 

continued into the bulk n-alkane phase along the z-direction. A clustering algorithm was used to identify 

crystalline clusters within a layer. Bead j was assigned to a cluster containing bead i if the following 

criteria were met: p2 (j) > 0.4, rij < 1.3σ and beads i and j belong to the same slice. The first two criteria 

are consistent with those used by Yi et al to aggregate crystal sites into clusters in homogeneous 

nucleation studies.37,38 The third criterion is particular to the analysis for surface nucleation. The number 

of crystalline beads Nc(z) in a given slice was also identified as a function of time from this clustering 

algorithm. The number of crystalline beads scaled by the total number of beads in a given slice NT gives 

the fractional crystallinity of a layer, X(z) = Nc(z)/NT. 

For a given simulation trajectory, the fractional crystallinity X(z) versus the surface normal direction (z) 

was used to identify the location of the crystal-amorphous interface. Adapting the Gibbs dividing surface 

technique employed by Hutter et al,45 the gradual transition in X(z) from crystal to amorphous melt was 

approximated by a step function at z = D. The Gibbs dividing surface was chosen such that the integral of 

the difference between the true crystallinity profile and the step function approximation vanishes when 

the step function is located at z=D:   

 ΔXc,int = X step (z |D) − X (z)⎡⎣ ⎤⎦
−∞

∞

∫ dz = 0
.
 (8) 

Scaling X(z) to vary between X-∞ and X+∞, the values of fractional crystallinity observed far removed 

from the interface on either side, X ' z( ) = X z( )− X−∞( ) X+∞ − X−∞( ) , Eq. (8) can be written:  
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 ΔX 'c,int = H (z − D) − X ' z( )⎡⎣ ⎤⎦
−∞

∞

∫ dz = 0  (9) 

where H(x) is the Heaviside step function. Using the position of the PE surface as reference (z=0), the 

value of D was used to measure the displacement of the interface within a given trajectory. Twenty 

replicate simulations having two interfaces per simulation cell provided a total of 40 measurements of the 

growth rate G=|dD/dt| at each temperature. 

For each simulation, nucleation and spreading was tracked in the first 9 layers adjacent to each interface. 

Even when the crystal growth front reached the ninth layer, the remaining amorphous region at the center 

of the simulation was still at least 4 nm wide. Based on a radius of gyration of < 2 nm for C50, this width 

should be sufficient to ensure that the two growth fronts in each simulation were independent of each 

other for the layers analyzed. Measurement of the average local p2 order parameter near the midpoint 

between the two interfaces at the end of the simulation further confirmed that an amorphous region of 

width Δz = 2 nm remained, indicated by p2(z) ~ 0. 

 

5. Results 

From the C50 simulations used to find Tm, the total crystallinity as measured by P2, the global average of 

the local order parameter p2(i), was plotted as a function of time for each temperature of study. An 

increase in P2 with time signifies that the temperature of the simulation was lower than the melting 

temperature predicted by the force field, while a decrease in P2 with time indicates the opposite. Figure 3 

shows that at 365 K, the order parameter increased, whereas at 375 K it decreased.  At 370 and 372 K, the 

order parameter hardly changed in 20 ns of simulation. Thus we determined the melting temperature Tm 

for n-pentacontane using the PYS forcefield to be 370 ± 5 K.  This compares favorably with the 

experimentally reported temperature, Tm = 367 K.46 
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Figure 3. Global order parameter, P2, as a function of time at four different temperatures for a system of 

288 C50 chains. The equilibrium melting point is Tm = 370 ± 5 K. 

 

Having determined the melting temperature for C50, temperatures ranging from 300 to 370 K were 

chosen for quenching and subsequent examination of crystal growth in the 2-component (PE/C50) 

system. Figure 4 summarizes the results for growth front propagation at 300, 320, 340, 360 and 370 K. 

Within each simulation trajectory, growth occurs at two interfaces, due to the periodicity of the system. 

Figure 4(a) is a representative example of the X(z) profiles obtained for one trajectory at 360 K at 

different simulation times, showing propagation from a single interface. Growth front propagation at 340 

K and above was relatively rapid. The growth front proceeded inward smoothly from each interface over 

the course of a simulation, producing high order (X(z) > 0.9) on the crystal side. The X(z) profiles at the 

lower temperatures of 320 and 300 K were noticeably rougher, and growth rates much slower. 

Observations of the system at long times revealed that crystallites contained chains in a fully extended 

state. 
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Figure 4. (a) X(z) profile in simulation box at 0, 25, 50, 75 and 100 ns following quench to 360 K. Dashed 

lines show the profile using a step approximation, with the Gibbs dividing surface located at z = D. (b) 

Growth front propagation rate, G, as a function of temperature (filled symbols), obtained from the 

location of the Gibbs dividing surface at D (inset). Also shown are the growth rates obtained from waiting 

times (open symbols). The growth rates reported for C50 by of Waheed et al33 are included as the dashed 

curve. Results were averaged over all trajectories for temperatures ranging from 300-370 K. 

 

The temperature dependence of the growth rate is shown in Figure 4(b), and the average displacement D 

versus time at each temperature is shown in the inset. The growth rate was obtained from the slope of D 

versus time in the region of linear growth (1 < D(t) < 2 nm). A maximum in growth rate with temperature 

was observed, which is consistent with empirical observations.1 Such a maximum in the growth rate is 

expected between the glass transition temperature Tg and the melting temperature Tm. As Tc approaches Tg 

from above, molecular mobility is impeded, slowing diffusive transport to the growing crystal front. 

Conversely, as Tc approaches Tm from below, the thermodynamic driving force for nucleation decreases. 

The competing processes result in a temperature at which the crystal growth rate is maximal. In our study, 

this temperature was around 360K.  

In their earlier studies, Waheed et al. presented a model for the crystal growth rate.33 The model was 

parameterized using simulation data for the crystallization of C20, C50, and C100 chains. While the 
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general temperature dependence and the temperature at which the maximum crystallization rate occurs 

are qualitatively similar to our results, the simulations of Waheed underestimated the crystallization rate 

observed here by at least a factor of two for all temperatures studied. The discrepancy likely arises from 

differences in the size of the simulation cell used in the two works. In the simulations of Waheed et al, the 

simulation box was large enough to accommodate a fully extended C50 chain and to observe crystal 

growth over several layers, but the third dimension in which spreading occurs was less than half that used 

in this study (2.59 nm vs 6.72 nm). We speculate that finite size effects arising from impingement of the 

spreading nucleus with itself in this third dimension was responsible for the reduction in growth rate 

observed, as the chains must disengage within a narrow zone to complete crystallization within a layer. 

Although the x-dimension in this work was larger, it too was finite; thus the predicted growth rates in this 

work should be viewed as lower bounds on the true crystal growth rates in C50. Modest finite size effects 

were confirmed by running simulations using both larger and smaller boxes. Growth rates increased by 

~10% upon doubling the x-dimension, and decreased by a similar amount upon halving the x-dimension; 

these shifts are consistent with the explanation given here.  

Figure 5(a) shows the temporal evolution of the number of crystalline beads Nc within each of the first 4 

layers adjacent to the PE surface in a typical trajectory at 360 K. The number of crystalline beads is 

further divided into the individual contributions of the 5 largest clusters in each layer. It is readily 

apparent that crystallization within a layer was dominated by the largest cluster at this temperature. For all 

simulation trajectories, the first layer showed a nearly spontaneous increase in cluster size, and the cluster 

in this layer continued to spread until it reached the size of a fully crystallized layer (NT
 =700 UA beads). 

Crystallization in subsequent layers (e.g. layers 3 and 4) was shifted towards later times, due to the time 

required for propagation of the growth front from the PE surface (at time zero) to these more distant 

layers. Figure 5(b) shows the evolution of Nc in a typical trajectory at 320 K. At this lower temperature, 

the second largest cluster was more prominent, indicative of multiple surface nucleation events within a 
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layer. In some cases, it appears as though two independent nucleation events occurred, resulting in surface 

nuclei that grew, and eventually merged, into a single nucleus.  

 

Figure 5. Size distribution of surface clusters in layers 1-4 of a sample trajectory at 360K (a) and 320K 

(b). The stacked height of each bar is the total number of crystalline beads, Nc. Subdivisions in the bar 

represent the size of the 1st (grey), 2nd (red), 3rd (orange), 4th (yellow), and 5th (green) largest clusters in a 

layer, in descending order. The histogram of grey bars is equivalent to a plot of nmax vs time for each 

layer; the colored bars convey the relative importance of multiple nucleation events; except perhaps for 

the lowest temperature, multiple nucleation appears to have been relatively unimportant in this work. The 

arrow in Figure 5(b) highlights a merging event in layer 3 at 45 ns. 

 

The value of α for the spreading term, τs(nmax), Eq. (5), was determined from the shape evolution of the 

largest cluster nmax in a layer.  For this purpose, the number of crystalline stems nstems within the largest 

cluster in any given layer was recorded over the course of each simulation and plotted versus the total size 

of the cluster, nmax; Figure 6 shows one case for Tc = 360 K. A relationship of the following form is 

expected, 
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 nstems =C nmax( )
α

 (10) 

where C is a pre-factor for the power-law relationship and α is the scaling exponent. Up to about nmax = 

300, the number of crystalline stems within the cluster increased with the size of the cluster, as expected. 

Beyond nmax = 300, nstems leveled off, due to impingement of the nucleus with its periodic image. From the 

log-log plot of nstems versus nmax up to nmax = 300, we determined the value α = 0.6 at 360 K, indicative of 

nearly isotropic spreading.  Similar values of α were obtained at all other temperatures as well.  

Examination of Figure 6 shows that α  = 1 (linear spreading by addition of full stems) can be excluded.  

For purposes of MFPT analysis, α = 1/2 (isotropic spreading) was assumed.  

 

Figure 6. Log-log plot of the number of crystal stems nstems within the largest cluster versus the size of the 

largest cluster nmax, for a typical trajectory at 360 K. Data points are shown for the largest clusters within 

each layer at numerous time points. A best-fit linear relationship for nuclei below 300 UA beads in size is 

included. For comparison, lines of slope 1 and ½ are also shown. 

 

Figure 7 shows the MFPT results for the largest cluster nmax, up to nmax = 300, in each of the first 9 layers 

near a PE surface at 360 K. As evidenced by their short MFPT, small clusters up to nmax = 15 were rapidly 

sampled for all layers k, indicative of the thermal population of small clusters in the melt.  A waiting 
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period was observed before the appearance of clusters of nmax > 30, indicated by a sharp increase in MFPT 

for 15 < nmax < 30. The magnitude of the waiting period was proportional to the layer number k. Each 

layer exhibited continued increase in MFPT for nmax > 30, indicative of finite, lateral spreading within a 

layer. The MFPT model with isotropic spreading was fit to the raw MFPT curves, as shown in Figure 7. 

In the first layer, clusters of large nmax were reached too quickly to be resolved by the sampling frequency 

employed (0.2 ns), but in any case were not important for characterizing crystal growth in C50. For the 

other layers, the model describes the data reasonably well.   

 

Figure 7. MFPT of the largest cluster for each of the first 9 layers from the PE crystal surface, after 

quenching to 360 K.  Data (solid lines) were fit to a MFPT model (dashed lines) for nmax up to 300 UA; 

larger values of nmax exhibited evidence of finite size effects, since the layer was more than 40% 

crystallized at that point. Layers nucleate and spread sequentially in time; thus the lowest curve represents 

layer 1 (closest to the PE surface) and the highest curve represents layer 9. 

 

From the MFPT curves for layers 2-9 at each temperature, values for the waiting time τ*, the size of the 

critical surface nucleus n*, the Zeldovich factor Z, and the spreading rate s, were obtained. The values for 

n* = 20 ± 5 and Z = 0.06 ± 0.02 were found to be relatively insensitive to temperature or layer number 

(beyond layer 2).  The results for s and τ* are plotted as functions of layer number for each temperature in 

Figure 8. The surface spreading rate decreased considerably with increasing layer number k, and leveled 
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off beyond layer 3, approximately. The faster spreading rates observed for low layer numbers are 

indicative of the influence of the PE crystal, while the values observed for high layer numbers should be 

representative of crystal growth in C50. We therefore distinguish between “near surface” behavior during 

crystallization, which includes the first nanometer (approximately 3 layers) near the PE/C50 surface 

where the foreign influence of the PE surface is significant, and “far from surface” behavior, which 

should be representative of crystal growth in neat C50. “Far from surface” behavior persists for several 

layers in the bulk C50 phase during growth front propagation. In each of these layers, a surface of 

crystallized C50 chains was created dynamically, which then served as the surface upon which the next 

layer nucleated and spread. Depending on the mechanism of growth, a more-or-less steady process of 

surface nucleation and spreading continued from layer to layer, resulting in progression of the growth 

front. The spreading rate s decreased with temperature for Tc < 360 K.  

  

Figure 8. (a) Lateral spreading rate s versus layer number k for each crystallization temperature. (b) 

Waiting time τ* versus layer number, for each temperature. The plotted values are the parameters of the 

MFPT model that best fit the raw data, according to least sum of squared deviations. The average 

spreading rate in the “far from surface” region at each temperature is highlighted by the dashed lines in 

(a), and a linear fit for the “far from surface” region is shown by the dashed lines in (b). 
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As expected, the waiting time τ* increased with layer number k. Δτ* between layers was multiplied by the 

layer thickness (0.4 nm) to obtain a second estimate of the growth rate G. This alternative estimate of G is 

shown in Figure 4(b); its temperature dependence mimics that of the growth rate estimated from the 

displacement of the Gibbs dividing surface, including the maximum near 360 K. However, the magnitude 

of the growth rate based on waiting times is systematically higher than that based on the order parameter, 

by as much as 20%. We have traced this difference in the predicted growth rate G back to finite size 

effects that impact the two methods of growth rate determination differently. In general, finite x- and y- 

dimensions inhibited spreading in the xy plane, which translated to an overall reduced crystal growth rate 

from what would be observed in an unhindered system. The reduction in the spreading rate due to 

impingement was more pronounced at higher crystallinities in a given layer; a considerably longer 

reorganization time was required to achieve 75% - 100% crystallinity within a layer as the disengagement 

zone for chains continued to narrow. The growth rate measured by the tracking the location of the Gibbs 

dividing surface is essentially a metric for the time to reach 50% crystallinity within a layer, whereas the 

estimation of growth rate from waiting times refers to the time to reach ~3% crystallinity. The 

discrepancy in growth rates therefore indicates that the passage time from 3% to 50% crystallinity is also 

increased by impingement in the lateral direction. Rigorously, this dependence of growth rate on 

percentage of crystallinity within a layer suggests our systems still had not quite reached steady-state, 

where one should obtain the same growth rate, regardless of percentage of crystallinity used to measure it. 

Thus we believe the growth rates determined from waiting times are even better lower bound estimates of 

the crystal growth rate in C50 than those determined from the propagation of the p2 order parameter 

profile, as they should be less impacted by finite size effects. 

Figure 9 shows the surface nucleation rate i as a function of the isothermal crystallization temperature Tc. 

For each simulation trajectory, the waiting times used as the bounds of integration in Eq. (6) were 

obtained from the MFPT analysis. The crystalline area recorded for all layers Ak(t) was subsequently 

passed to Eq. (6) to estimate the corresponding surface nucleation rate upon each layer of crystallized 



 24 

C50. The surface nucleation rate as a function of layer number k, averaged over all replicate trajectories, 

is shown in the inset of Figure 9. The nucleation rate was observed to be independent of layer number in 

the “far from surface” region, k ≥ 4. This average surface nucleation rate in the “far from surface” region 

is plotted in Figure 9. Surface nucleation rates were found to be about 0.05 nm-2ns-1, and to vary little with 

temperature.  This lack of a strong temperature dependence suggests that the activation barrier for surface 

nucleation is comparable to or smaller than the thermal energy, kT, if it exists at all.  

 

Figure 9. Surface nucleation rate i at the crystallization growth front in C50 as a function of isothermal 

crystallization temperature Tc. The reported rates are an average of the surface nucleation rates in the “far 

from surface” regime (inset). 

 

6. Discussion 

By means of the foregoing analysis of molecular dynamics simulations, we have determined the crystal 

growth rate for C50 to be about two times higher than previously estimated, but qualitatively similar in its 

temperature dependence. Using a MFPT analysis, we have also estimated surface nucleation rates, critical 

surface nucleus sizes and surface spreading rates of each of the first nine molecular layers near a pre-

existing PE crystal surface, for the first time. In so doing, we can distinguish between these properties for 

layers that are within 1.0-1.2 nm of the PE surface (layers 1-3) and those that are farther away (layers 4-
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9). The first several layers exhibit behavior that would be typical of heterogeneous crystallization on a 

foreign surface, whereas the latter layers are self-similar and representative of crystal growth in the C50 

melt. We have additionally determined the temperature dependences of these properties for crystal growth 

in the C50 melt.  

The critical surface nucleus was found to be about 20 UA beads, smaller than a single chain of C50, and 

involved more than one chain. By analyzing trans torsional states in the polymer chains at the crystal 

growth front, Waheed observed a jump from 10 or fewer UA beads to 20 beads, indicating a nucleation 

transition. In this study, after attaining a cluster size of 20 UA beads, the nucleus quickly evolved to 

larger sizes and spread nearly isotropically across the surface. These two observations contradict the usual 

interpretation of LH theory, which stipulates that the critical nucleus is a fully-extended crystal stem, and 

that spreading occurs laterally from this stem. The geometry of the critical surface nucleus compares 

favorably with observations by inspection of surface ordering carried out by Waheed et al.33 and with 

predictions by Wagner and Phillips,47 where it was estimated that such nuclei consist of 3-5 stems. 

Waheed estimated these stems to be approximately 20 UA beads long; however, the more quantitative 

analysis employed here indicates the stems in the critical surface nucleus to be around 5 UA on average. 

Growth of the cluster within a layer occurs via stem lengthening as well as by addition of new stems or 

monomers to the lateral edges of the cluster. The small size of the critical surface nucleus suggests a small 

free energy barrier to surface nucleation. In homogeneous nucleation, the critical nucleus size was found 

to be on the order of 150 UA beads, albeit at a relatively deep (30%) supercooling.32 Supercooling was 

much shallower in this study, between 2-20%, and the critical nucleus size was around 20 UA beads for 

all cases. The difference in critical nucleus sizes is consistent with a much lower activation energy for 

surface nucleation than for primary (homogenous) nucleation.  

The surface roughness at the growth front is known to vary with supercooling ΔT for crystallizing 

polymers.20 As the depth of supercooling increases, the growth front is believed to become more and 

more “rough”, attributed to the increasingly prolific formation of smaller and smaller surface nuclei, 



 26 

while remaining macroscopically faceted.20,48 This phenomenon has been called “kinetic roughening”.  

On the other hand, at higher temperatures (shallow undercooling), it has also been argued that the growth 

surface can become rougher due to enhanced fluctuations of entropic origin, a “thermodynamic 

roughening”, and that such fluctuations indicate the disappearance of the barrier to surface nucleation and 

give rise to macroscopically curved growth fronts.20,48 Thus, the roughness R of the interface between the 

crystal and melt and its dependence on temperature could provide useful insights into the mechanism of 

growth and the relative rates of surface nucleation and spreading. The squared roughness R2 was 

evaluated at any instant in time using the analogue of Eq. (9) that computes the distance-weighted 

deviation of the growth front from its mean position, as follows:  

 R2 = H (z −D)− X ' z( )"# $%(z −D)
−∞

∞

∫ dz
.
 (11) 

The instantaneous surface roughness determined by Eq. (11) at 300, 320, 340, 360 and 370 K for 

crystallizing n-pentacontane is given in Figure 10. The surface roughness increases with distance from the 

crystalline PE substrate at all crystallization temperatures Tc. It appears that the roughness approaches an 

asymptotic, equilibrium value within about 60 ns at 300 K, but such asymptotic values are not reached 

within the 100 ns of simulation time at the higher temperatures. For all temperatures, R/h > 1 at long 

times, which indicates that more than a single layer is actively crystallizing at the growth front over the 

entire range of temperatures. Nevertheless, it would appear that roughness is not simply a monotonically 

increasing function of supercooling, and that there may even be a maximum roughness at some 

intermediate temperature (e.g. 320-340 K). The current results are only preliminary, but they do suggest 

that the description given above is incomplete, and that a careful and more quantitative interpretation of 

roughness in terms of the temperature dependence of surface nucleation and spreading rates is warranted. 
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Figure 10. Surface roughness at the crystal growth front for C50 scaled by the thickness of a layer h = 0.4 

nm, as a function of isothermal crystallization temperature Tc. 

7. Conclusions 

We have reported a method to quantify surface nucleation events and subsequent spreading at the crystal 

growth front from molecular dynamics simulations. A mean first passage time analysis was applied to the 

evolution of the largest 2-dimensional cluster within layers in the vicinity of the crystal growth front for a 

supercooled C50 melt. From this, we determined critical surface nucleus sizes, waiting times, and 

ultimately surface nucleation rates. Lateral spreading rates were found to be temperature-dependent, with 

a maximum near 360 K for C50, while surface nucleation rates were found to be temperature-

independent, contrary to expectation. 

Following nucleation, surface nuclei were observed to spread isotropically, based upon the ratio of 

number of stems to the number of beads within a crystal nucleus. The spreading rates for post-critical 

nuclei were estimated using an isotropic spreading model and were found to increase with temperature, as 

expected. Estimates of the surface nucleation rates were obtained by two methods, using waiting times for 

the nucleation of each layer and also the layer crystallinity as a function of time, and were found to be in 

reasonable agreement. Finite size effects during simulation were mitigated, but not completely eliminated. 

In contrast to the usual interpretation of LH theory, we found a roughly circular nucleus with 
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approximately 20 UA beads formed, which then spread isotropically across the surface. The roughness of 

the interface at the growth front is found to be temperature-dependent, but apparently not in a manner 

consistent with conventional wisdom. 

The growth rates, surface spreading rates and surface nucleation rates obtained in this work provide a 

foundation for further study of surface nucleation in polymer systems by molecular simulation. The 

techniques developed here can be applied beyond surface nucleation during growth of n-alkanes to 

nucleation induced by heterogeneous surfaces of additives in polymer melts. In a companion paper49, the 

results are used directly to parameterize a crystal growth kinetic model that can be applied to arbitrarily 

large systems and long times. 
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