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Density functional theory for large molecular adsorbate-surface 

interactions: a mini-review and worked example 
First-principles simulation has played an ever-increasing role in the discovery 

and interpretation of the chemical properties of surface-adsorbate interactions. 

Nevertheless, key challenges remain for the computational chemist wishing to 

study surface chemistry: modelling the full extent of experimental conditions, 

managing computational cost, minimizing human effort in simulation setup, and 

maximizing accuracy. This article introduces new tools for streamlining surface 

chemistry simulation setup and reviews some of the challenges in first-principles, 

density functional theory (DFT) simulation of surface phenomena. Furthermore, 

we provide a worked example of Co tetraphenylporphyrin (CoTPP) on Au(111) 

in which we both analyze electronic and energetic properties with both semi-local 

DFT and compare to predictions made from hybrid functional and the so-called 

DFT+U correction. Through both review and the worked example, we aim to 

provide a pedagogical introduction to both the challenges and the insight that 

first-principles simulation can provide in surface chemistry. 

Keywords: density functional theory, Hubbard U, surface science, super cell 

generation, transition metals, porphyrins 

1. Introduction 

Simulation has become increasingly central in studies ranging from catalysis[1] to 

materials science.[2] In surface science in particular, such work can provide critical 

insight into short-lived intermediates and reactive species as well as the relationship 

between electronic and energetic properties. Nevertheless, numerous challenges remain 

for computational chemists studying surface chemistry, including but not limited to: 

1. Knowing and taking into account full experimental conditions.  Although 

useful experiments are carried out under ultra-high vacuum on pristine surfaces to 

obtain precise measurements of surface-adsorbate interactions[3], most practical 

systems relevant to surface chemistry are much more complex. Under reaction 

conditions, transient disorder and dynamics likely predominates at a solid-liquid 

interface, and defects and reconstructions may form[4] at the surface even under gas-

phase conditions. Without knowing the precise species present in an experiment, the 



computational chemist must guess at which reactive species to model.  

2. Managing computational cost. Even when all species are known from 

experiment, higher levels of disorder mandate larger unit cells that may be outside of 

the scope of accessible simulations, which is currently a few hundred atoms or 

thousands of valence electrons for traditional codes. Furthermore, dynamic sampling by 

first-principles simulation is limited to a few ps for large systems, meaning that most 

modern calculations must still focus on inferring properties from static slab calculations 

in vacuum.  Recent advances that help to enlarge the scope of systems that can be 

studied with first-principles include density-oriented methods[5], reduced, linear-scaling 

methods[6, 7, 8, 9, 10, 11, 12, 13], advances in stream-processing hardware coupled to 

algorithmic developments[14, 15, 16], and multi-level approaches.[17, 18, 19, 20] 

Nevertheless, the computational chemist must evaluate some trade-offs to balance 

computational accuracy and efficiency. 

3. Streamlining simulation efforts. In order to study surface chemistry 

phenomena, the computational chemist must be able to straightforwardly generate 

complex unit cells and coordinates for the systems of interest. Although often these 

procedures are carried out by hand using tools such as Vesta[21], the supercell builder 

function in the Avogadro[22] molecular visualizer, or providing information about 

crystal symmetry within a simulation code such as CRYSTAL[23], high-throughput 

screening has motivated the development of streamlined repositories, especially for bulk 

materials.[24, 25, 26] Commandline slab generation may be carried out within the 

atomic simulation environment (ASE) python code[27], but complex and precise 

adsorbate alignment on surfaces has still typically required hand building or custom 

single-use scripts. In Sec. 3, we will discuss a recent extension of the molSimplify 

code[28] intended to streamline this process further. 



4. Maximizing and evaluating model accuracy. Simulation of any system 

beyond a handful of atoms requires some approximation to the full quantum-mechanical 

problem. The large, extended systems relevant to surface chemistry further limit the 

scope of accessible methods and corresponding approximations. At the same time, the 

desire to model precise bond rearrangement events and electronic properties mandates 

that we maximize accuracy wherever possible. Despite well-known shortcomings[29, 

30], semi-local Kohn-Sham density functional theory (DFT) [31, 32, 33, 34] has 

remained the method of choice for studying the large systems relevant to surface 

chemistry. A growing area of interest is to apply statistical efforts that enable 

quantification of prediction uncertainty to energetic predictions in catalytic cycles 

through analysis of functional sensitivity[35, 36, 37, 38, 39, 40] or intrinsic Bayesian 

statistics in new semi-local functional development.[41] We will now consider in detail 

both the limitations of practical DFT for surface chemistry as well as some remedies. 

1.1. Errors in Practical DFT 

Although DFT is in principle exact, several key approximations made in 

practical DFT are known to limit accuracy (the reader is encouraged to review the 

details of DFT theory and practice outlined in Refs. [34] and [42]).  Namely, in Kohn-

Sham DFT, Coulomb repulsion of each electron is computed with the total density, 

giving rise to self-interaction error (SIE). The exchange-correlation (xc) functional in 

DFT must then correct SIE, take into account quantum-mechanical exchange, and 

model correlation, i.e., that the probability distribution of one electron is affected by the 

probability distribution of another electron. In practice, well-known xc approximations 

such as the local density approximation (LDA) and the generalized-gradient 

approximation (GGA) contain terms that depend locally on the density and its gradient, 

only reproducing short-range exchange and correlation. Furthermore, these xc 

approximations do not reproduce exact exchange or eliminate SIE.  



Unlike DFT, the Hartree-Fock (HF) theory explicitly accounts for exact 

quantum-mechanical exchange and Coulomb repulsion but in the context of a single 

Slater determinant wavefunction that excludes any treatment of correlation. This 

behavior of HF theory has motivated the development and application of both global 

and range-separated hybrid functionals that incorporate an admixture of HF exchange 

with improved accuracy over pure LDAs or GGAs (for a thorough review of hybrid 

functionals, see Ref. [43]). However, application of hybrid functionals to periodic 

systems in surface chemistry applications is computationally costly due to the high 

expense of computing non-local exchange. Furthermore, metallic behavior cannot be 

preserved with HF theory, and therefore some properties of metallic solids are better 

described by the simplest LDA approximation.  

Despite their ability to describe metallic behavior, the LDA and GGA xc 

approximations are plagued by both one- and many-electron SIE[29, 30, 44, 45, 46], 

where the latter corresponds to SIE still present in many one-electron SIE-free 

functionals.[29] These self-interaction errors give rise to well-known problems in 

dissociation energies[44, 47, 48, 49, 50], barrier heights[51], band gaps[52, 53], electron 

affinities[54, 55, 56], and other manifestations of delocalization error.[57, 58, 59] 

Many-electron SIE and delocalization error are typically illustrated by relating 

approximate xc behavior to the exact energy functional, which should be piecewise 

linear[60, 61] with respect to fractional addition or removal of charge (q): 

 E(q)= (1−q)E(N )+qE(N +1)   (1) 

as evaluated between the N- and N+1-electron systems. This behavior can only be 

reproduced by a derivative discontinuity[62, 63, 64, 65] in the xc functional, but the 

forms of common (e.g., LDA or GGA) xc approximations lack this discontinuity.   

Instead, semi-local DFT functionals produce a deviation from linearity in E(q) 



with convex behavior[29, 66] (Figure 1) [Figure 1 near here]. For molecular systems, 

tuning strategies[67, 68, 69, 70, 71, 72, 73, 74, 75, 76] have been developed within 

range-separated hybrid functionals to reproduce piecewise linearity and improve 

predictions.[71, 77] However, the observed curvature shows marked size-

dependence[78, 79, 80, 81], apparently vanishing for large systems. The reason absolute 

curvatures diminish may be interpreted as follows: the error in each integer endpoint is 

already substantial for a large system, with the N or N+1 electrons in the system heavily 

delocalized, and addition of a fractional electron does not alter this behavior 

substantially. Thus, while curvature corrections work well for molecules, they are less 

widely applied for solids, where the computational cost of HF exchange also makes this 

approach challenging.  Alternatively, orbital-dependent self-interaction corrections have 

also been pursued for some time[82, 83, 84, 85, 86, 87], but they often lack rotational 

invariance, introduce other complications that prevent easy application to either 

molecules or solids such as complex wavefunctions, and are generally designed to 

eliminate one-electron SIE but may not suitably address many-electron SIE.[88] 

Within surface chemistry, delocalization error and SIE may be interpreted as 

follows: energetics of adsorbates and surfaces will be sensitive to the relative degree of 

delocalization permitted in a coordination geometry. For instance, the electrons of an 

isolated atom or molecule brought into contact with a surface will have increased 

opportunity for delocalization, whereas the large N-electron surface will be relatively 

unchanged (Figure 2) [Figure 2 near here]. Thus, more strongly coordinating geometries 

will be stabilized over weakly interacting ones, and binding energies will be 

overestimated. Only in the unlikely case that coordination and delocalization are 

roughly equivalent across an entire reaction coordinate will SIE not impact relative 

energetics. This delocalization error has also masked the absence of treatment of non-



local correlation in semi-local DFT by causing binding in cases where only van der 

Waals’ interactions are present (e.g., the LDA binds the dispersion-bound Ar2 

dimer[89]). Instead, it is now recommended that non-local correlation functionals[90, 

91], semi-empirical van der Waals’ treatments[92], or perturbation theory 

approaches[93] be employed to account for this other shortcoming of semi-local DFT. 

Although van der Waals’ interactions are critical in describing surface phenomena, 

particularly for physisorbed adsorbates, we focus here on the typically larger SIE and 

delocalization errors and refer readers to the detailed reviews of dispersion interactions 

in Refs. [94] and [95].  

Exemplary of the challenges associated with applying practical DFT to surface 

chemistry is the so-called “CO on Pt(111) puzzle” first identified over 15 years ago.[96] 

Researchers noted that although at low coverage of CO on the Pt(111) surface, the 

experimental site preference was clearly one in which CO was bound to a single Pt atom 

(i.e., the atop position), well-converged DFT calculations instead preferred a site 

involving three-fold coordination with Pt (i.e., the hollow position)[96] (Figure 3) 

[Figure 3 near here]. This problem may be cast in terms of a SIE-driven phenomenon 

where higher-coordination sites are preferred to lower-coordination sites through 

enhanced delocalization afforded by the former (see Figure 3). Although indirect SIE-

correction through hybrid functionals improves but does not completely correct site 

preference[97, 98, 99, 100], successful SIE-correction schemes have included applying 

a DFT+U-like correction directly onto the LUMO of CO to correct its placement[101] 

or, alternatively, applying a correction based on the singlet-triplet gap (a proxy for 

molecular orbital energies in isolated CO) or bond-order of the CO molecule on the two 

surface sites (i.e., increased delocalization in the hollow site is associated with bond 

order reduction).[102, 103] It was also noted[104] that surface energies and adsorption 



energies in the semi-local functionals are correlated in a manner that prevents 

simultaneously correcting both errors needed for accurate prediction of surface 

phenomena. This observation has motivated the successful application of more 

advanced perturbation theory to reproduce site preference.[105] Alternatively, some 

carefully parameterized meta-GGA functionals[106], which incorporate the laplacian of 

the density, are able to produce correct site-ordering, although less empirical meta-

GGAs are not.[107]     

Although this incorrect qualitative assignment represented a disappointing 

failure for semi-local DFT in qualitative predictions of surface chemistry, it likely 

corresponds to a relatively small quantitative error ca. 0.2 eV[96] for relative energetics 

that is typical of errors for common exchange-correlation approximations. Nevertheless, 

this puzzle reflects well some of the challenges that face computational chemists who 

wish to study surface chemistry.  Small imbalances in the opportunity for delocalization 

in different binding sites can give qualitatively different results, and although many-

body perturbation theory may provide a viable improvement, computational cost 

prevents application of such methods routinely, especially for large adsorbate 

molecules.   

1.2. The Hubbard U correction 

Within extended systems for surface chemistry, one of the most widely 

employed methods to correct for SIE in approximate xc functionals is the so-called 

DFT+U approach.[108, 109, 110] Here, a Hubbard model[111] functional is added to 

the functional to assist in correcting electron overdelocalization for an nl subshell  (e.g., 

3d electrons) on atom I: 

 EDFT+U = EDFT +
1
2

Unl
I [Tr[n

nl

Iσ (1−
nl
∑ n

nl

Iσ )]
I ,σ
∑ ]   (2) 



where nnl
Iσ  is an occupation matrix and σ is a spin index. The expression in eq. 2 results 

after making the simplifying assumption[112] that Ueff=U-J, i.e. differences in same 

spin and opposite spin electrons are neglected. Recent work[113] has identified that this 

approximation is quite suitable, especially when applying DFT+U on top of spin-

polarized calculations. The occupations are calculated by projecting the molecular 

states, ψk ,ν , onto a localized set of atomic states, φm
I , obtained during generation of 

the atom’s pseudopotential: 

 nmm '
Iσ = ψk ,ν φm '

I φm
I ψk ,ν

k ,ν
∑   (3) 

where m is the ml quantum number of each orbital in the nl subshell and k,ν represent 

the k-point and band or orbital index of each molecular orbital.  

The potential associated with this energy correction may be expressed simply in 

the case of a diagonal occupation matrix as: 

 VU =
Unl

I

2
(1−2nm

Iσ ) φm
I

I ,m
∑ φm

I  . (4) 

Two factors thus come into play in how this potential alters the electron density of the 

molecule from the description obtained with the standard semi-local functional: i) if the 

molecular orbital does not project onto a Hubbard atom atomic orbital, then the 

potential will be zero and ii) the atomic component of the potential is a maximally 

positive ½ eV / eV of U for an empty orbital with strong atomic orbital character or -1/2 

eV/eV of U for a totally filled orbital.  

This effect thus both changes the hybridization of Hubbard atom levels with 

surrounding molecular states and creates or enlarges band gaps in cases where the 

highest-occupied and lowest-unoccupied molecular orbitals (HOMO and LUMO) have 

strong atomic character of the Hubbard atom. In the context of chemistry, bonding 



molecular orbitals will generally have ½ or less pure atomic character as electrons are 

delocalized through hybridization to neighboring atoms. Relatively speaking, the pure 

DFT functional will overstabilize these orbitals, where a DFT+U correction will shift 

such orbitals up higher in energy (Figure 4) [Figure 4 near here]. Conversely, 

antibonding or nonbonding states will have stronger atomic character corresponding to 

nearly full atomic orbitals. The result is that occupied antibonding orbitals get 

stabilized, whereas unoccupied nonbonding or antibonding states will still have an nm
Iσ  

close to zero and will thus be shifted up higher in energy (Figure 4).   

In terms of the total energy shift of the DFT+U correction, low-spin, mid-row 

transition metal complexes generally have partially-occupied bonding states for both 

spin up and spin down electrons, where a high-spin configuration will have a filled spin 

up electron configuration that fills both bonding and antibonding states and only 

partially occupied spin down orbitals (Figure 5) [Figure 5 near here]. Analysis of 

occupation matrices for low- and high-spin cases does in fact reveal that more partially 

occupied atomic orbitals will cause a low-spin state to be shifted higher in energy (see 

eq. 2) with respect to a high-spin state (see color gradient in Figure 5), and thus DFT+U 

is useful for combatting well-known biases[114, 115, 116, 117] of semi-local 

functionals for low-spin electron configurations.  

The extent of the DFT+U correction is modulated by the Hubbard U parameter, 

which may be calculated[118, 119] self-consistently[120] directly on the system of 

interest, although it is frequently used as a fitting parameter to reproduce desired 

chemical or physical properties. Physically, U represents the curvature of the energy or 

equivalently the first derivative of the eigenvalues with respect to variation in 

occupations of the subshell of interest at constant charge: 



 U ≡
∂2E
∂(nnl

I )2
=
∂εnl ,ml

I

∂nnl
I   (5) 

It has recently been emphasized[121] that this U curvature at constant electron count 

should not be confused with the convex curvature of the energy in semi-local 

functionals[29, 66] with electron removal or addition. DFT+U can in practice 

approximately recover correct piecewise linearity with electron removal or addition by 

correcting HOMO and LUMO energetics, though not necessarily at the U value 

represented by eq. 5. Instead, U should be adjusted until the average global curvature 

expression introduced by Kronik and coworkers[122] is zero: 

 ∂2E
∂q2

= εN+1
HOMO −εN

LUMO  , (6) 

where εN+1
HOMO  is the N+1-electron HOMO eigenvalue and  εN

LUMO  is the N-electron 

LUMO eigenvalue.   

 There are several approaches to computing U, including a linear response 

approach[118, 119], direct extraction of the second derivative of the energy with respect 

to varied occupations, or through cluster Hartree-Fock calculations.[123, 124] Here, we 

review how to carry out linear-response calculations[118, 119] of U where a potential 

shift, αnl
I  , is applied to the subshell of interest: 

 V lin = αnl
I

m
∑ φnl ,m

I

I ,nl
∑ φnl ,m

I  , (7) 

which corresponds to a simple additional energy functional:  

  

 E lin = αnl
I Tr(nnl

I ,σ )
nl
∑

I ,σ
∑  . (8) 

The resulting reorganization in occupations is measured at different values of α, fit to a 



straight line, and the slope is inverted to obtain U: 

  

 Unl
I =

dαnl
I

d(nnl
I )0

−
dαnl

I

dnnl
I   (9) 

where the 0 subscript indicates we remove any bare reorganization in the calculation 

that occurs due to shifted levels from the self-consistent reorganization. An example of 

this calculation carried out on Pt(111) surface reveals the sensitivity of computed U 

values to the surrounding chemistry (Figure 6) [Figure 6 near here]. Values of U are 

enhanced for the Pt atoms directly coordinating a bound CO, but the electronic structure 

is affected through alternately lower or higher values of U in surrounding atoms as well. 

The coordination effect on U is very short-range, however, as subsurface Pt atoms have 

the same value of U as is calculated on bulk Pt. A variable surface-site-specific U is 

likely useful[125] for careful balance of different types of surface interactions and may 

be best incorporated with interpolation methods that permit U to vary across a reaction 

coordinate.[126]  

1.3. Background on Worked Example 

Compared to their behavior in isolation, metalloporphyrins (MPps)[127, 128] 

and other macrocycles (e.g., metallophthalocyanines, MPcs)[129, 130, 131] exhibit 

unusual electronic and magnetic properties on heterogeneous support. These hybrid 

molecule-solid materials provide promise for their chemical and catalytic tunability via 

altering the reactive metal center, bonding environment, and metal support. Due to their 

biological relevance and potential for broad technological applications, surface-bound 

MPps have been extensively studied for applications in artificial photosynthesis, 

information storage, sensing, molecular electronics, and catalysis.[132, 133]  Oxidation 

and spin states of individual tetraphenylporphyrin macrocycles (TPPs) are highly-

dependent on environmental conditions[134], including small molecule adsorbates, and 



the nature of the metal center.[135] Theory provides valuable insight into these 

interactions both through simulated STM images and through a detailed profile of the 

density of states around the Fermi level of macrocycles both in the gas phase and upon 

adsorption (see for example, Refs. [135, 136, 137, 138]). DFT simulations can provide a 

map of the degree of charge transfer between an adsorbed macrocycle and the surface 

and be used to identify the degree to which small molecule adsorbates alter the strength 

of charge transfer between molecules and the surface[139] (Figure 7) [Figure 7 near 

here]. Predictions from semi-local DFT should be interpreted with caution, however, for 

instance as it has been pointed out that the poor placement of occupied and virtual 

orbitals directly impacts its ability to simulate STM images for adsorbed CoTPP 

molecules on Cu and Ag.[140] 

The interaction of small molecules in the gas phase, such as nitrogen monoxide 

(NO), carbon monoxide (CO), and molecular oxygen (O2), with MPps and MPcs has 

been studied experimentally[141, 142] in an effort to control the spin states and 

properties of magnetic molecules by chemical switching using small reactant 

species.[143, 144] Scanning tunnelling microscopy (STM) had been used to identify 

distinct binding processes and adsorption characteristics of small molecules with MPps 

(M = Co, Fe) on Ag(111) and Cu(111) surfaces.[141, 145] For instance, CO binds 

weakly to surface-anchored Co/Fe tetraphenylporphyrin (CoTPP; FeTPP) molecules, 

but NO adsorption on the metal center reduces or eliminates the saddle distortion of 

TPPs, indicating decreased bonding between TPPs and the surface.[146] Adsorbed Mn 

TPPs on Au(111) have also been demonstrated to be able to carry out homolytic 

cleavage of O2 both in solution[147] and vacuum[148] followed by oxygen atom 

adsorption onto the MnTPPs.   

Here, we present a worked example of CoTPP adsorbed on Au(111), which has 



been the focus of some previous study[140, 149, 150, 151, 152, 153, 154], interacting 

with molecular and atomic oxygen adsorbates. This system helps illustrate some of the 

outstanding challenges and possible solutions for the computational chemist wishing to 

study surface chemistry. First, in Sec. 2, we review the methods employed in this work. 

In Sec. 3, we introduce a simplified supercell building approach to address one of the 

outstanding challenges for the computational chemist in surface chemistry. In Sec. 4, we 

present the interplay of electronic and energetic properties obtained with van-der-

Waals’-augmented, semi-local DFT on the CoTPP/Au(111) worked example, examine 

how predictions change with more advanced electronic structure treatment through 

DFT+U, and identify the extent to which DFT+U and hybrid treatments coincide. 

Finally, we provide our conclusions in Sec. 5. 

2. Methods 

Plane-wave, density-functional theory (DFT) calculations were carried out using 

the open source Quantum-ESPRESSO package.[155] The orthorhombic simulation cell 

consisted of one Co-TPP molecule and three layers of Au(111) surface for a total of 167 

atoms and 1223 valence electrons. This slab of Au(111) was selected both due to 

computational cost considerations and previous observations of expedient convergence 

of molecular properties with slab representations[135], although for smaller adsorbates 

five or more layers would be preferred to reproduce bulk properties in the center of the 

slab. For the electronic structure calculations, the Perdew-Burke-Ernzerhof[156] (PBE) 

generalized gradient approximation (GGA) was augmented with a semi-empirical van 

der Waals correction (DFT-D2)[92] that recovers correct treatment of dispersion 

interactions not directly included in semi-local DFT functionals. A wavefunction cutoff 

of 25 Ry and charge density cutoff of 250 Ry was previously validated[135] in 

conjunction with ultrasoft pseudopotentials. We note that Au was described with semi-

core 3d states in the valence. In order to aid convergence and description of the metallic 



states of Au, an electronic temperature (smearing) of 0.01 Ry was applied, and all atoms 

were given an initial guess of 0.05 starting magnetization in these spin-polarized 

calculations.  

Structural minimizations of Co-TPP were carried out in which the Au slab was 

constrained to its bulk, experimental lattice parameter of 4.08 Å. Although in surface 

catalysis, it is common practice to optimize the lattice parameter in order to avoid 

stabilizing species due to strain, that procedure is avoided in this work for a number of 

reasons. First, our interest in Co-TPPs is derived from unpublished experimental 

observations of self-assembled monolayers of Co-TPPs on a surface, necessitating use 

of an experimental lattice parameter in order to match the experimental Co-TPP 

ordering. Second, because the focus of this work is primarily O adsorption onto the Co-

TPP itself, it is far less sensitive to lattice parameter derived strain effects on binding 

energy than if we were investigating the direct adsorption of O onto Cu(111). 

The Co-TPP molecule was oriented at a 39.5° angle with respect to the [110]  

direction on the fcc (111) plane in order to approximate the 14.0 ± 0.5 Å separation 

between metal centers observed for self-assembled TPP layers without metal centers in 

experiments.[157] The final unit cell upon rotation was slightly orthorhombic at 15.0 Å 

x 14.4 Å in the Co-TPP plane (Figure 8) [Figure 8 near here]. The saddle shape of 

CoTPP (16° angle of the pyrrole hydrogen atoms off the Co-porphine base plane, Figure 

9) and partial rotation of the phenyl rings (e.g. 40° C-C-C-C dihedral between the 

phenyl ring and porphine base, Figure 9) were obtained by geometry optimizing an 

initially flat structure  [Figure 9 near here]. This saddling in the optimized structure is 

consistent with previous observations[158] on metal surfaces. Additional vacuum 

between slabs was provided for a total 22.5-Å cell length in the z-direction. The 

minimum energy structure for Co-TPP on Au(111) was then used as a starting point for 



minimizations with adsorbed molecular oxygen or atomic oxygen present. Initial 

minimizations with oxygen species consisted of 12 single O atom and 12 molecular O2 

binding configurations (see Figure 10) [Figure 10 near here]. Eight additional double O 

atom configurations were also considered, corresponding to different adsorption sites on 

opposite sides of the Co center. All optimized geometries are provided in the 

Supplementary Material. 

Select DFT+U calculations[108] were carried out with U ( = 2, 4, or 6 eV) 

applied to the 3d states of Co in spin-restricted doublet or quartet calculations on the full 

system (CoTPP/Au) as well as the isolated molecule (CoTPP) frozen to its surface 

optimized geometry. A linear response U[108] was calculated on each of these 

structures as well in both spin states. Löwdin populations were used for charge transfer 

analysis through comparing charges of isolated and combined molecule-slab geometries 

as well as for quantifying spin and partial charge on select atoms.   

Single point energies were also obtained with the graphical-processing-unit 

accelerated code TeraChem[16, 159] using the B3LYP[160, 161, 162] hybrid exchange-

correlation functional. These energies were computed for isolated doublet and quartet 

CoTPPs both bare and with oxygen adsorbed and held frozen in the GGA-optimized 

CoTPP/Au geometry. For efficiency, these hybrid calculations were carried out with the 

composite LACVP* basis set, which is a combination of the Los Alamos double-zeta 

effective core potential on Co and the 6-31G* basis set on all other atoms.  

3. Slab Generation Approach 

 One key challenge associated with studying surface science phenomena from 

first principles is simply in the generation of the initial coordinates. Part of this 

challenge may be in whether there is available experimental data to guide orientations 

of self-assembled monolayers on the surface or to inform coverages and preferred 



surface sites. The remaining challenge is in user-friendly generation of adsorbate 

geometries on slab surfaces, which may be presently carried out with VESTA[21],  

ASE[27], or a combination of imported crystal coordinates from a source such as the 

Crystallography Open Database[163] with the supercell builder feature in 

Avogadro.[22] Nevertheless, orientation of complex adsorbates onto slab models often 

requires user-built scripts or hands-on manipulation.  

For this purpose, we now introduce a supercell builder extension to the recently 

developed[28] molSimplify python toolkit that automates the generation of transition 

metal-containing and supramolecular complexes. The supercell builder extension 

automates generation of coordinates for periodic systems such as the CoTPP with and 

without oxygen adsorbates on Au(111) studied in this work (see Figs. 1-3) through i) 

slab generation and ii) surface placement tools. For slab generation, the code flexibly 

repeats unit cells, which are specified by the user as 3D coordinates in .xyz, .mol, or 

.cif[164] file formats along with the necessary set of cell axis lengths (A, B, C) and 

angles between the cell axes (α, β, γ) or, alternatively, cell vectors (a, b and c). We 

leverage OpenBabel conversion tools[165] to support the .cif format due to its wide 

availability in open source and commercial databases such as Crystallography Open 

Database[163] and Cambridge Structural Database[166], respectively. Similar to other 

software packages that contain slab-generation tools[21, 22, 27], our slab builder tool 

duplicates the atoms in the input unit cell to reach a target number of units or closest 

integer repeats to produce the volume specified by the user (example shown in Figure 

11) [Figure 11 near here]. For instance, the target size of our Au(111) surface is x=15 

Å, y=15 Å, z=5 Å. In order to study adsorption on a specific crystal face, the user 

should specify a set of Miller indices, (h, j, k), which define a family of planes parallel 

to the plane intersecting the lattice axes, (a,b,c) at  
a
h

, 
b
j

, and, 
c
k

, respectively. 



The code then calculates a new set of basis vectors for the unit cell, performs the 

duplication, and rotates the coordinates to align the Miller index normal vector along 

the z-direction before constructing a repeating supercell. The procedures for obtaining 

the final crystal facet, which follow closely to the implementation in the ASE code[27, 

167], are provided in more detail in the Supplementary Material Text S1 and Figures 

S1-S2.  

In addition to the features present in other slab generation tools[21, 22, 27], 

molSimplify incorporates a suite of geometry functions for aligning ligands, which may 

be leveraged and extended for the generation of precise surface-adsorbate 

configurations. Once inorganic or organic complexes are generated with the standard 

molSimplify code[28] using internal or external ligand libraries, users can place both 

these generated structures on slabs (e.g., CoTPP placed on Au(111) in this work) along 

with additional molecules at surface sites on the adsorbed molecule (e.g., O placed on 

CoTPP in this work). This easily scripted interface enables automated computational 

studies of surface chemistry and catalysis, e.g., by varying surface coverage and 

adsorbate spacing for adsorbate interaction studies or for comparing the energetics of 

adsorbate binding modes on differing surface sites.  

Using the surface placement tool, any object (e.g., molecule or cluster) that the 

original molSimplify generates can be placed on a periodic slab. For instance, the 

CoTPP molecule may be generated in molSimplify by specifying a Co center and a tpp 

ligand. For the placement procedure, the user must specify distance of the object to the 

surface in one of three ways: i) physisorption: the sum of van der Waals radii between 

aligning species is used, ii) chemisorption: the sum of covalent radii between aligning 

species is used, or iii) a user-specified custom distance.  The placement tool supports 

several alignment modes: i) centered: adsorbed object center of mass (COM) is placed 



above the surface center; ii) staggered: adsorbed object COM is placed above midpoint 

between surface sites closest to the center of symmetry of the surface; and iii) align-by-

atom: user specifies type and number of surface atoms (e.g., O in TiO2), and a list of 

atom types or indices for the adsorbed object. Here, the align-by-atom procedure with 

chemisorption distance (2.7 Å) was used to align the Co atom to an Au(111) surface 

site, which only requires specifying the Co, Au atom types. Atom indices may be 

obtained from the graphical visualization tool in molSimplify[28] or directly from the 

xyz coordinate file. The code places the object at target sites by iteratively minimizing 

the sum-of-squared error (SSE) between the target aligning atom distance, dti, and 

actual distance, di, over all i object atoms being aligned: 

 ε = (di −dti )
2

i
∑  . (10) 

For single-atom alignments, the object atom is placed directly above the target surface 

site, and the object is rotated 360° around the alignment axis to maximize slab-object 

distances and inter-object distances if an object was previously placed. This approach is 

also designed to minimize periodic-image effects and help the user identify the most 

computationally-efficient supercell. 

 For two or more aligning object atoms, the object is rotated around the axis 

between the aligning object COM and target surface atoms COM to minimize the SSE 

in target distances while incrementally lowering the object from 15% above final target 

height.  Each step is only accepted if the SSE decreases, otherwise the incremental 

approach to the surface is halved, and the process terminates after three sequential step 

failures. The code also supports force field optimization (e.g., with MMFF94[168] by 

default) to relax the geometry of the non-aligning atoms as the object is lowered 

towards the surface.  Additional special cases for rotation and alignment are outlined in 

the Supplementary Material Text S2.  Following this initial placement, the code will 



optionally align an axis in the molecule at a user-specified angle to a line on the surface 

(e.g., 40° for N-Co-N off the 110⎡⎣ ⎤⎦  surface in Au(111) here, which is achieved by 

providing the indices of the TPP N atoms, target angle, and surface vector).  

The code supports multiple adsorbate placement as indicated by the user 

specifying a number of objects or a desired coverage fraction. Once a single adsorbate is 

placed on a surface site, that site is removed from the free site list, and the process is 

repeated (see flowchart in Figure 12) [Figure 12 near here]. Each subsequent attachment 

site is chosen as the one that maximizes the minimum inter-adsorbate spacing, taking 

unit cell periodicity into account. Additional molecules (e.g., O on CoTPP here as in 

Fig. 3) can be added by repeated use of the placement tool in a ‘layer-by-layer’ 

approach where the first attached molecule (e.g., CoTPP on Au(111)) becomes part of 

the new cell surface. This sequential strategy maximizes placement flexibility while 

allowing for easy syntax and scripting (see flowchart in Figure 12). In this work, single 

or multiple O atoms or O2 molecules are adsorbed by specifying the target indices in the 

now-adsorbed CoTPP on Au(111) in a second run of the placement tool. Thus, supercell 

generation tools are making it increasingly straightforward to investigate surface-

adsorbate and multi-layer adsorbate interactions critical to understanding surface 

science phenomena. 

4. Results and Discussion 

4.1. Binding Energetics 

Although we have highlighted some potential challenges for semi-local DFT in 

predicting relative energetics of adsorbates, it remains the method of choice for its 

combination of efficiency and reasonable accuracy. Additionally, although semi-local 

DFT energetics may be erroneous, geometric properties are often still quite good. Thus, 

we first evaluate DFT energetic and structural properties and then later (4.4) evaluate 

the sensitivity of these approximations to exchange-correlation functional choice. We 



first performed DFT structural minimizations of CoTPP on Au(111) (Figure 1). Starting 

from our generated structure with a flat porphine base and rotated phenyl rings, the 

structure relaxed to a saddle geometry (Figure 9), consistent with previous 

observations.[158] In each case, we added atomic and molecular oxygen to specific 

sites at initial guesses corresponding to chemisorption distances (see Figure 10) on the 

optimized CoTPP/Au(111) with the molSimplify periodic extension.  

For all 12 sites considered, O2 weakly physisorbs with binding energies of 0.15 

eV or less and long distances to the porphyrin in non-specific orientations. The only 

exception to this observation is slightly stronger binding observed for site 1, which 

corresponds to cobalt center of the CoTPP.  Here, the binding energy with respect to 

isolated CoTPP/Au(111) and triplet O2 molecule is 0.25 eV. The short Co-O distance of 

1.92 Å along with O-O distance lengthening from 1.21 Å for isolated O2 to 1.28 Å when 

bound in the Co-TPP/Au 1 site confirms a stronger interaction (Table 1), for which 0.25 

eV binding energy that is closer to physisorption in nature appears to be an 

underestimate [Table 1 near here]. This underestimation is derived from the fact that we 

compute binding energies with respect to the isolated Co-TPP on Au(111). When the O2 

binds to the Co center, its distance to Au lengthens from 2.84 Å in the unfunctionalized 

case to 3.11 Å, decreasing the Co-TPP binding energy to Au(111) by approximately 0.5 

eV, thus producing a modest overall binding energy for O2 on site 1.  

In contrast to molecular oxygen, atomic O interacts strongly with Co-TPP, 

preferentially occupying different binding sites to differing degrees. We will investigate 

shortly the reaction profile for O2 dissociation at the catalytic Co metal center in Co-

TPP to form free O atoms (see Sec. 4.4). Within heterogeneous catalysis, this 

phenomenon is typically known as spillover. Homolytic dissociation of O2 and 

distribution of the oxygen atoms over two neighboring TPP molecules has been 



reported in literature, for instance for MnCl-TPP on Au(111)[147] and HOPG[134] 

surfaces at the liquid-solid interface, and for Mn-TPP on Ag(111) in UHV at 78 K.[148] 

In order to compute O-atom binding energies for each ith configuration, we use a stable 

reference of a half of a triplet ground state O2 molecule:  

 Erel
i = E(CO-TPP-O(i) / Au)− 1

2
E(O2 )−E(CO-TPP / Au)  . (11) 

Thus, a negative Erel
i  indicates binding is stable with respect to the ½ O2 

 reference, whereas a positive value indicates the bound O is less stable. A free doublet 

oxygen atom is 3.2 eV higher in energy than the ½ triplet O2 reference and therefore 

even positive values of Erel
i  correspond to strong binding to CoTPP/Au with respect to 

an O atom reference (full details of oxygen reference energetics are provided in 

Supplementary Material Table S1). Of the 12 initial configurations considered, 

geometry optimizations converged to 8 unique binding sites (Figure 13, see also 

Supplementary Material Table S2) [Figure 13 near here]. With the exception of site 1 

(Co), double coordination was preferred with O forming two bonds to the CoTPP 

structure. For initial pyrrole ring configurations on a carbon atom (sites 3-6, and sites 8-

11), the final optimized structures straddle two C-C sites with 9-10 (pulled away from 

Au) the most stable (Erel = -0.55 eV) and 4-5 (angled toward Au) similarly stable at Erel 

= -0.36 eV. We will refer to the 9-10 configuration as pyrrole (Pyr) in further analysis. 

Oxygen atom binding at the phenyl-linking carbon is shared between 12-8 or 12-3 with 

Erel  = 0.44 eV, which is more stable than the 5-6 or 3-4 binding on the pyrrole itself 

(Erel  = 0.79 eV). In contrast to the initial C-site adsorption, N-atom initial 

configurations 2 and 7 favor double coordination across the Co-N bond (referred to as 

the Co-N configuration in further analysis), with slightly lower energy for the pyrrole 

along the down-facing pyrrole coordinate (1-7, Erel  = 0.62 eV) due to the more 



favorable orientation of Co and N along that bond.  Finally, single coordination at the 

Co 1 center is weakly unfavorable (Erel  = 0.51 eV), which we will refer to as the Co 

configuration in further discussion.  

The map of O binding on CoTPP thus highlights that the most stable 

configurations for binding are at the edge of the molecule along the downward-angled 

pyrrole, but stable binding configurations may form with the oxygen atom closer to the 

Co center, especially immediately following O-O bond cleavage. Analysis of geometric 

properties (Table 1) again reveals why single oxygen atom binding at Co is relatively 

unfavorable. With respect to the Co/O2 configuration, oxygen atom binding on Co 

forms a stronger Co-O bond of 1.70 Å versus 1.92 Å for the molecular oxygen case, and 

this weakens the interaction of Co with the Au atom on the surface from 2.84 Å in the 

bare CoTPP and 3.11 Å in CoTPP/O2 even further to 3.35 Å in CoTPP/O 1. This 

phenomenon has recently been observed experimentally, particularly in one case to be 

so strong as to drive rearrangement of macrocycles to self-assemble differently when 

CO adsorbs at the metal center and weakens interaction with a metallic surface.[139] 

Overall, the relative instability of the CoTPP/O 1 configuration is likely derived in part 

by further reduction of the binding of the molecule to Au(111) by a total of 0.7 eV from 

the bare case.  A comparison to the Co-N or Pyr configurations (Table 1) reveals that 

no such elongation occurs, despite symmetric C-O bonds in the Pyr of 1.47 Å and 

alternating 1.38 Å N-O and 1.90 Å Co-O distances in the Co-N configuration, the latter 

of which is comparable to the Co-O bond in the O2 adsorption case.  

As we first described in the introduction, error cancellation among chemically-

comparable oxygen-adsorption sites may be expected to occur. Therefore, the 

assignment of the Pyr configuration as the most stable C-coordinated oxygen species 

would be expected to hold independent of the xc functional choice, but we should 



expect the relative binding stability of oxygen at the Co center to be highly sensitive to 

the treatment of exchange (e.g., with hybrid functionals or with DFT+U, in sec. 4.4).   

4.2. Electronic Structure of CoTPPs 

A critical component of any DFT surface chemistry analysis is to relate 

energetic properties to electronic descriptors that can help rationalize energetic trends. 

Comparison of the spin and partial charge on Co and adsorbed O atoms for oxygen in 

complex with CoTPP/Au or with the isolated CoTPP frozen in the adsorbed geometry 

for the representative bare, Co, Co-N, Pyr, and O2-bound configurations reveals key 

differences in electronic structure (Table 2) [Table 2 near here]. The net spin on the 

cobalt center is comparable for the bare and Pyr configurations because in the latter the 

oxygen atom is distant from the Co center. Binding of a single oxygen atom at the Co 

center leads to enhanced overall spin from what is otherwise roughly a doublet system 

with absolute magnetization close to 1 Bohr in the bare case to a quartet-like system 

with absolute and total magnetization of 3.3 and 2.9 Bohr, respectively. This net spin in 

the Co configuration is distributed over Co (1.56 Bohr) and O (1.28 Bohr), which 

reflects an increase of 1 Bohr in net spin on Co versus the bare configuration. Binding 

of molecular oxygen has the opposite effect, with Co instead favoring a near-singlet like 

configuration (-0.10 Bohr on Co) and the majority of the magnetization residing on the 

O2 molecule.  In all cases, Co carries a weak partial charge of +0.09-0.28 e- versus 

oxygen typically carrying a negative charge around -0.24 to -0.32 e-.   

 The degree of charge transfer between the CoTPP and Au surface may also be 

determined from the difference in partial charges on frozen, isolated CoTPP and 

CoTPP/Au configurations (Supplementary Material Table S3). Charge transfer of 

around 1 e- is observed from the CoTPP to the Au surface across several configurations. 

Roughly 75% of the charge transfer occurs from the carbon and hydrogen atoms on the 

TPP macrocycle, and the partial charge on Co is unaffected in contrast to some earlier 



work on adsorbed TPPs.[135, 136] Overall charge transfer is likely closely related to the 

pyrrole rings that are closer to the Au surface as a result of the saddle shape of the TPP.  

Restricted spin doublet or quartet calculations reveal comparable partial charges 

and net spin on Co excluding most quartet isolated CoTPP configurations. Thus, 

comparison of spin-restricted and unrestricted CoTPP/Au properties suggest that the 

CoTPP is best described by a low-spin doublet configuration for Co-N, Pyr, and bare 

configurations with some of the spin delocalized, e.g. to O or Au surface atoms. An 

exception is the binding of an O atom to the Co center, which should nominally increase 

the oxidation state by two, favoring a higher spin quartet-like character in the Co 

configuration. Analysis of the projected density of states (PDOS) for the Co-N, Pyr, 

and Co configurations confirms these differences (Figure 14) [Figure 14 near here]. The 

frontier z2 3d orbital that is weakly occupied for the Co-N configurations becomes 

stabilized for spin up in both the Pyr and Co configurations. In all cases, hybridized x2-

y2 and xy orbitals are first occupied followed by xz and/or yz orbitals with a narrow 

splitting (ca. 1 eV) for Co-N and Pyr configurations. This splitting is enlarged to 

around 2 eV in the Co-bound configuration, and the oxygen atom spin polarization is 

also apparent with frontier oxygen atom 2p states at the Fermi level.  

Comparison of the Co and Pyr configuration total spin densities confirms the 

Co 3d z2 and oxygen 2p character of the metal-centered spin-polarized states (Figure 15) 

[Figure 15 near here].  Some residual spin density is apparent in both cases on the 

pyrrole nitrogen atoms and phenyl-linking carbon atoms, consistent with previous 

results for TPP ring polarization upon surface adsorption.[135] The Pyr configuration is 

nominally similar to the bare CoTPP/Au case, but it is apparent that the presence of the 

oxygen atom does introduce asymmetry to the polarization on the TPP ring, with 

enhanced spin density on the side closer to the adsorbed oxygen atom.  Surprisingly, for 



the Pyr case, spin density is also observed on the Au surface atom closest to the Co 

center with apparent 3d z2 character as well. The Au surface atoms should be nominally 

d10, and the presence of this spin polarization on Au is suggestive of charge transfer 

from the Au to Co centers through overlap of the respective 3d z2 orbitals. Thus, the 

negligible spin density on Au observed for the Co configuration is likely due to 

decreased CoTPP-Au interaction strength that was indicated by a longer Co-Au bond 

distance with respect to the other configurations (see Table 1). Thus, structural, 

energetic, and electronic properties provide a cohesive picture of the relationship 

between oxygen-CoTPP interactions and CoTPP-Au interactions although we may 

expect quantitative components such as the exact degree of charge transfer or spin 

polarization to be sensitive both to the model choice (i.e., number of layers of Au in the 

slab) and xc functional choice (i.e., self-interaction error increasing electron 

delocalization between metal and CoTPP). 

4.3. Double Oxygen Atom Binding 

In addition to the single oxygen binding characteristics, we aim to provide some 

insight into the probable mechanism for single oxygen atom adsorption on CoTPP/Au 

monolayers, which is through O2 adsorption, dissociation, and spillover to other atoms 

on that or adjacent porphyrins based on experimental observations for related 

porphyrins.[147, 148] In order to investigate any unique properties of double oxygen 

atom adsorption cases, we carried out geometry optimizations of eight representative 

configurations. In analogy to the lowest-energy single O-atom adsorption Pyr site, 

oxygen atoms on opposite pyrroles (Pyr-op) or on the same pyrrole C-C bond (Pyr-

adj) were studied alongside a slight variation (Pyr-ver) in which oxygen atoms were 

adsorbed to the 5-6 site of the pyrrole on opposite sides of the CoTPP. Modifications of 

the favorable single atom Co and Co-N configurations were double Co-N adsorption 

(Co-N-op) and Co or Co-N adsorption combined with phenyl carbon linker (12-8) 



adsorption (Co, Ph or Co-N, Ph). Finally, alternate configurations of double phenyl 

carbon linker adsorption in opposite orientations around the Co center (Ph-d1 and Ph-

d2) were also considered. In all cases, these configurations were fully geometry 

optimized and found to be stable local minima (structures shown in Figure 16, see 

Supplementary Material for coordinates of all structures) [Figure 16 near here]. 

Qualitative trends in the relative binding energies of the double oxygen atom cases with 

respect to bare CoTPP/Au and triplet O2 are consistent with previous observations for 

single oxygen atom binding (Figure 15).  

The Pyr-op configuration is the most stable of the eight configurations 

considered at -1.53 eV with respect to desorbed triplet O2. The Pyr-adj structure 

represents a unique configuration wherein two oxygen atoms with an O-O distance of 

1.51 Å are adsorbed at sites 9 and 10 with each forming a single 1.48 Å bond to a 

pyrrole carbon. In this configuration, the O-O bond is intermediate between the 

equilibrium value in the gas phase of 1.2 Å and full dissociation. Although Pyr-adj is 

higher in energy (Erel = -0.56 eV) than the Pyr-op case, it remains stable with respect to 

desorbed O2, likely due to the partial bonding character between the neighboring 

oxygen atoms.  All other combinations of previously considered single-oxygen 

adsorption sites are positive, i.e., less stable than desorbed O2 and bare CoTPP, ranging 

from 0.33 eV (or ca. 0.17 eV per oxygen atom) for Pyr-ver to 0.64 eV for Ph-d2.  

Overall, the double oxygen atom cases are slightly more stable than adding 

single oxygen atom adsorption energetics would have suggested by around 0.4 eV, 

although this difference is enhanced to as much as 0.75 eV for the Co-N-op 

configuration (Erel = 0.48 eV).  Comparison of structural properties reveals that the 

CoTPP-Au interactions are strengthened in the Co-N-op structure, as indicated by a Co-

Au bond of 2.7 Å versus the typical range observed around 2.8-2.85 Å for most 



configurations (see Table 1). The simultaneous formation of two pairs of O-Co and O-N 

bonds around 1.88 Å and 1.36 Å, respectively, pushes the Co center toward the Au 

metal adsorption site, strengthening surface bonding and increasing stability of this 

configuration. Although closer than other configurations, the 2.5 Å distance between the 

two oxygen atoms is likely too far to retain any bonding character. The Co-Au bonds in 

five of the double oxygen configurations fall in the range of 2.81-2.85 Å with the only 

other outliers, Co-Ph and Co-N, Ph, instead having elongated 3.28 and 2.92 Å Co-Au 

distances, respectively, consistent with single oxygen atom adsorption cases (Table 1). 

Magnetization of the CoTPP/Au assemblies is highest (1.02-1.57 Bohr) for Co-adjacent 

oxygen configurations and lower (0.00-0.43 Bohr) for the remaining configurations, 

consistent with single oxygen atom observations (Table 1). In total, geometries and 

energetic trends in preferred adsorption sites are comparable for the single and double 

oxygen atom adsorption cases, with the exception of very close oxygen-oxygen 

adsorption distances that alter the preferred adsorption geometries (Co-N-op and Pyr-

adj).  

4.4. Energetics of Binding and Spillover: GGA, DFT+U, and Hybrid 

functionals 

Thus far, we have identified a number of both single oxygen and double oxygen 

atom adsorption configurations that are favorable with respect to bare CoTPP/Au and 

triplet O2. In contrast, we found that triplet O2 solely adsorbs to the Co center on 

CoTPP/Au. Using this information, we can piece together a possible pathway by which 

molecular oxygen may adsorb, dissociate and then spill over to form stable 

configurations on CoTPP/Au assemblies. However, binding energies are sensitive to the 

class of exchange-correlation (xc) functional employed. The generalized-gradient 

approximation (GGA) employed here is no exception, as the lack of cancellation of self-

interaction error (SIE) in this functional potentially leads to overestimates of binding 



energetics. We therefore now consider the effect of partial SIE-correction through the 

DFT+U approach. 

Here, we are interested in calculating the U for the Co center in CoTPPs in order 

to determine if a DFT+U treatment alters binding energetics. Au also has occupied 3f 

states but is generally metallic, and following common practice, we will not apply any 

U corrections to the Au metal slab. Although U may be calculated on systems for which 

the total spin is unrestricted, the potential shift applied may cause evolution of the 

electronic state in an unpredictable manner. Thus, for numerical stability, we constrain 

the multiplicity of the overall system to either doublet or quartet and calculate U values 

for both isolated CoTPPs, which are frozen in their adsorbed geometries, and 

CoTPP/Au assemblies (Table 3) [Table 3 near here]. We may then compare electronic 

properties obtained at both fixed and unrestrained spin (Table 2) to identify which fixed 

magnetization calculations are most comparable to the unrestrained results.  

Overall, isolated quartet CoTPP molecules have the lowest calculated U values 

at around 5.8 eV and range from 4.8 to 6.7 eV. Doublet isolated CoTPP and both spin 

states for CoTPP/Au are instead much more comparable with averages of 7.2-7.5 eV 

and ranges spanning 6.3 to 8.4 eV (Table 3). Regardless of spin state, calculated U 

values are generally highest for the configurations with oxygen proximal to the Co 

center (Co, Co-N, and Co-O2). Comparing the electronic properties (Table 2) for the 

unrestricted CoTPP/Au calculations with fixed spin results suggested that all 

configurations except for the Co configuration are well described by doublet spin states. 

Thus, suitable U values for the Co configuration should be around 7.0 eV, whereas 

suitable values for the other configurations likely range from 6.3-7.9 eV.   

Total energies at different values of U cannot be compared because the xc 

functional is no longer the same, although interpolation schemes have been 



developed[126] to overcome this limitation. Here, we will take a pragmatic approach of 

i) comparing energetic trends with U values and ii) applying a U corresponding to 

global average values of 6.0 eV for isolated CoTPP and 6.4 eV for CoTPP/Au. The 

effect of varying U by around 1 eV has been shown to have a much smaller variation in 

relative energetics around 0.1 eV[169], and there is a relatively narrow range of 

calculated U values compared to observed variations obtained from altering the metal 

center identity.[170] The functional form of DFT+U is well-known to alter GGA low-

spin state preference and recover high-spin ground states. This observation may be 

explained by the fact that the low-spin ground state is typically more fractional than a 

high-spin state due to an increase in the number of hybridized orbitals occupied in the 

former with respect to the latter.  

The effect of U on binding energetics is less clear and also sensitive to the nature 

of the isolated ground state CoTPP versus the case where the oxygen atom is bound. 

Thus, we calculated the doublet-quartet spin state splittings and relative oxygen binding 

energetics with increasing U in the isolated molecular state where the doublet and 

quartet spin states are well-defined (Figure 17) [Figure 17 near here]. Here, we have 

computed DFT+U energies on GGA optimized structures, although DFT+U is known to 

alter some geometric properties[108, 126, 169] (see Supplementary Material Tables S4-

8). As suggested by our previous analysis, Pyr, bare, and Co-N configurations strongly 

prefer doublet configurations by at least 0.5 eV with GGA, but the Co configuration 

weakly favors the quartet state by around 0.2 eV. Increasing values of U shift 

preference for the three doublet configurations (Pyr, bare, and Co-N) toward the 

quartet states, producing a preferred quartet state for U = 4 eV and higher in the Co-N 

geometry. The Co configuration doublet and quartet states become conversely nearly 

degenerate.  In the range of average U values, the qualitative spin state ordering and 



relative magnitude of splitting is unchanged from GGA except for the changed 

preference for high-spin instead of low-spin Co-N by about 0.25 eV.    

Relative oxygen binding energies may be computed for each configuration in 

both spin states, although only one of the two spin states would correspond to the 

ground state of the molecule (Figure 17). The Erel for the most stable binding 

configuration for CoTPP/Au (Pyr) is mostly invariant in either spin state to Hubbard U 

because the Co center electronic structure is unchanged from the bare reference 

molecule. Conversely, relative binding energies of the GGA ground state doublet Co-N 

and Co quartet decrease with increasing values of U.  However, at high values of U, the 

ground state spin of the Co-N configuration becomes a quartet, which has a somewhat 

lower relative binding energy of about 0.25 eV above the ½ triplet O2 reference. 

Additionally, DFT+U strongly destabilizes O adsorption on Co in the quartet ground 

state from a relative energy around -1.0 eV in GGA up to 0.75 eV at U  = 6 eV. DFT+U 

does not alter the most stable binding configuration (Pyr) or its relative binding energy 

substantially, but it does shift preference for relative binding from quartet Co to the 

adjacent quartet Co-N configuration while simultaneously weakening the relative 

binding energies of both configurations. A similar analysis on the full CoTPP/Au 

system (Supplementary Material Figure S3 and Tables S9-S13) is consistent with 

previous observations (Table 2) and molecule-only trends. Namely, we observe: i) close 

doublet-quartet energy splittings with doublet ground states except for a quartet Co 

configuration that becomes a doublet at U above the average value of 6.3 eV and ii) the 

most stable Pyr relative binding energy is invariant to changing U but Co and Co-N 

binding configurations are both weakened, with Co-N becoming favored over Co.  

Using the refined energetics we generated both at the GGA and DFT+U levels 

of theory, we can now piece together a plausible energetic landscape to explain how O2 



might bind and react with CoTPPs adsorbed on Au(111) and compare it to isolated 

CoTPP frozen in the structure optimized in the presence of the surface (Figure 18) 

[Figure 18 near here]. The GGA molecular structures show consistently stronger 

binding (more negative relative energies) than the adsorbed molecules, but DFT+U with 

an average value of U reverses this trend and makes the two curves more comparable, 

likely due to decreased hybridization between Co and Au in the adsorbed DSFT+U 

molecules, making isolated CoTPP and CoTPP/Au more comparable with DFT+U.  

After O2 binds strongly (or slightly unfavorably) with GGA (DFT+U), the highest 

energy barrier is associated with formation of the Co geometry through dissociation of 

the O-O bond to form a free oxygen atom taken as either a ½ O2 reference or isolated 

oxygen, where the former is roughly 3 eV more stable than the latter. For GGA, the Co 

formation is only weakly unfavorable, whereas for DFT+U it becomes prohibitive and a 

Co-N structure may be preferred instead. Thus, more plausible mechanisms for 

adsorption may be through dissociation of O2 across Co and formation of the Co-N-op 

double oxygen atom adsorption structure (Figure 16). Regardless, once molecular 

oxygen is dissociated and adsorbed at a site away from the Co center, the remaining 

energetics (e.g., to form one or more Pyr oxygen atom adsorption sites) are downhill 

and favorable with respect to the isolated CoTPP or adsorbed CoTPP/Au reference. 

Overall, stabilization of CoTPP by Au(111) does not appear to mediate oxygen 

adsorption and dissociation beyond what would be possible in isolation because oxygen 

binding appears to sometimes weaken and destabilize CoTPP/Au interactions. However, 

adsorption of oxygen to CoTPPs immobilized on Au should be favorable in a number of 

configurations following formation of free oxygen atoms from Co-mediated O2 

dissociation.    

As we introduced previously, hybrid exchange correlation functionals within 



DFT are well-known to provide superior energetics over semi-local approximations for 

isolated molecules (see review in Ref. [34] and references therein), but when studying 

extended, metallic systems, these approximations may fare poorer than a semi-local 

exchange correlation approximation. The DFT+U approximation may be interpreted as 

a local approximation to Hartree-Fock exchange, and the similarity in energetics of the 

two methods has recently been quantified in some surface science applications.[171] In 

order to examine the extent to which DFT+U and hybrid treatments comparably impact 

self-interaction error in transition metal complexes, we now compare CoTPP properties 

predicted with the B3LYP hybrid functional that contains 20% Hartree-Fock exchange. 

Owing both to the limited accuracy of hybrid functionals for metals (i.e., the Au(111) 

slab in this study) and the increased computational cost of around 1-2 orders of 

magnitude in periodic hybrid functional calculations, we again limit our comparison to 

the isolated CoTPP frozen in the geometry of the CoTPP/Au. A further motivating 

reason for restricting the comparison to CoTPP was the observation that CoTPP and 

CoTPP/Au energetics were comparable across the spillover reaction coordinate (see 

Figure 18). Both the choice to focus only on the molecule and freeze it in a single 

geometry rather than carrying out geometry optimizations could introduce bias if the 

extent to which a geometry is away from the B3LYP minimum on the potential energy 

surface varies. Thus, we focus here on qualitative comparisons. 

Overall, comparisons of CoTPP intermediate energies along the same reaction 

coordinate considered earlier (see Figure 18) reveals similarity between B3LYP and 

DFT+U energetics computed at the globally averaged U of 6 eV, especially compared 

to GGA results (Table 4) [Table 4 near here]. Namely, molecular or atomic oxygen 

binding at the Co center is less stabilized with respect to binding on the ring for both 

hybrids and DFT+U. This trend is also apparent for the Co-N species, which are 



destabilized with both DFT+U and B3LYP with respect to GGA.  

We quantify this agreement in a root-mean-squared error (RMSE) over the four 

species where oxygen is bound to the Co center because we know that configurations 

with oxygen distant from the Co center should not be shifted by DFT+U with respect to 

the reactants that have all been aligned at a relative energy of zero (see Table 4). This 

RMSE over the Co-O2, Co-O, Co-Pyr1, and Co-N1 configurations (conf.) is computed 

as: 

 RMSE = 1
4

(E(method)−E(B3LYP))2
conf.
∑  . (12) 

The GGA RMSE of 0.65 eV is reduced to 0.23 eV with DFT+U. We also may identify 

the value of U that minimizes this RMSE with respect to the B3LYP reference by 

interpolating the linear fit relationships of DFT+U energies. The U value that minimizes 

the RMSE is observed to be 5.4 eV, quite close to the global average of computed linear 

response values of U, and the reduction in RMSE to 0.21 eV is modest. This analysis, 

however, suggests that either incorporation of Hartree-Fock exchange in a hybrid 

functional or DFT+U have comparable behavior. The agreement between the two 

approximately-SIE-correcting methods suggests that GGA overstabilizes oxygen 

binding at the Co center and that more peripheral oxygen atom binding should instead 

be favorable.  

The results for our worked example highlight the necessity to evaluate the 

sensitivity of surface chemistry predictions made with a GGA to more advanced 

treatments of exchange and correlation. Although in organic molecules, the hierarchy of 

the “Jacob’s ladder” of exchange-correlation approximations is well-established[34], 

this ordering is less clear in surface chemistry and often necessitates a multi-faceted 

approach.  

5. Conclusions 



 We began this article by introducing some of the challenges facing computational 

chemists who wish to study surface chemistry phenomena quantitatively with an aim towards 

providing equal partnership and predictive power in experimental collaborations or in studying 

phenomena in previously uncharted waters.  Some of these challenges, such as the limitations of 

computational efficiency for very large systems, have lessened over time as codes have become 

faster and available computing power has increased dramatically. Nevertheless, with the sky 

still not the limit, the computational chemist must choose prudently the system size and level of 

theory. We then highlighted some of the challenges associated with just getting started in 

carrying out simulations through the considerations that must be made when generating 

complex adsorbate supercells.  In addition to the presently available codes, we provided our 

own addition that specifically leverages molecular building tools to enable complex adsorbate-

adsorbate interactions and precise positioning of adsorbates on surfaces. Of all of the 

challenges, the accuracy of the exchange-correlation approximation within DFT, particularly for 

large system sizes needed for studying surface phenomena, remains the most outstanding 

challenge.  

Although a semi-local GGA DFT study may be sufficient for studying organic extended 

systems, self-interaction errors in transition-metal-containing materials can dramatically alter 

both qualitative and quantitative predictions of relative energetics and degree of charge transfer. 

We provided a worked example of CoTPP on Au interacting with oxygen adsorbates. We 

highlighted and confirmed the portions of our reaction coordinate we expected to be insensitive 

to exchange-correlation approximation (i.e., relative oxygen-carbon interaction energetics on 

the macrocycle) and those we expected to be over-stabilized within the GGA approximation 

(i.e., binding interactions at the Co metal center).  We related observations in energetic trends to 

electron density descriptors, which are a critical component of any surface chemistry analysis. 

We finally identified and compared results obtained from a GGA to those obtained with both 

DFT+U and hybrid functionals. Although no silver bullet is yet available for practical DFT to 

study systems with hundreds of atoms and thousands of valence electrons, insight into 

imbalances of common DFT approximations can inform evaluations of which predictions 



should be trusted and which should be tested.  
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Table 1. Bond distances of O atom or O2 molecule adsorption geometries: the distance 
(d) of the oxygen atom to the first (P1) and/or second (P2) closest sites on the 
porphyrin, Co center to the closest Au surface atom, and O-O distance in the case of 
adsorbed molecular oxygen, all in Å. 
Distance Co Co-N Pyr Bare Co (O2) 
d(O-P1) 1.70 1.38 1.47 -- 1.92 
d(O-P2) -- 1.90 1.47 -- -- 
d(Co-Au) 3.35 2.88 2.82 2.84 3.11 
d(O-O) -- -- -- -- 1.28 
 

 

 

 

  



Table 2. Net spin and partial charge on Co and O for doublet and quartet CoTPP 
isolated molecule and doublet, quartet, and unrestricted CoTPP/Au. In the unrestricted 
case, the total/absolute magnetization (mag.) is indicated as well. 
Property Co Co-N Pyr Bare Co (w/ O2) 
 doublet CoTPP 
Co spin 0.36 0.71 1.14 1.14 -0.19 
Co q 0.25 0.19 0.26 0.26 0.17 
O spin 0.69 0.09 0.00 -- 0.52 / 0.66 
O q -0.29 -0.31 -0.35 -- 0.07 / -0.08 
 quartet CoTPP 
Co spin 1.64 2.33 2.50 2.47 1.36 
Co q 0.30 0.33 0.40 0.37 0.22 
O spin 1.34 0.23 0.00 -- 0.79 / 0.82 
O q -0.28 -0.33 -0.33 -- 0.00 / 0.09 
 doublet CoTPP/Au 
Co spin 0.56 0.29 0.52 0.56 -0.11 
Co q 0.23 0.14 0.13 0.13 0.09 
O spin 0.81 0.05 0.00 -- 0.52 / 0.65 
O q -0.23 -0.27 -0.33 -- 0.06 / -0.08 
 quartet CoTPP/Au 
Co spin 1.54 0.30 0.56 0.61 -0.09 
Co q 0.27 0.15 0.13 0.13 0.09 
O spin 1.30 0.05 0.00 -- 0.53 / 0.65 
O q -0.23 -0.27 -0.33 -- 0.06 / -0.08 
 unrestricted CoTPP/Au 
Co spin 1.56 0.0 0.50 0.55 -0.10 
Co q 0.28 0.14 0.13 0.13 0.09 
O spin 1.28 0.00 0.00 -- 0.52 / 0.64 
O q -0.24 -0.26 -0.32 -- 0.06 / -0.08 
mag. 2.9 / 3.3 0.0 / 0.0 0.4 / 1.0 0.5 / 1.1 1.1 / 1.5 
 

  



Table 3. Calculated U values (in eV) for CoTPP on Au and isolated CoTPP for the 
listed oxygen binding configurations with average, maximum, and minimum grouped 
by model and spin multiplicities (doublet or quartet).   
 CoTPP/Au CoTPP 
Multiplicity 2 4 2 4 
Co 8.4 7.0 7.6 6.7 
Co-N 7.9 7.8 7.2 5.9 
Pyr 6.5 6.6 7.3 4.8 
Bare 6.3 6.5 7.3 5.1 
Co (w/ O2) 7.9 7.9 8.0 6.5 
avg. 7.4 7.2 7.5 5.8 
max. 8.4 7.9 8.0 6.7 
min. 6.3 6.5 7.2 4.8 
 

  



Table 4. B3LYP relative energetics (in eV) for isolated doublet CoTPP with the listed 
oxygen binding configurations listed along side the energetics with GGA and DFT+U 
for a U of 5.4 eV that maximized correspondence with B3LYP results and the global 
average U of 6 eV. Co-O refers to O on the Co configuration, and Co-Pyr1 (Co-Pyr2) or 
Co-N1 (Co-N2) refer to Co-Pyr and Co-N, respectively, with only one (two) oxygen 
atom(s) in that configuration. Root-mean-squared error (RMSE) with respect to B3LYP 
reference in eV is reported for GGA and DFT+U results for the four steps that directly 
involve Co-coordination by oxygen (Co-O2, Co-O, Co-Pyr1, Co-N1).  
  

 

Structure 

GGA U=5.4  U=6.0 B3LYP 
Bare + O2 0.00 0.00 0.00 0.00 
Co-O2 -0.84 0.46 0.60 0.06 
Co-O + ½ O2 -0.03 1.53 1.71 1.16 
Co-Pyr1+Co-O -0.31 0.38 0.46 0.95 
Co-Pyr2 -0.89 -0.91 -0.91 -0.41 
Co-N1+Co-O 0.65 2.05 2.21 2.37 
Co-N2 1.35 1.73 1.78 2.41 
RMSE (eV) 0.65 0.21 0.23 -- 
 

  



Figure Captions 
 
Figure 1. Comparison of typical semi-local functional E vs. N curvature (blue curve) for 
an atomic or small molecular system (left) to that for a large system or extended solid 
(right). The exact piecewise linear behaviour is shown as a gray dashed line in both 
cases. 
Figure 2. Cartoon representation of how electron density (red for the isolated atom, blue 
for the surface) delocalizes from an isolated atom or molecule to a surface when the 
atom or molecule adsorbs on the surface. 
Figure 3. Cartoon comparison of CO adsorbed on an atop site or an fcc hollow site on 
Pt(111). The number of partners over which electron density delocalizes in the atop case 
(one, yellow) is reduced with respect to the fcc hollow case (three, purple). 
Figure 4. Schematic of shift in molecular or extended states from semi-local DFT (e.g., 
a GGA) to DFT+U. Bonding states (shown in blue) are destabilized with DFT+U, 
antibonding states (shown in pink) are stabilized if they are occupied, and unoccupied 
states are destabilized. The Fermi energy (Ef) is indicated with a gray bar. 
Figure 5. Occupation matrix eigenvalues and eigenvectors for an example low-spin 
(left) and high-spin) molecule (here, Co tetraphenylporphyrin with O atom adsorbed). 
The fractional nature of eigenvalues is indicated in a symmetric coloring scheme that is 
red at 0.5 and white at both 0 and 1.   
Figure 6. Calculated linear response values of U for Pt(111) surfaces with adsorbed CO 
in atop, bridge, hcp hollow, and fcc hollow configurations. The unique atoms in the unit 
cell are shown in the shaded parallelogram. The range of computed values is indicated 
by the color bar (4.9 eV in red to 6.5 eV in blue) and compared to the U values 
computed in the pristine case at top right. 
Figure 7. Degree of charge transfer between Cu(111) and Co-tetrabromophenyl 
porphyrin. Sites with reduced charge density are shown in blue and enhanced are shown 
in red with respect to a reference isolated Cu(111) slab. Reproduced from J. Chem. 
Phys. 142, 240901 (2015), with the permission of AIP Publishing.  
Figure 8. CoTPP orientation on Au(111). The angle of the N-Co-N axis with respect to 
the [110]  direction (40°) is indicated in green. The unit cell and dimensions are shown 
in yellow.  
Figure 9. Saddle geometry of CoTPP on a single unit cell of the Au(111) surface. The 
angle of the pyrrole H to the Co-N-containing plane and an example dihedral of the 
phenyl group with respect to the porphine base are both annotated in green.  
Figure 10. Location of selected adsorption sites for oxygen atom and/or dioxygen on the 
porphyrin structure color-coded by site type: pyrrole carbons are shown in green, 
pyrrole nitrogens are shown in blue, cobalt center is shown in purple, and the phenyl-
connecting carbon is shown in orange. The pyrroles angled away from the Au(111) 
surface are at the top and bottom.  
Figure 11. Example of fcc supercell replication from primitive unit cell in the supercell 
builder extension to molSimplify. The unit cell vectors and angles are labelled (left), 
and the replicated atoms along each vector are color-coded accordingly (right).   
Figure 12. Flowchart of the surface placement tool for generating 3D coordinates of 
aligned adsorbates on a slab. 
Figure 13. Oxygen atom binding positions and GGA binding energies relative to half of 
a triplet O2 molecule ranging from -1.2 eV (green, more stable) to +1.2 eV (orange, less 
stable).  
Figure 14. Co and O projected density of states (PDOS) from GGA for a) oxygen bound 
on Co-N bond, b) oxygen bond on the C-C bond of a pyrrole group, and c) oxygen 



bound at the Co center, with the Fermi energy set to zero in all cases. Total PDOS for 
Co (black, solid line) and O (black dashed line) is indicated along with each d orbital (as 
shown in legend). The curves on the right-hand side of each plot are for the spin up 
states and the left-hand side for the spin down states.   
Figure 15. Spin density of the Co-centered oxygen atom binding mode (left) and pyrrole 
centered oxygen atom binding mode (right) with both side (top) and top view (bottom). 
The isosurfaces represent ± 0.002 e-, with red corresponding to positive spin and blue to 
negative spin. The Au closest to Co is spin polarized in the pyrrole case (top right).  
Figure 16. Double oxygen atom binding configuration structures and relative energy 
with respect to separated CoTPP/Au and triplet O2.  
Figure 17. a) The doublet-quartet spin state energetics (in eV) versus Hubbard U (in eV) 
for isolated CoTPP with no bound oxygen atoms (None, red squares), oxygen bound to 
Co (Co, purple circles), oxygen bound on the Co-N bond (Co-N, blue triangles), and 
oxygen bound on the pyrrole C-C edge (Pyr, green diamonds). b) The relative binding 
energies of oxygen atoms with respect to a half triplet O2 molecule dissociation limit in 
doublet or quartet Co, Co-N, and Pyr doublet and quartet configurations. The ground 
state spin at a given U value is indicated by a solid line, whereas the higher energy spin 
state is indicated with a dashed line. Only Co-N configurations change spin state, and 
all spin states are labelled adjacent to the plot. In both a) and b), Calculated values at 
quartet (stars) and doublet (crosses) U values are indicated on the plot. Values beyond U 
= 6 eV are extrapolated with a dotted line. 
Figure 18. Model of possible adsorption events on CoTPP/Au (black line) and CoTPP 
(red line) with a) DFT+U using an average value of U and b) GGA. The intermediates 
at each point are indicated in the bottom panel with cartoon descriptions. The high 
energy dissociated O radical is excluded from a) to keep scales comparable, and the Co-
N adsorption energies are indicated with faded dashed lines. The last two points 
correspond to two Co-N or two Pyr adsorbed oxygen atoms.  
 


