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Abstract
We present a novel technique for automatic program correction
in MOOCs, capable of fixing both syntactic and semantic errors
without manual, problem specific correction strategies. Given an
incorrect student program, it generates candidate programs from
a distribution of likely corrections, and checks each candidate for
correctness against a test suite.

The key observation is that in MOOCs many programs share
similar code fragments, and the seq2seq neural network model, used
in the natural-language processing task of machine translation, can
be modified and trained to recover these fragments.

Experiment shows our scheme can correct 29% of all incorrect
submissions and out-performs state of the art approach which
requires manual, problem specific correction strategies.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming - Program synthesis]: I.2.7 Natural Language Processing -
Language Models

Keywords language model, MOOCs, code repair and completion

1. Introduction
Massive open online courses (MOOCs) have become a popular way
of teaching programming. According to one ranking, 10 of the top
20 most popular MOOCs are in computer science, and several of
these are introductory programming courses1. An important problem
for MOOCS that aim to teach programming is providing accurate
feedback to students when they make programming mistakes; this is
particularly important for introductory programming courses where
students are not yet proficient with debugging techniques.

Prior work based on symbolic program synthesis has demon-
strated that with some instructor guidance, it is feasible to pro-
vide this feedback for small introductory programming assign-
ments (Rishabh et al. 2013). This prior approach, however, comes

1 http://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-
time/
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Figure 1. Data Driven Synthesis Framework

with significant caveats. First, it requires the instructor to provide an
error model that describes the space of corrections that the system
can explore. Writing an error model that is sufficiently detailed to
correct a large fraction of submissions but limited enough to allow
for short correction times is not easy to do. Second, the reliance
on symbolic analysis makes the system brittle; assignments need
to adhere to the subset of python modeled by the system, and stu-
dent programs must be syntactically correct for the system to even
attempt a correction.

This paper follows a different approach that is based on the idea
of data-driven synthesis (DDS), which has recently been applied
successfully in domains including program repair (Long et al. 2016),
inferring program properties (Raychev et al. 2015), and program
completion (Raychev et al. 2014). The general framework of DDS
is illustrated in Figure 1. In this framework, a learning algorithm
is used during training time to produce a model of the problem at
hand. Given an incomplete or erroneous program (the seed program),
this model can produce a distribution of candidate completions or
corrections. This distribution is used by a synthesis algorithm to
find candidate solutions that have high probability according to the
model and also are correct according to a potentially incomplete
specification. DDS is particularly well suited to our problem because
(a) given the scale of a MOOC, one can get a large corpus of
solutions to the exact same assignment, allowing us to train very
accurate models. Additionally, (b) in this domain it is already
customary to define the correctness of a submission in terms of
a rich hand-crafted test suite, which can serve as a very strong
specification for the DDS system.

1.1 Data Driven Corrections for MOOCs
We have developed a DDS-based system called sk_p that can correct
small programming assignments in Python. sk_p innovates on the
general DDS paradigm in three important respects, all suited to the
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characteristics of our domain. First, sk_p constructs models that are
purely syntactic; the model treats a program statement as a list of
tokens and assumes no further program structure or semantics, aside
from a distinction between whether a token is a variable name or not.
This is in contrast to prior approaches to DDS which rely heavily
on features derived from program analysis and which learn from a
more structured representation of programs.

Secondly, we use a modified seq2seq neural network (Cho et al.
2014), which learns the syntactic structures of program statements
and is able to produce valid statements for a candidate program. The
neural networks are trained on a corpus of correct programs, where
the correctness is established via the same test suite used to validate
candidate solutions. The neural-network model is generative, which
implies that we can easily use it to sample from the space of possible
fixes; This is in contrast to the models used by prior repair work
where the model was discriminative, and therefore the synthesis
algorithm had to explicitly enumerate a large space of possible
corrections to find the one with the highest probability (Long et al.
2016).

A third surprising aspect of our solution is that the models are
very local: At each correction site, the model only uses one statement
before and after the site as context to generate a distribution of
corrections, ignoring the rest of the program. This model is called
a skipgram, a popular model used in NLP in the task of word
embedding (Mikolov et al. 2013). In essence, our method learns
short code fragments that appear frequently in correct solutions and
identifies fragments in incorrect submissions that look similar. We
show that this very local model is actually accurate enough that the
synthesis component of DDS can quickly find a correct solution
with a simple enumerate-and-check strategy.

1.2 Results
We evaluate sk_p on 7 different Python programming assignments
from an early version of 6.00x in MITx. The training sets range in
size from 315 to 9078 problems, and resulting models are tested on
a separate set of incorrect programs of which sk_p can correct 29%.
The details of the experiments are explained in 6, but overall, our
empirical evaluation allows us to make the following observations:

sk_p is competitive with Autograder: Of the 7 benchmarks as-
signments, autograder (Rishabh et al. 2013) provides correction
models for 3 assignments which can generate good quality feedback
in real-time (under 5 seconds per submission) at an average accuracy
of 30%. sk_p, which has an average runtime of 5.6 seconds, outper-
forms autograder marginally with an average accuracy of 35% on
these 3 assignments. This is surprising given the fact that our system
does not rely on the instructor to provide a correction model, and its
only knowledge of the python semantics comes from its ability to
run the python interpreter off-the-shelf.

Syntactic errors matter: On average, 18% of sk_p’s corrections
are fixing syntactic errors; On certain benchmarks, syntactic errors
account for 40% of the fixes. These experiments highlight the
importance of handling programs with syntactic errors which do not
parse.

Efficacy of Neural Network: We evaluate our neural network
model on the task of fragment learning by considering an alternative,
exhaustive model that explicitly memorizes all the program frag-
ments during training. We find that the neural network out-performs
the exhaustive model when there is a sufficient number of training
programs relative to the total number of fragments that needs to be
learned. The neural network’s average accuracy of 29% comes close
to the average accuracy of 35% of the exhaustive model.

1.3 Contributions
The paper makes the following contributions:

• Correction by Fragment Completion: We validate a hypothe-
sis that using fragment completion as a mechanism for correction,
recalling similar fragments from correct programs, works well
in the context of MOOCs.

• Purely Syntactic Learning: The fragment completion model
using neural networks is purely syntactic: it treats a program
statement as a sequence of tokens, with the candidate missing
statement generated verbatim one token at a time. A direct con-
sequence of this syntactic learning is the ability to fix syntactic
errors, without requiring the seed program to parse.

• Learned Correction Model: Compared to prior work where a
different, manual correction model is required for each assign-
ment, the specifics of how to complete a fragment are learned
from data.

• Simple Synthesis Procedure: The fragment completion model
using neural networks generates program statements that parse
with high probability; these statements are used directly to form
a candidate program without further constraint solving. As a
result our synthesis procedure does not need to perform analysis
on the candidate programs, and is a simple enumerate and check
framework using the test suite.

The rest of the paper elaborates on the details of our technique.

2. Overview
Consider the programming assignment of writing a function to eval-
uate an uni-variate polynomial, represented as a list of coefficients
(poly), at a point x. Below is a student solution which is incorrect:

def evaluatePoly(poly , x):
a = 0
f = 0.0
for a in range(0, len(poly) − 1):
f = poly[a]∗x∗∗a+f
a += 1

return f

This code would have been correct if the for-loop is allowed to
iterate to the full length of the input len(poly). However, sk_p was
able to correct this program differently as follows:

def evaluatePoly(poly , x):
a = 0
f = 0.0
while a < len(poly ):
f = poly[a]∗x∗∗a+f
a += 1

return f

We see sk_p replaced the for-loop with a while-loop. While
removing the−1 at the end of the for loop, a small local modification,
would also produce a semantically correct program, the correction
suggested by sk_p is both semantically correct and more natural. We
now give a high level overview of our correction algorithm, starting
from the incorrect program and ending at the correct program.

Renaming Variables
In sk_p, a program statement is represented syntactically as a
sequence of tokens. A key assumption with this representation is
the existence of a finite sized vocabulary: when modeling a sentence
as a sequence of words in NLP, a dictionary is customarily used to
bound the total number of words. We bound the total number of
tokens by renaming variable names in a primitive manner: keywords
such as “if”, “for”, common function names and method names such
as “len”, “range”, along with the arithmetic operators are specified
to be excluded from renaming. Any unspecified tokens are renamed
from x0 up to xK . For a given assignment, the upper bound for
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K across all submissions is typically small. Here is the resulting
program from renaming the variables:

_start_
x2 = 0
x3 = 0.0
for x2 in range ( 0 , len ( x0 ) − 1 ) :
x3 = x0 [ x2 ] ∗ x1 ∗∗ x2 + x3
x2 += 1

return x3
_end_

Note that we only represent the body of the function definition,
and an artificial start and end statement are padded around the
statements, which will help in forming the program fragments later.

Forming Partial Fragments
In sk_p, we consider the program fragments of 3 consecutive
statements. A fragment is formed for each of the original statement
in the program, consisting of its previous statement, itself, and the
next statement. In the actual implementation, we also consider
other form of fragments which allow the algorithm to insert and
remove statements. Here are the first three fragments of our example
problem:

Fragment 1:

_start_
x2 = 0
x3 = 0.0

Fragment 2:

x2 = 0
x3 = 0.0
for x2 in range ( 0 , len ( x0 ) − 1 ) :

Fragment 3:

x3 = 0.0
for x2 in range ( 0 , len ( x0 ) − 1 ) :
x3 = x0 [ x2 ] ∗ x1 ∗∗ x2 + x3

For these fragments, the original program statement in the mid-
dle is removed forming partial fragments, consisting of the two
surrounding statements and a “hole” for the missing statement:

Partial Fragment 1:
_start_

x3 = 0.0

Partial Fragment 2:
x2 = 0

for x2 in range ( 0 , len ( x0 ) - 1 ) :

Partial Fragment 3:
x3 = 0.0

x3 = x0 [ x2 ] * x1 ** x2 + x3

In order to generate the distribution of candidate programs, sk_p
will pass each of these fragments to the statement prediction model
which will generate a list of likely candidate statements that should
fill the hole, possibly forming program fragments that resembles
that of a correct program.

Predicting Statements from Partial Fragments
The statement prediction model is tasked with generating candidate
missing statements, using the partial fragment as context. We briefly
describe how the model is trained and explain how it works on a
high level.

Training: Our statement prediction model is first trained on a
corpus of fragments from correct programs. Each correct fragment
is converted to an input-output training pair: The partial fragment
(with a hole) is the input, and the missing statement is the output.
For instance, here is one of the training input-output pair, derived
from a similar correct fragment:

Example Training Input:
else:

x2 += x0[x3] * (x1 ** x3)

Example Training Output:

while x3 < len ( x0 ) :

Statement Prediction Model: Our model is implemented using a
neural network, using architecture inspired by the seq2seq (Cho et al.
2014) network and the skip-thought network (Kiros et al. 2015). The
seq2seq network has been traditionally used in machine translation.
The seq2seq network consists of an encoder and a decoder: the
encoder reads the input sequence of words (say in English) one word
at a time, and updates an internal state each time. When the encoder
finishes reading the input sequence, its internal state represents a
high level summary of the English sentence. This state is then passed
into a decoder, which generates words (say in Spanish) one word
at a time via sampling, effectively translating the English sentence
into Spanish.

Our statement prediction model is almost identical to the seq2seq
architecture, except instead of one encoders we use two different
encoders, one for the preceding statement in the partial fragment, and
one for the following statement. The two encoders summarize each
statement independently, and their summaries are joined together and
passed to the decoder to generate the candidate missing statement via
sampling. A particular instance of this sampling is shown in Figure 4.
In the actual implementation, we use beamsearch, a deterministic
algorithm that is guaranteed to return high probability statements
instead of actual sampling.

Candidate Statement Generation: For Partial Fragment 3, our
model produces the following candidate statements, along with their
probabilities conditioned on the partial fragment.

Input (Partial Fragment 3):
x3 = 0.0

x3 = x0 [ x2 ] * x1 ** x2 + x3

Top 3 output candidate statements with probabilities:

0.141, while x2 < len ( x0 ):
0.007, for x4 in range ( len ( x0 ) ) :
0.0008, for x4 in range ( 0 ) :

sk_p computes a distribution for every partial fragment in the
original program. Here we show the candidate statements, with
probabilities, on the first two fragments:

Candidate Statements for Partial Fragment 1:

0.321, x2 = 0
0.009, x2 = len ( x0 [ 0 ]
0.008, x2 = 0.0

Candidate Statements for Partial Fragment 2:

0.00013, x3 = 0
1.77e−6, x3 = 0.0
8.55e−8, x3 = 1
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Note that the neural network is not guaranteed to generate
syntactically correct fragments, as illustrated by the results from
Partial Fragment 1.

Finding a Candidate Program
The model produces a distribution of corrections for every statement
in the program. Note, however, that in the case of the first and second
statements, the highest probability statements leave the statement
unchanged or almost unchanged, whereas for the third statement,
the highest probability candidate is the replacement necessary to fix
the program, although that will not always be the case. In general,
the distribution over the space of all possible combinations of
corrections needs to searched explicitly.

Space of Candidate Programs To form a candidate program,
sk_p considers the set of candidate programs derived by applying
simultaneous replacement on every line of the original program,
choosing a statement from the set of candidate statements of its
partial fragment to replace it.

For instance, if we replace all the original statements by choosing
the 2nd candidate statement, the resulting candidate program would
have these first 3 lines:

x2 = len ( x0 [ 0 ]
x3 = 0.0
for x4 in range ( len ( x0 ) ) :
...

The process of simultaneous replacement is generalized in our
work so that we can generate candidate programs that also have
insertions and deletion of statements by considering other form of
fragments. In our work we also consider the original statement as
one of the candidates (even if it did not appear in the generated
distribution) so sk_p always has the option of not replacing the
original statement. This is useful when an unfamiliar fragment is
given to the statement prediction model, and the model cannot give
high quality candidate statements. This is explained in more detail
in Section 5.

Distribution of Candidate Programs We define the probability of
a particular candidate program as the product of the probabilities
of its chosen candidate statements. The search procedure uses the
top-k candidates (generated by beam search) from the statement
prediction model, and sort them into a priority queue based on their
probabilities. Each enumerated candidate program is checked for
correctness against the spec, and the first correct program (the one
with the highest probability and also correct) is returned. For our
example, it is this one:

x2 = 0
x3 = 0.0
while x2 < len ( x0 ) :
x3 = x0 [ x2 ] ∗ x1 ∗∗ x2 + x3
x2 += 1

return x3

This correct program is the 337th program to be enumerated.
Once a correct program is found, the variable names are returned to
their original names, and the program is given back to the student as
feedback.

3. Correction Model
Our approach fixes an incorrect program by altering it via replace-
ments, insertions, and deletions. These changes are applied on a
statement level: An entire statement is inserted or replaced. To de-
cide how these changes are applied, we use a method which we call
Fragment Completion. For each statement in the incorrect program,
we consider the program fragments consisting of itself and its previ-
ous and next statements. We then ask whether this program fragment

can be made to more resemble a program fragment from a known
correct program. This is done by removing the original statement,
forming a partial fragment consisting of just the surrounding state-
ments, then completing the partial fragment with other statements.

3.1 Skipgram Models
Our work is heavily inspired by Skipgram models, which have been
widely used in natural language processing (Mikolov et al. 2013;
Pennington et al. 2014) to learn lexical semantics in terms of co-
occurrence patterns. Consider the sentence “I like to write computer
programs with an editor.”. The word programs has other words such
as computer and editor occurring around it in the sentence, which
are correlated. Skip-gram models utilize these correlations to learn
vector representations for the words such that semantically similar
words have comparable representations. In fact, if we were to hide
the word program away, one can still conceivably recover this word
back by looking at its surrounding words such as computer and
editor.

Recent work has extended the idea of the basic Skipgram model
to the sentence level (Kiros et al. 2015) where instead of a sequence
of words, the correlations between a set of sentences are considered.

In our work, we explore the following question: Instead of words
and sentences, what if statements in a code fragment are correlated in
a similar way? The programming equivalent to a skipgram, which is
made of words and sentences, is that of a Partial Program Fragment,
consisting of a pair of program statements with a hole in the middle,
which can be completed with an Missing Statement. We show this
simple model can be adapted for program correction that is able to
correct a wide varieties of mistakes.

3.2 Statement Transformations by Fragment Completion
Our method corrects an incorrect program by applying to it a
series of statement transformations. A statement transformation
alters the incorrect program X by either replacing an existing
statement, inserting a new statement, or deleting a statement. These
transformations are not applied in a vacuum. Specifically, each
transformation also has a context of partial fragments in which
to inform its decision. Formally, a statement transformation is a
pair: The first element is a partial fragment, the two surrounding
statements where the transformation is applied; The second element
is a candidate statement used to perform the transformation by
completing the partial fragment.

Let the incorrect program be denoted as X = X0 . . . Xn+1

where Xi is the i-th statement of the incorrect program, and padded
with an artificial “begin” statement X0 and an “end” statement
Xn+1. We now formally define 3 kinds of statement transforma-
tions:

• Replacement Ri = ((Xi−1, Xi+1), Yi): The statement Xi is to
be replaced by the candidate statement Yi. The partial fragment
context for replacing statement Xi is the surrounding statements
Xi−1 and Xi+1.

• Insertion Ii = ((Xi, Xi+1), Yi,i+1: A new candidate statement
Yi,i+1 is to be inserted between the statements Xi and Xi+1,
Xi and Xi+1 also serve as the context for insertion.

• Deletion Di: The statement Xi should be removed. This is real-
ized using the replacement transformationRi = ((Xi−1, Xi+1), ε),
where instead of a candidate statement Yi we replace Xi by the
empty statement ε.

Note we can express the null transformation under this scheme:

• Ri = ((Xi−1, Xi+1), Xi): This will replace Xi with Xi itself,
causing no change.
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• Ii = ((Xi, Xi+1), ε): An empty statement is inserted between
between statements Xi and Xi+1.

The null transformation will be useful in section 5 where we address
the issue with unseen skipgrams.

The three kinds of statement transformations are shown in Figure
2. For each transformations, the partial fragment context statements
are connected to the tails of the arrows, and the candidate statement
that completes the fragment is pointed to by the heads of the arrows.
The direction of the arrows indicates that we are predicting the
candidate statement from its fragment context.

Figure 2. Statement Transformations

4. Statement Prediction Model
We notice that although there are 2 different kinds of corrections:
replacement and insertion (deletion is modeled as replacement by
the empty statement), they all share the same fragment completion
structure: A candidate statement is used to complete its partial
fragment context. This suggest a single model can be trained for
both replacement and insertion tasks instead of two separate models.
We formalize the prediction task as follows:

Given a pair of program statements X,X ′ as context, predict a
list of likely candidate statements Y 1 . . . Y K that can exist between
X and X ′ (note: the candidate statements can be the empty state-
ment ε as well), along with their probabilities Pr(Y j |X,X ′). We
ask the prediction model for a list of candidates instead of a single
candidate because given a skipgram context, there might be multiple
ways of completing it in a correct program. Therefore, a conditional
probability distribution Pr(Y |X,X ′) is constructed and the top k
candidates are chosen from this distribution.

4.1 Generating Training Fragments
To obtain the distribution Pr(Y |X,X ′), we first need to train the
model on a corpus of correct program fragments.

Our dataset is not particularly large for some of the benchmarks.
For comparison in (Carpenter. 2005), gigabytes of natural language
corpus being read to train a language model. As a result we might
have a problem of data sparsity due to our relatively small dataset,
and our model will have a hard time finding patterns in the (irregular)
training data.

To resolve this, we apply a rudimentary regularity filter to the
training programs, using a correct program for training only if:

• the number of lines in the solution is smaller than a bound seq_n
• the maximum number of tokens within a statement is smaller

than a bound seq_l
• the tokens a program use is within the set of commonly used

tokens freq_toks

The bound seq_n is computed separately for each benchmark by
first collecting the number of lines used in all the submissions, and
taking the bound such that 97% of the programs have line number
less than it. The bound seq_l is computed similarly, except by first
collecting the maximum length of any statement of a program to

a benchmark. The set of commonly used tokens is collected by
counting all the token usages across the programs in a benchmark,
and taking the top 99.9% of the most frequently used tokens. For our
benchmarks, the regularized data is about 90% of the unregularized
data.

From the regularized training data, we set up the training for the
skipgram language model as follows:

Given a correct program X of n statements X1 . . . Xn, we
first pad the program statements with two artificial statements
X0 and Xn+1 on front and back forming n + 2 statements
X0, X1 . . . Xn, Xn+1. Then, for every 2 consecutive statements in
the padded statements, we generate the training data:

(Xi, Xi+1)⇒ ε ∀i ∈ 0 . . . n

This training data express the following correction strategy:
Given the partial fragment that resembles two consecutive state-
ments from a correct program, Xi, Xi+1, no statement should exist
between them.

Also, for every original statement Xi ∈ {X1 . . . Xn} we gener-
ate a training data:

(Xi−1, Xi+ 1)⇒ Xi ∀i ∈ 1 . . . n

This training data pair express a different correction strategy:
Given a partial fragment that resembles the surrounding statements
ofXi from a correct program, the statementXi should exist between
them.

We shows how to generate data from a correct program in
Figure 3. Here, each pair of arrows represents a pair of training
data from the input partial fragment to the output missing statement.

Figure 3. Generating Training Input Output

4.2 Neural Network Model
We now explain the implementation of the statement prediction
model. In this work, we propose an encoder-decoder model for
statement prediction using recurrent neural networks (RNN). Rather
than storing the program fragments inputs and the candidate state-
ment outputs verbatim, this model is capable of reading the context
statements as inputs, and generate candidate statements as outputs.

Tokenization and Variable Renaming
To use RNN in the task of statement prediction, we think of each
statement as a sequence of atomic tokens such as variables, key-
words, indentations, and arithmetic operators. One key concern is
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the issue of unbounded number of tokens: For our approach to work,
the total number of tokens need to be bounded, yet students are free
to invent an arbitrary number of variable and function names. To
solve this issue, we rename the variables in the student submissions,
and since the total number of variables are typically bounded in
the MOOCs setting, the total number of tokens after renaming are
bounded. We do not rename functions since the student implement
programs that consist of a single function without helpers.

Our algorithm tokenizes the entire student solution, then for each
named token in the solution, attempts to rename it to xi where i is
the ith unique named token seen by the algorithm. To distinguish a
variable name such as “myTup” from a useful function name such
as “range”, we apply the following strategy: First, a token statistic is
collected across all correct student submissions, recording all named
tokens along with the frequencies these tokens are being used in the
submissions. Second, we construct a list of “forbidden” names: a list
of names that should not be renamed. In the beginning, the forbidden
list is empty, which would cause useful functions such as range to
be renamed xi, causing all correct programs to become incorrect.
The list of forbidden words is gradually grown by introducing the
most frequent tokens from the token statistic, thus, useful functions
such as range that is used in every submission, along with common
variable names such as x are no longer being renamed. This growth
continues until the number of correct programs reaches 98% of the
original number of correct programs, with obscure library calls still
being re-named at the expense of correctness. Then, this forbidden
list is reduced by attempting to remove each token from the list: If
a common variable x is removed, the number of correct programs
would not change, but if an actual function range is removed, the
number of correct programs would decrease. By the end, we would
have obtained a list of useful function names which should not be
renamed.

Once tokenized, one can rewrite the skipgram statements and the
candidate statement as a sequence of tokens as follows:

X = x1, x2, . . . xN

X ′ = x′1, x
′
2, . . . x

′
M

Y = y1, y2, . . . yR

Recurrent Neural Network and LSTM
We now briefly describe RNN, which are widely used to model
sequential data. Conceptually, an RNN captures sequential compu-
tation by using RNN cells, which is a parametrized update function
that processes an input at each timestep. The RNN cell takes in
an input xt (the current data at iteration t) and a previous hidden
state ht−1 as arguments, and produces two outputs: the current hid-
den state ht, and a distribution of possible values for the output yt,
Pr(yt|ht−1, xt). For our case, each input and output for the RNN
has as many possible values as there are distinct number of tokens.
Figure REF depicts this high level view. We use the generic letter θ
to denote all the learnt parameters of the RNN cell.

In this work, we employ LSTM (Gers et al. 2000), which is
a particular implementation of the RNN cell that works well in
remembering long term dependencies. In an LSTM, the hidden
state ht is comprised of 2 parts, the hidden cell state ct and the
output yt. The rationale behind this is that the hidden cell state ct
is now used to primarily remember long term dependencies, while
the output yt is used as a proxy for short-term dependencies. The
input, output, hidden state, and parameters are encoded as continuous
valued vectors. In particular, the input and output vectors of length
Ntk, the number of possible distinct tokens, where the value at the
ith index denotes the probabilities of the input(or output) takes
on the value of the ith token. and the LSTM cell as a function is
expressed as a set of update equations:

it = σ(U (i)xt + V (i)yt−1 + b(i)),

ft = σ(U (f)xt + V (f)yt−1 + b(f)),

ot = σ(U (o)xt + V (o)yt−1 + b(o))

zt = tanh(U (z)xt + V (z)yt−1 + b(z))

ct = it � zt + ft � ct−1

yt = ot � tanh(ct)

(4.1)

Here, σ represents the sigmoid function and � is elementwise
multiplication. U (i), U (f), U (o), U (z) and their V and b counter-
parts are parameters (expressed as matrices) learnt by the model.
To represent that an input xt is the ith token, it is modeled as a
1-hot vector, having a value of 1 at the ith index and 0 everywhere
else. Similarly, the vector yt can be normalized (using a soft-max
function) and the value at the ith position denotes the probability
that yt being the ith token.

For clarity, we will use the high level RNN formulation where
we denote the hidden state by ht.

Encoder Decoder Model
We use RNN in two forms: (1) as an encoder to output a vector
vC representing a summary for the context statements, and (2) as a
decoder to generate a candidate statement Y given the context vector
vC . Figure 4 shows an overview of our encoder decoder architecture
generating a candidate statement from its skipgram context.

Figure 4. Encoder Decoder Model

To encode the two skipgram context statements X,X ′, we
use two different encoders colored blue and green, one for each
statement. For the encoding task, we only care about the hidden
states (horizontal arrows in the encoding network) , which contains a
summary of all the prefix of the input sequence at each step. The last
hidden states are labeled hN and h′M , they are vectors representing
the overall summary of the input X and X ′ respectively. These two
vectors are concatenated (forming a single, longer vector) and passed
through a linear layer (a matrix of learnt parametersïijŇyellow in the
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figure) to obtain the context vector vC . The outputs of these RNNs
are not used for encoding, and are not shown in the figure.

Now, from vC , we generate an output statement Y by using
a decoder RNN, colored red. As the context vector vC serves as
a summary for the context XX ′, we can rewrite Pr(Y |XX ′) =
Pr(Y |vC). We will first explain the generation of Y as a random
sampling process from the distribution Pr(Y |vC), then briefly
describe beam-search, which is a way of reliably generating an
approximated top-k candidates from the distribution without random
sampling.

To obtain a sample from the distribution Pr(Y |vC), we first
rewrite Y as a sequence of tokens, then factor it using conditional
probabilities:

Pr(Y |vC)

= Pr(y1, y2 . . . yR|vC)

= Pr(y1|vC)Pr(y2|vC , y1) . . .

P r(yR|vC , y1 . . . yR−1)

(4.2)

We now show how the decoder RNN computes each of the
conditional probabilities in the product of the last equation. At the
first step, the RNN cell takes in a fixed artificial start symbol 〈s〉
as input, along with the context vector vC (as the first hidden state
vC = h0) to produce the first hidden state h1, and the conditional
distribution for the first output token Pr(y1|vC). We sample from
this distribution to obtain the first output token. This output token
is fed back into the RNN cell at the second step, along with the
hidden state h1 to obtain the hidden state h2 and the conditional
distribution Pr(y2|vC , y1) = Pr(y2|h1, y1), and again we sample
this distribution for the second token. This process continues,
and at each step t we sample from the conditional distribution
Pr(yt|vC , y1 . . . yt−1) = Pr(yt|ht−1, yt−1) for the tth token,
where the hidden state ht−1 is used to capture the dependency
on all previously generated tokens.

Hence, we have the likelihood of the entire sequence generated
by the decoder (via sampling) as follows:

Pr(y1 . . . yR|vC) =
∏
t

Pr(yt|ht−1, yt−1)

We have now described how to use the encoder-decoder archi-
tecture with RNNs to sample from the distribution Pr(Y |XX ′).
Conceivably, one can repeat the sampling process many times and
take the top-k candidates for the prediction task, but it may require
many samples and be expensive.

A better alternative to sampling is to use a Beam Search (Lafferty
et al. 2001), which we will briefly describe. Rather than building
a single candidate statement one token at a time, in beam search,
we keep track of the top-k candidate prefixes. We deterministically
choose the top-k tokens from the distribution Pr(yt|ht−1, yt−1)
and store all possible ways of growing the top-k prefixes by ap-
pending these tokens. This would cause an explosion of number of
candidates to be stored, thus we prune the candidates according to
the prefix probability Pr(y1 . . . yt|vC) to keep the total number of
candidate prefixes under k.

In our example, the top 3 candidates decoded by our beamsearch
are as follows:

0.141, while x2 < len ( x0 ):
0.007, for x4 in range ( len ( x0 ) ) :
0.0008, for x4 in range ( 0 ) :

Implementing the Statement Prediction Model: The statement
prediction model is implemented using the TensorFlow (Abadi
et al. 2016) framework. In particular, the two encoder cells and
the decoder cell are implemented as a 2-layer stacked LSTM with

50 hidden units each. The network is trained using batched gradient
descent with a batch of size 50, and optimized using the RMSProp
optimizer. The training is done over 50 epochs, at each epoch, we
measure the cross entropy loss on the validation set, with the lowest
cross entropy of the 50 epochs stored.

5. Generating Candidate Programs
So far we described a statement prediction model: Given a pair of
statementsXX ′ as context, it will generate a list of top-k candidates
Y 1 . . . Y K that can exist between X and X ′. To use this model for
correction, however, requires another piece of information: Where
should the correction happen?

One can train yet another model for the error localization task.
Given an incorrect program, this model will predict the locations
to perform the statement replacements and insertions. Training this
model would require a pair of of programs X ,Y such that Y is
a correction for X . In this work, we opt for a simpler approach
by using the statement prediction probabilities to perform the
localization task implicitly: Given an incorrect program X =
X0 . . . Xn+1 (with padded artificial statements X0 and Xn+1),
we put all the statements X1 . . . Xn up for replacement using our
statement prediction model. The rationale is that a correct statement
Xi is more likely to be present between the skipgram Xi−1 and
Xi+1 than an incorrect statement. Therefore, if we use the statement
prediction model to replace Xi, with high probability our prediction
model would regenerate Xi back, which is equivalent to identifying
that Xi does not need to be corrected. On the otherhand, suppose a
statement Xj is incorrect, then with high probability the statement
prediction model would produce a different statementX ′j in its place
to complete the skipgram Xj−1, Xj+1, effectively identifying that
this statement needs to be replaced, and providing the candidates.
This implicit localization is also performed for the insertion task by
considering insertion between all pairs of statements from X . If an
insertion is not needed, we leave it up to our prediction model to
predict the empty statement ε with a high probability.

Given an incorrect program X , we obtain a candidate program Y
by applying a single statement replacement on each of the existing
statements of X , and applying a single insertion between each
pairs of consecutive statements in X as well. To decide which
candidate statements should be chosen for these replacements and
insertions, we perform a search over the space of all possible
candidate programs, Ȳ , which is defined as follows:

Ȳ = Y0,1 × Y1 × Y1,2 × Y2 × . . .× Yn × Yn−1,n+1

Yi = [Y 1
i . . . Y

K
i ]

Yi,i+1 = [Y 1
i,i+1 . . . Y

K
i,i+1]

(5.1)

Here, Yi is the top-k candidates for replacing statement Xi. It is
generated by our statement prediction model with the input skipgram
Xi−1, Xi+1. Similarly, Yi,i+1 is the top-k candidate statements for
insertion between the statements Xi and Xi+1, these candidates are
generated by the statement prediction model with the input skipgram
Xi andXi+1. The space of candidate programs Ȳ is shown in figure
5, where each pair of arrows indicates a usage of the statement
prediction model, and each row of colored bars represent a list of
candidate statements.

To select a candidate program out of this search space, we choose
1 candidate statement out of every list of candidate statements, and
concatenate the chosen statements together to form a candidate
program. Since there are k choices for each list, there are a total of
k2n+1 programs in our search space. Clearly a naive enumeration
over the search space is infeasible, but each candidate statements also
come with probabilities of generating that candidate, which we can
use to construct a probability distribution Pr(Y|X ), the probability
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Figure 5. Space of Candidate Programs

of generating the candidate program given the original incorrect
program. We can use this probability to guide our enumeration,
trying more likely candidate programs first before attempting a less
likely one. We define Pr(Y|X ) as follows:

Pr(Y|X )

= Pr(Y0,1, Y1 . . . Yn,n+1|X0 . . . Xn+1)

=
∏
i

Pr(Yi|Xi−1, Xi+1)
∏
j

Pr(Yj,j+1|Xj , Xj+1)
(5.2)

The probability of generating a candidate program Y is factored
into a product, each element of the product is the probability of
generating a particular candidate statement ,either for replacement
or insertion, given by the statement prediction model. Notice that we
made an independence assumption where each candidate statement
is generated from the skipgram context in the incorrect program
X , rather than being dependent on the other candidate statements.
An alternative way of generating a candidate program would be to
apply the statement transformations sequentially, so that subsequent
transformations can depend on previous transformations. In practice
though, that scheme is inefficient to run and does not yield much
accuracy improvements.

Dealing with Unseen Partial Fragments
Our model is trained on a corpus of fragments collected from correct
programs. This corpus, however large, cannot be complete. As
a result, there will be instances where our algorithm confronts a
program fragment that is unfamiliar, because similar fragments do
not exist in the training set. More specifically, there will be instances
where a partial fragment is given to the statement prediction model,
and all the top-k candidates generated are nonsensical. Here’s are
some nonsensical candidate statements generated by our model on
an unfamiliar program fragment:

if len ( x0 ) :
if len 1 [ ) :
if len 1 : 1 ] :
if len 1 : 1 : 1 :

As we can see, if we insist on replacing the original program
statement by one of the nonsensical candidate statements, our al-
gorithm would fail on a program with unfamiliar fragments. To
remedy this, we artificially add in the original program statement as
one of the candidate statements for replacement, with an artificial
“probability” of 1.0. Similarly, an artificial candidate for insertion
by the empty statement is also introduced. The result of these arti-
ficial modifications is that or distribution over candidate programs
Pr(Y|X ) presented earlier becomes a likelihood rather than a real
probability, but otherwise remains unchanged.

A consequence of introducing these artificial modification is its
effect on our enumeration: The program with the highest likelihood

is the original program, and this likelihood gradually decreases as our
enumeration explores different combination of changes, gradually
modifying the original program to be more different.

The Enumeration Algorithm
We now present the algorithm for enumerating the space of candidate
programs.

We’ll denote all the candidate statements (both for Insertions
and Replacements) as yij , where the subscript i indicates the list of
candidate statement this candidate is chosen from, and the subscript
j denote it is the jth candidate from the list. A bigger index of j with
the same index i would yield a candidate statement with a smaller
probability.

We denote the cost of the program cost(prog) as the negative
log-likelihood of the probability Pr(Y|X ), where a bigger value
correspond to a less likely program.

Let’s define a next function, that takes in a candidate yjk, and
return the next, more costly candidate from the candidates generated
from beamsearch. next(yj,k) = yj,k+1.

We can now formally write our search algorithm over the space
of possible corrections as follows:
@Input: candidates yjk for each Yj
@Output: A correct program or Failure
programSearch({yjk}):
prog = [y10, ..., yr0]
budget = 0
Q = Queue()
Q.push(prog, cost(prog))
while budget<B:
prog = Q.pop()
if correct (prog):

return prog
for j in 1.. r :
nxt_prog = [candidate

for candidate in prog]
nxt_prog[j ] = next(nxt_prog[j ])
Q.push(nxt_prog, cost(nxt_prog)

return FAIL

This algorithm searches through the space of possible corrections,
starting with the original program which has no changes, and
gradually move away to a more expensive programs. It does so
by popping the least costly program from a queue, and considering
all possible ways of making this program more costly by trying out
the next candidate statements at each of its possible sites. Since we
use a queue to keep track of the least expensive program, the first
program to be returned is guaranteed to be the most likely candidate
program given the original incorrect program. The enumerate is
bounded above by a budget B, in practice we use the value 5000,
i.e. 5000 candidate programs are enumerated before the algorithm
returns FAIL.

6. Experiments
We design the experiments to evaluate the overall accuracy of sk_p,
and perform a comparison study against autograder (Rishabh et al.
2013), the state of the art approach in automatic feedback generation
for MOOCs. We also provide a breakdown on the kind of programs
corrected by sk_p, validating our claim that syntactic errors are
worth correcting, and that the fragment completion model works
well even when confronted with a novel program. Finally, we attempt
to give a crude upper-bound on the performance of our approach
by implementing an exhaustive model, capable of memorizing all
program fragments perfectly.

Data Set Generation
To perform our experiments, the benchmarks need to be split into
training, validation, and testing sets. For our method, the training is
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benchmarks training validation testing
computeDeriv 1252 140 263
computeRoot 1617 180 84
evaluatePoly 2313 258 97
getAvailableLetters 1051 117 59
getGuessedWord 315 35 127
isWordGuessed 902 101 109
oddTuples 8720 969 1981

Table 1. Data breakdown for each benchmarks

done exclusively on correct programs and testing is done exclusively
on incorrect programs.

A naive scheme of splitting the data would be take all correct
programs as training data, and take all incorrect programs as testing
data. This naive scheme is misleading for the following reason: For
each benchmark, the student submissions are ordered by submission
time, an incorrect submission may be corrected by the same student
sometime later in the data set. Under this scheme, a model trained on
a student’s correct solution will be used to correct his own mistakes.

To avoid this, we split the data into to parts: an “early” part
consists of the first 90% of the submission, and a “late” part consists
of the remaining 10% of the submission. The early part is filtered
for correctness, and the correct programs are split 90% - 10% for
training and validation. All incorrect programs in the early part
are discarded. Similarly, all correct programs in the late part are
discarded, and the incorrect programs become the testing set. Under
this scheme, a model learned from past correct programs is used to
correct future incorrect programs.

Table 1 shows the data breakdown for our benchmarks. The
most salient aspect of these numbers is that there is a considerable
variance in the number of training data, ranging from 315 correct
programs to 8720 correct programs. We will discuss its effect on the
accuracy of our approach later.

Accuracy
The accuracy of sk_p on the test set is shown in Table 2. The average
accuracy for all the benchmarks is 29%, with individual accuracy as
low as 13% and as high as 49%.

Of the 7 benchmarks assignments, autograder (Rishabh et al.
2013) provides correction models for 3 assignments which can
generate good quality feedback in real-time (under 5 seconds per
submission) at an average accuracy of 30%. sk_p outperforms
autograder with an average accuracy of 35% on these 3 assignments,
with an average correction time of 5.6 seconds. The result of this
comparison is shown Table 3.

Of these assignments, sk_p significantly out-performs auto-
grader on 2 assignments while losing badly on the assignment com-
puteDeriv. The discrepancy of accuracy highlights an important
distinction: autograder use a well-tuned manual correction model,
while sk_p learns appropriate fragment-completions from data. In
the computeDeriv benchmark, a common mistake is the omission
of a basecase, which can be fixed by inserting 2 statements together
(an if statement followed by its body). This omission of basecase
is explicitly encoded in the correction model for autograder, which
handles it readily. On the other hand, since sk_p only inserts up to 1
statement between every pair of statements, it is inherently unable
to correct this error. However, for the other 2 assignments, the cor-
rection model is not quite straight forward as adding a base case,
and sk_p is able to achieve far better results by learning from data.

benchmark #test sk_p acc
computeDeriv 263 33 0.125
computeRoot 84 15 0.179
evaluatePoly 97 47 0.485

getAvailableLetters 59 19 0.322
getGuessedWord 127 33 0.260

isWordGuessed 109 21 0.193
oddTuples 1981 871 0.440

Table 2. Accuracy of sk_p

benchmark #tests sk_p auto sk_p acc auto acc
computeDeriv 263 33 131 0.125 0.498

evaluatePoly 97 47 19 0.485 0.196
oddTuples 1981 871 383 0.440 0.193

Table 3. Comparison between sk_p and autograder

benchmark syn sem fresh syn% fresh%
computeDeriv 4 29 29 12.12% 87.88%
computeRoot 6 9 12 40.00% 80.00%

getGuessedWord 17 30 16 36.17% 34.04%
isWordGuessed 2 17 11 10.53% 57.89%

getAvailableLetters 0 33 13 0.00% 39.39%
evaluatePoly 1 20 12 4.76% 57.14%

oddTuples 195 676 117 22.39% 13.43%

Table 4. Breakdown of different kinds of corrections

Kinds of Corrections
To understand what kinds of errors sk_p can fix, we provide a break-
down of different kinds of corrections on each of the benchmark
assignments, shown in Table 4

For these benchmarks, syntax errors constitute 18% of all the
errors fixed by sk_p, and on some benchmark accounts for as
much as 40% of the corrections. This highlights the importance of
handling syntactic errors and an advantage of our approach versus
a symbolic corrector. A correction is marked as fresh when sk_p
generates a correct candidate program that’s not one of the programs
used during training. On average, 53% of the corrections are fresh.
This confers the advantage of the fragment completion model: The
errors are fixed locally, without considering the rest of the programs,
fixing only the program fragment which the model knows about
and leaving the rest alone. As a result, our approach can work with
novel programs as long as it has a particular program fragment that
is familiar, rather than requiring the entire program to be familiar.

Efficacy of Neural Network
Our fragment completion model is implemented with a neural
network, which learns a function mapping from the partial fragment
to a distribution on the missing statements. How well can this
function be learned is largely a function of 2 variables: How big is
the training data (the size of the training set) and how many different
patterns is there to be learned (the number of unique fragments in
the training set).

We test how well does our model learn these fragments by
implementing an exhaustive model which memorizes all program
fragments during training explicitly. We found that the neural
network model only performs better than the exhaustive model
when there is a relatively large number of training data relative
to the number of fragments need to be learned.

Formally, the exhaustive model represents the empirical distri-
bution of the missing statement, conditioned on the partial frag-
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benchmark #frag #tr/#fr sk_p exact aprox
computeDeriv 7444 0.168 0.125 0.240 0.183
computeRoot 8366 0.193 0.179 0.250 0.238
getGuessedW 1418 0.222 0.260 0.339 0.346
isWordGuess 3156 0.286 0.193 0.514 0.339

getAvailabl 2503 0.420 0.322 0.356 0.356
evaluatePoly 3925 0.589 0.485 0.371 0.423

oddTuples 5323 1.638 0.440 0.409 0.439

Table 5. Comparison of different models

ment context. This probability is given in Equation 6.1. Here,
count(X,Y,X ′) denotes the total number of occurrences of the pro-
gram fragment X,Y,X ′ in the training corpus, and count(X,X ′)
denotes the total number of occurrences of the partial fragment
X,X ′. Dividing these 2 counts yields the empirical distribution of
the missing statement conditioned on the partial fragment.

Pr(Y |X,X ′) =
count(X,Y,X ′)

count(X,X ′)
(6.1)

One can use a dictionary to memorize the empirical distribution
directly: The partial fragment (X,X ′) becomes a key, and a list of
potential missing statements, along with their probabilities becomes
its value stored in the dictionary.

To use the model in the task of fragment completion amounts to
performing a dictionary look up: Given a partial fragment, look up
candidate statement for this fragment already stored in the dictionary.
Here is a catch: What if no partial fragment can be found in the
dictionary that matches the given partial fragment? There are 2
approaches to this issue: By insisting on exact matches or by
performing approximate matches. In the case of exact matches, a list
of candidate statements is only returned when the partial fragment
matches exactly with a key stored in the dictionary, and an empty
list is returned otherwise. In the case of approximate matches, all the
keys in the dictionary are compared with the input partial fragment,
and the candidate statements from the “closest” key is returned. In
our experiment, we use the string-distance to measure the distance
between keys. In the case of exact match, one risk the possibility of
missing a correction when a similar partial fragment is stored in the
dictionary; On the other hand, in the case of approximate match one
risk giving too many bogus candidate statements even if no similar
partial fragment are being stored. In the experiment both approaches
are evaluated.

Table 5 compares the performance of these different approaches.
In the table, #frag denotes the total number of fragments being stored
in the exhaustive model, and the benchmarks are sorted by the ratio
#tr / #fr, the number of training programs divided by the number of
fragments within a particular benchmark. Conceptually, this ratio
measures the easiness of training a neural network model: With
more training data and less fragments to learn, the neural network
should perform better.

Overall, sk_p has an average accuracy of 29%, the exhaustive
model which uses approximate matching performs better, at 33%,
and the exact model works best with an accuracy of 35%. Therefore,
for our particular set of benchmarks, explicitly memorizing all the
fragments during training will yield better results. We see the worst
performing benchmark, computeDeriv also has the hardest model
to train, having many different fragments to learn from while only
having a relatively few number of training programs. The accuracy
of the neural network model increases as the model becomes easier
to train, and on the two benchmarks where there are many correct
programs to train from with relatively few fragments, the neural
network model outperforms exhaustive memorization. The neural
network is able to outperform the exhaustive model in two ways:

First, it can learn a better distance metric, matching a given partial
fragments to ones seen during training in a more structured way
than pure string distance. Second, a neural network is capable
of generating novel program statements not seen during training.
The second case is rare, but we do show a novel correction in the
showcase section below.

Correction Showcase
Here we showcase some corrections our model is able to produce
for the evaluatePoly benchmark, highlighting our model’s capability
at fixing different kinds of errors.

Removing a superfluous check An extraneous if statement on line
4 is removed.

# incorrect
def evaluatePoly(poly , x):

n = 0
s = 0
for e in poly :

if e > 0:
s += e∗x∗∗n

n += 1
return float (s)

# corrected
def evaluatePoly ( poly , x ) :
n = 0
s = 0
for e in poly :
s += e ∗ x ∗∗ n
n += 1

return float ( s )

Fixing an operator The incorrect program uses the wrong opera-
tor = for assignment on line 4 instead of the operator += for update.

# incorrect
def evaluatePoly(poly , x):

y = 0.0
exp = 0
for i in poly :

y = i ∗ x ∗∗ exp
exp += 1

return y

# corrected
def evaluatePoly ( poly , x ) :
y = 0.0
exp = 0
for i in poly :
y += i ∗ x ∗∗ exp
exp += 1

return y

Fixing an Extra Indentation The incorrect program has its return
statement mistakenly indented. Note this constitute as a semantic
error in our experiments, because the incorrect program parses
correctly.

# incorrect
def evaluatePoly(poly , x):
ans =0.0
for i in range ( len(poly )):

ans=ans+(poly[i]∗(x∗∗i))
return ans

# corrected
def evaluatePoly ( poly , x ) :
ans = 0.0
for i in range ( len ( poly ) ) :
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ans = ans + ( poly [ i ] ∗ ( x ∗∗ i ) )
return ans

A local fix to a complicated program Our algorithm is able to fix
this rather complicated program by changing the return statement,
which is unnecessarily complicated by the student, likely under the
impression that the result needs to be rounded. Note the extraneous
print statement is also removed.

# incorrect
def evaluatePoly(poly , x):

if len(poly) == 0:
return 0.0

sumx = 0
step = len(poly)
while step >= 1:
step = 1
sumx = sumx + (poly[step]∗(x∗∗(step)))
print sumx

return round(float (sumx),1)

# corrected
def evaluatePoly ( poly , x ) :

if len ( poly ) == 0 :
return 0.0

sumx = 0
step = len ( poly )
while step >= 1 :
step = 1
sumx = sumx + ( poly [ step ] ∗ ( x ∗∗ ( step ) ) )

return sumx

Suggestion of a novel program This novel suggestion fixes the
incorrect program by replacing the “for” loop with a very strange
“while” loop, which only work because of the extraneous update
function “x2 += 1” present in the incorrect program. This correction
is obtained earlier during our work, where we’ve yet to map back
the correct solution’s variable back to their original names.

# incorrect prog
def evaluatePoly ( x0 , x1 ) :
x2 = 0
x3 = 0.0
for x2 in range ( 0 , len ( x0 ) 1 ) :
x3 = x0 [ x2 ] ∗ x1 ∗∗ x2 + x3
x2 += 1

return x3

# corrected prog
def evaluatePoly ( x0 , x1 ) :
x2 = 0
x3 = 0.0
while x2 in range ( len ( x0 ) ) :
x3 = x0 [ x2 ] ∗ x1 ∗∗ x2 + x3
x2 += 1

return x3

7. Related Works
Of the works in data driven synthesis and automatic feedback
generation for MOOCs, we found the following work most relevant
to compare.

In (Long et al. 2016), the problem of automatic patch generation
is considered. A ranking probability is learned from a corpus of
correct patches, which is then used to patch an incorrect program by
ranking a search space of possible patches, with the top-ranked patch
that is also correct returned to the user. This work is most similar to
our work in that they both consider the problem of program repair.
However, in their work, the ranking probability is a discriminative

model, and the search space of the patches need to be defined
separately. Also, all candidate patches in this search space needs to
be ranked, because without evaluating the probability function, one
does not know if a certain patch is likely or not. In contrast, we learn
a generative model, where the candidate programs are statements
are generated according to its probability, which alleviates the issue
of having to separately define a search space and enumerating over
the entire search space.

In (Raychev et al. 2014), the problem of code completion is
investigated. The user leaves holes in the program for the system to
complete, and a language model is used to suggest possible method
calls to put in these holes. The suggestions are constraint by the
semantic context of the hole, and only suggestions that meet these
constraints are given to the user. Our work shows that in the context
of MOOCs, a much simpler model that directly operates on the
tokenized statement can deliver good results without the need of
filtering the candidate statements through semantic context, but is
sufficient to use these statements verbatim. Also, our work focus
on program correction, where accuracy is measured on whether
the entire program pass the test suite, rather than independently as
accurate suggestions.

In (Raychev et al. 2015), the problem of code annotation and
variable renaming is investigated. A graphical model is used to infer
code properties such as variable names and type annotations from
obfuscated and uncommented javascript programs. In this work, the
original program is semantically equivalent to the annotated and
renamed output program, whereas we focus on the task of program
correction, which involves non-trivial restructuring of the incorrect
program to change its semantics.

In (Guwani et al. 2016), the problem of automatic feedback gen-
eration with clustering is explored. For a given MOOCs assignment,
its correct programs are clustered and a canonical program elected as
a representative for each cluster, forming a set of reference solutions.
Given an incorrect student solution, it is matched by distance against
the reference solutions, and the closest one is returned as the fix. Our
work shows that often an incorrect solution has a correction that is
only few changes away, different from any reference solutions. this
is backed by the existence of a significant number of “fresh” cor-
rections: a fix that results in a correct program which does not exist
in the training set. This implies the clustering approach is mapping
incorrect student solutions to an unlikely correct solution, when a
correction that more closely resembles it could exist. In a sense, our
work is an implicit form of “local clustering” without the manual
burden of defining a distance metric. Similarly, in (Singh et al. 2016),
a distance metric between a incorrect student submission and a set
of correct student solution is considered, but instead of using the
distance to provide a correction, the distance is used to give a grade,
with the grade inversely proportional to the distance.
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