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ABSTRACT
Diagnosing performance problems in networks is important,
for example to determine where packets experience high la-
tency. However, existing diagnostic tools are constrained by
limited switch mechanisms for measurement. As a result,
operators use endpoint information to indirectly infer root
causes for performance issues.

Instead of designing piecemeal solutions to work around
limited switch mechanisms, we believe that the right ap-
proach is to co-design language abstractions and switch
hardware primitives for performance measurement. This ap-
proach provides confidence that the switch primitives are
useful for a variety of existing and unanticipated use cases.

We present a declarative query language that allows oper-
ators to ask a diverse set of network performance questions.
We show that these queries can be implemented efficiently
in switch hardware using a programmable key-value store
primitive. Our preliminary evaluations show that our hard-
ware design incurs modest additional chip area relative to
existing switching chips, suggesting that it is a practical so-
lution for network performance measurement.

1. INTRODUCTION
Measuring network performance is critical to operating

large networks such as datacenters, for example to diagnose
high application latencies [6], localize queues suffering from
incast [38], or measure utilization of different links. Delays
in identifying and diagnosing network performance prob-
lems can severely affect service availability. As a result, both
industry and academia have expended considerable effort in
network measurement [3, 6, 11, 18, 26, 32, 40].

Existing approaches to such performance analyses either
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rely on switch support to extract performance metrics, or in-
fer such metrics indirectly from endpoint observations. To-
day’s line-rate switches (switches with 10–100 ports running
at 10–100 Gbit/s) support very limited measurement in the
form of sampling [3, 11], counting [28, 29, 30, 39], and
packet capture [23, 40]. These statistics are insufficient to
compute performance metrics like latency or loss. Collect-
ing data at endpoints [21, 31] is a more flexible solution, but
it is limited in its visibility of the precise locations and root
causes of network issues (e.g., detecting flows contributing
to incast at a switch), requiring operators to infer the results
indirectly.

Historically, the limited flexibility of switch measurement
was rooted in a belief that the sole purpose of switches was
high forwarding performance—not flexibility. The recent
emergence of programmable switching chips [2, 15, 7] sug-
gests a change in thinking. Currently, however, these chips
only support flexible packet parsing [20] and header process-
ing [17]; their hardware primitives for measurement are still
limited. Ideally, these chips would offer similar flexibility
for network measurement as well.

At the same time, adding new measurement primitives to
switch hardware is costly. To maximize bang-for-buck, any
new primitives should be highly programmable, so that net-
work operators can re-purpose them to diverse needs. To
ensure that new primitives are sufficiently useful, we pro-
pose switch architects engage in co-design: design both the
hardware primitives and their programming abstractions at
the same time. This lets us evaluate if the hardware design is
sufficiently flexible to support an effective high-level opera-
tor interface to write applications.

More concretely, we ask: can we let operators express
performance questions in a high-level declarative query lan-
guage, and identify the necessary switch primitives to effi-
ciently support such queries?

We make two contributions. First, we introduce a declar-
ative performance query language (§2) that allows users to
identify packets with specific performance attributes (e.g.,
high latency packets), aggregate statistics over sets of pack-
ets (e.g., to compute per-flow drop rates), and compose
multiple queries together to ask more complex performance
questions. The language is SQL-like, with queries writ-
ten over an abstract table containing timestamped records of
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each packet’s arrival and departure at every network queue.
However, unlike SQL, the language also allows aggregations
that depend on packet order, such as an EWMA over packet
queueing latencies. Most importantly, the language frees op-
erators from reasoning about the underlying switch imple-
mentation of the measurements.

Second, we present a hardware design (§3) that efficiently
supports performance queries. We propose a programmable
key-value store primitive on switches to implement aggre-
gations efficiently, where the keys are the aggregated fields
in queries (e.g., transport 5-tuple), and the corresponding
values are performance statistics tracked for each aggregate
field (e.g., an EWMA of latencies of packets of each 5-
tuple). This key-value store has two challenging require-
ments: it must run at the clock frequency (typically 1 GHz)
of a switching chip [17, 2, 4], and be large enough to track
several million flows. To achieve both, we use a split de-
sign: a fast on-chip SRAM cache updates key-value pairs at
line rate, while a slower but larger off-chip backing store in
DRAM is updated during cache evictions.

A full system design would include a query compiler
that translates the high-level queries to configurations of the
switch primitives automatically. We have not yet built such
a compiler. But in §3.1 and §3.2, we map the language con-
structs to hardware primitives that implement them.

We evaluate the expressiveness of the performance query
language by programming several performance measure-
ments in it (Fig. 2), e.g., locating queues with a persistently
high queue length. We evaluate our hardware design using
packet traces from CAIDA [14]. We find that performance
queries are feasible using a 32-Mbit SRAM cache, and a
backing store that can support ~802K cache evictions per
second. These requirements can be easily met: a 32-Mbit
SRAM cache occupies < 2.5% of the die area of a switching
chip [20]), while scale-out key-value stores such as Mem-
cached and Redis support a few hundred thousand operations
per second per core [5, 24, 10, 1].

2. PERFORMANCE QUERY LANGUAGE
We seek a query language that enables network opera-

tors to specify diverse performance questions, independent
of their implementation on the network’s switches. Specifi-
cally, operators should be able to:

1. request per-packet performance information, e.g., a
packet’s queueing delay;

2. request traffic experiencing “interesting” performance,
e.g., high queueing delays;

3. aggregate information over packets sharing headers,
e.g., average packet latency per TCP connection;

4. find simultaneous occurrences of performance condi-
tions, e.g., many connections within a queue and a
large queue size; and

5. compose queries over results of other queries.
Our abstraction for querying network performance, per-

formance queries, follows from these requirements. For-

Fields:

field := srcip | dstip | ... // standard pkt headers
| pkt_path | qid | tin | tout | qin | qout

Selection:

select_field := field | expr // field name or expression
select_clause := SELECT [select_field]
from_clause := FROM id // table name identifier
where_clause := WHERE pred // boolean predicate
select_query := select_clause from_clause where_clause

Aggregation:

stmt := id=expr // assign expression
code := stmt

| if pred then code else code
agg_fun := def id ([id], [field]): code
group_field := field | expr | agg_fun
group_select := SELECT [group_field]
group_clause := GROUPBY [field]
group_query := group_select group_clause from_clause

Join:

join_query := select_clause FROM id JOIN id ON [id]

Queries:

query := select_query | group_query | join_query

Figure 1: Simplified syntax of performance queries.
Square brackets denote lists: e.g., [field] is a list of fields.

mally, a performance query is a function that takes one table
of records and returns another. By default, the input table of
records contains each packet’s arrival and departure at every
queue in a network. While a query is defined over all pack-
ets, all packets are not actually collected for analysis: the
system compiles queries and installs them on switches, after
which only information pertinent to the query is collected.
The results are then supplied to applications or human oper-
ators for inspection. Our syntax is similar to SQL (Fig. 1);
we explain it in detail below.

Performance-oriented schema. What per-packet informa-
tion is required to pose diverse performance questions? We
propose a table of records with the following schema:

(pkt_hdr, qid, tin, tout, qsize, pkt_path)

Here, pkt_hdr contains the usual header fields parseable by a
switch, such as TCP, IP, and MAC headers. The header also
contains a field pkt_uniq to identify each packet uniquely.1

In addition to packet headers, the table contains metadata
fields that track performance: qid identifies a specific queue
on a specific switch at which the current packet is observed;2

tin and tout are timestamps corresponding to the arrival and
departure of the packet at that queue. Using two timestamps
enables queries that recognize if two packets co-exist in a
queue. If a packet is dropped at a queue, we assign tout

1The interpretation of pkt_uniq could be determined by network
operators, e.g., a combination of invariant packet headers.
2If a packet goes through multiple queues in a switch, each queue
contributes a separate tuple.



Example Query code Description Linear in state?
Per-flow counters SELECT COUNT, SUM(pkt_len) GROUPBY srcip, dstip Count packets and bytes for each src-dst IP pair. Yes
Latency EWMA def ewma (lat_est, (tin, tout)): Maintain a per-flow EWMA over queueing latencies Yes

lat_est = (1 - alpha) * lat_est + alpha * (tout-tin) of packets.
SELECT 5tuple, ewma GROUPBY 5tuple

TCP out of sequence def outofseq ((lastseq, oos_count), tcpseq): Count packets with non-consecutive sequence Yes
if lastseq + 1 != tcpseq: oos_count = oos_count + 1 numbers in each TCP stream.
lastseq = tcpseq + payload_len

SELECT 5tuple, outofseq GROUPBY 5tuple WHERE proto==TCP

TCP non-monotonic def nonmt ((maxseq, nm_count), tcpseq): Count packet retransmissions and reorderings in No
if maxseq > tcpseq: nm_count = nm_count + 1 each TCP stream.
maxseq = max(maxseq, tcpseq)

SELECT 5tuple, nonmt GROUPBY 5tuple WHERE proto==TCP

Per-flow high latency R1 = SELECT pkt_uniq, SUM(tout-tin) GROUPBY pkt_uniq Count packets with high end-to-end latency per flow. Yes
packets R2 = SELECT 5tuple FROM R1 GROUPBY 5tuple

WHERE SUM(tout-tin) > L

Per-flow loss rate R1 = SELECT COUNT GROUPBY 5tuple Determine loss rates per flow. Yes
R2 = SELECT COUNT GROUPBY 5tuple WHERE tout==infinity

SELECT R2.COUNT/R1.COUNT FROM R1 JOIN R2 ON 5tuple

High 99th percentile def perc ((tot, high), qin): Identify queues with a 99th percentile queue size Yes
queue size if qin > K: high = high + 1 (over packet samples) higher than a threshold K.

tot = tot + 1

R1 = SELECT qid, perc groupby qid

R2 = SELECT * from R1 WHERE perc.high/perc.tot > 0.01

Figure 2: Examples of performance queries. For ease of illustration, we use standard SQL notation (COUNT and SUM) for
fold functions that count unique packets or sum up a packet field across packets.

the value infinity. The field qsize is the queue length seen
by the packet when it is enqueued, and pkt_path identifies
the packet’s path in the network. We leave its value uninter-
preted, e.g., it could be an opaque MPLS or VXLAN tunnel
identifier. In all queries henceforth, we denote this table of
packet observations T.

Filtering based on values of performance metrics. The
query language provides a SELECT ... WHERE construct to
output records based on the result of boolean-valued tests,
which restrict the set of packets or the values of performance
metrics. For example, the query

SELECT srcip, qid FROM T WHERE tout - tin > 1ms

returns the source IP addresses of packets that experience a
queueing latency higher than 1ms, along with the queue at
which the latency was observed.

Aggregating across multiple packets. The query language
provides a GROUPBY construct to aggregate information across
sets of packets that share common attributes. For example,
counting the number of bytes for each source-destination IP
address pair is achieved as follows:

def sumlen (result, (pkt_len)): result = result + pkt_len
SELECT srcip, dstip, sumlen GROUPBY srcip, dstip

Here, sumlen is a user-defined fold function that adds up the
packet lengths across all records (packets) sharing the same
values of the GROUPBY fields. The fold functions take two ar-
guments, an accumulator state and the current packet, and
return an updated value of the accumulator state.

Fold functions can be used not only for SQL-style aggre-
gations like sum, average, and count, but also to track aggre-
gate statistics that depend on the order in which packets were

seen at a given queue. For instance, one could track an expo-
nentially weighted moving average of the queueing latency
per transport 5-tuple (field list abbreviated to 5tuple):
def ewma (lat_est, (tin, tout)):

lat_est = (1 - alpha) * lat_est + alpha * (tout - tin)
SELECT 5tuple, ewma GROUPBY 5tuple

Multiple pieces of state can be updated within a fold func-
tion. As an example, consider counting the number of “out-
of-sequence” packets in every TCP stream:
def outofseq ((lastseq, oos_count), (tcpseq, payload_len)):

if lastseq + 1 != tcpseq:
oos_count = oos_count + 1

lastseq = tcpseq + payload_len
SELECT 5tuple, outofseq GROUPBY 5tuple WHERE proto==TCP

Here the function outofseq increments a counter each time
the sequence numbers in the current TCP packet are not con-
secutive with those of the previous packet in the connection.
It also tracks an additional state variable lastseq to check if
a packet is consecutive with the previous one.

Such order-dependent aggregation functions are inspired
by list comprehensions in functional programming [27], and
are not directly expressible with SQL GROUPBY, or even in
popular window-based streaming SQL systems [37, 34].

Joining multiple queries. It is convenient to correlate results
from multiple queries using relational JOINs. The current
query language is restricted to joins of the form T1 JOIN T2

ON key where key uniquely identifies records in both tables 3

T1 and T2. An example of a permissible JOIN is the following
query that determines packet drop rates for each 5-tuple:
R1 = SELECT COUNT GROUPBY 5tuple
R2 = SELECT COUNT GROUPBY 5tuple WHERE tout == infinity

3Sufficient conditions for this to hold can be checked by a compiler.
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R3 = SELECT R2.COUNT/R1.COUNT FROM R1 JOIN R2 ON 5tuple

The JOINs permitted in the language can be represented
by a more complex aggregation function with a GROUPBY

clause; hence, JOINs are included only for convenience. The
restriction on JOINs is driven by the queries we currently
know to be correctly and efficiently compilable, i.e., through
GROUPBY. While some JOINs, e.g., T JOIN T ON pkt_5tuple

are inherently expensive because of the result size (i.e.,
(O(#pkts2))), others may produce much smaller results but
are still inexpressible in the current language. Relaxing this
restriction is part of planned future work.

Composing queries. Queries can be nested because they
have the same input and output types, enabling operators to
pose complex questions about performance. For example,
one query can be written to compute total queueing latency
for each packet, and the results can be aggregated to deter-
mine which transport 5-tuple flows experienced end-to-end
packet latencies higher than a threshold L. In the query be-
low, we assume that pkt_uniq is a tuple of packet fields that
includes the 5tuple, and determines each packet uniquely.
def sum_lat(lat, (tin, tout)): lat = lat + tout - tin
R1 = SELECT pkt_uniq, sum_lat GROUPBY pkt_uniq
R2 = SELECT 5tuple FROM R1 GROUPBY 5tuple WHERE lat > L

In Fig. 2, we list performance queries for many monitoring
tasks useful to operators, such as measuring per-flow coun-
ters, identifying connections with high average queueing la-
tency, measuring the prevalence of TCP reordering, and lo-
cating queues with persistently high lengths. We expect both
the language syntax and the examples to evolve.

3. HARDWARE DESIGN
We now describe a hardware design that realizes perfor-

mance queries. Our design targets switch pipelines that run
at a clock frequency of 1 GHz and hence process a new
packet every 1 ns. This architecture is typical of many mod-
ern switches [17]. We begin by describing language con-
structs that can be realized using emerging programmable

switches (§3.1). Then, we describe a novel programmable
key-value store to efficiently implement GROUPBYs (§3.2). We
have not prototyped our key-value store in silicon or tested
it in cycle-accurate simulations. Hence, we discuss its feasi-
bility and area costs using back-of-the-envelope calculations
(§3.3).

3.1 Using emerging programmable switches
Many language constructs can be realized using emerging

programmable switches. For instance, performance-related
fields such as the enqueue and dequeue timestamps are
provided by metadata available on programmable switches.
These are already leveraged by applications like In-band
Network Telemetry [6]. The set of packet headers in the
schema—including standard headers, metadata and user-
defined ones—can be parsed by a programmable switch
parser [20]. The SELECT ... WHERE clause can be realized
using a programmable match-action switch pipeline [17] that
allows matches and actions on all parsable headers; on such
pipelines, we can implement the WHERE predicate as the match
condition.

3.2 A programmable key-value store
We next look at GROUPBYs because our restricted JOINs can

be reduced to GROUPBYs (§2). The GROUPBY clause aggregates
information across sets of packets using an aggregation field
(e.g., 5-tuples). We propose to implement the aggregation
through a programmable key-value store. The key stores a
programmable aggregation field. The value stores state ag-
gregated across packets belonging to the same key, and is
programmatically updated. As an example, the key could
be a 5-tuple, while the value could store the updated current
byte count for the 5-tuple.

This key-value store has two requirements: (1) it should
run at the 1 GHz packet rate of the switch pipeline (accessing
memory every 1 ns); (2) it should scale to a large number
of keys to support a long-running query system where the
number of flows increases over time. This is challenging:
fast memories like SRAM scale only to a few Mbits, while
large memories like DRAM have large access times.

Hence, we propose a split implementation (Figure 3) for
our key-value store, similar to processor memory hierarchies
and hardware designs for switch counters [35] and packet
buffers [25]. A fast cache resides in SRAM within the
switching chip’s match-action pipeline and supports one ini-
tialize operation (for a key’s first packet) or one update oper-
ation (for subsequent packets) to a single key in the key-value
store every clock cycle (1 ns). This cache stores frequently
accessed key-value pairs. The cache is backed by a slower
and larger key-value store maintained in a backing store in
off-chip DRAM, e.g., the switch CPU’s memory, or a scale-
out key-value store outside the switch.

Currently, we use the least recently used (LRU) cache-
eviction policy. Implementing a full LRU across all cache
entries is challenging in hardware. Hence, similar to proces-
sor caches, we layout our cache as a hash table of n buckets



with LRU being enforced within the m slots in each bucket
when that bucket fills up (Figure 4).

When a key is evicted, the key and its value are erased
entirely: a subsequent packet from the evicted key is treated
as a packet from a new key by the cache. In general, this
complete erasure could yield incorrect results for arbitrary
fold functions. However, in many cases, we can ensure the
correctness of the value in the backing store by merging the
new value from the cache into an existing value for the same
key in the backing store. We describe this merge operation
next and characterize the condition on the update operation
that is required for the merging to work correctly.

The merge operation. When a key is evicted from the cache,
we need a procedure to merge the value of the evicted key
with its previous value in the backing store. To illustrate
this, consider a GROUPBY clause that tracks an exponentially
weighted moving average (EWMA) across packet latencies
belonging to a flow. Here the state update operation for any
key is

S = (1− α) · S + α · (tout − tin)

Suppose that at some point after an eviction, the EWMA
state for a key in the backing store is sd. A subsequent packet
from that key is processed like a packet from a new key in
the cache, starting from an initial state s0. Assume that N
packets are processed by the key-value store in the cache fol-
lowing an eviction, resulting in the state being updated from
s0 to snew. Then, the correct state value scorrect satisfies:

scorrect = snew + (1− α)N (sd − s0)

Hence, the correct EWMA value can be obtained by adding
(1− α)N (sd − s0) to snew when merging snew with sd.

The linear-in-state condition. We can generalize the
EWMA example to show that the same merge technique ap-
plies to any state update operation that is linear in state. For-
mally, suppose S is a vector representing the current state.
The state update S = A · S + B is linear in state if A and
B are both functions of the current packet alone and do not
depend on S.4 For the EWMA example above, A and B are
1− α and α · (tout − tin), respectively.

The linear-in-state condition allows us to update the cur-
rent value of the key in the backing store without sacrificing
correctness. However, the correct value at any time only re-
sides in the backing store and cannot be read from the cache.
This is not a severe restriction: keys can be periodically
evicted to ensure the backing store is fresh, and monitoring
applications can pull results from the backing store.

Operations that are not linear in state. While the linear-in-
state condition is sufficient for many examples (§2), some
examples violate it, e.g., “TCP non-monotonic” in Fig. 2.
Here we count the number of packets with a sequence num-
ber greater than the maximum seen so far for a flow. This ex-
ample is not linear in state because the update to nm_count de-
4A and B can also be functions of a constant number of packets
preceding and including the current packet.

pends on the maximum sequence number (through the pred-
icate maxseq > tcpseq), which is itself a state variable.

For this example, no merge function guarantees that the
correct value is always available in the backing store. In
such cases, we evict keys as we do for queries satisfying the
linear-in-state condition, but do not merge them with previ-
ous versions. In the backing store, we maintain a list of val-
ues for this key; each item in the list tracks the key’s value
between two evictions. If a key ends up with multiple values
associated with it, we mark it invalid because a single correct
value cannot be inferred. Section 4 shows that the fraction of
invalid keys is low for typical packet traces. Note that such
invalid keys may still be usable since each value in the list is
correct over a specific time interval.

3.3 Hardware feasibility
The core operations in our key-value store that run at line

rate are looking up a key, evicting a key, and updating a key’s
value. Key lookups are well understood in the context of flow
counter tables used by NetFlow [28, 3]. The LRU cache evic-
tion logic is found in many CPU L1 caches today that support
access latencies comparable to our cache [8]. Finally, updat-
ing a key’s value amounts to updating a state variable within
one clock cycle. For the linear-in-state operations, this up-
date is of the form S ∗ A + B, which is similar to the fused
multiply-add operation in processors today [9]. For the other
operations, the problem of updating a state variable within
a single clock cycle is tackled by Domino [36], which pro-
poses many small combinational circuits to update state.

The bulk of the area in our key-value store is taken up by
the SRAM storing the keys and values. The digital logic
(e.g., for the LRU eviction policy, for the linear-in-state and
other updates, and for the hash functions for key lookups) in-
curs little additional area relative to the SRAM. Hence, when
evaluating our design in §4, we ignore logic area and only
account for the memory area of the key-value store.

4. EVALUATION OF HARDWARE DESIGN
We now evaluate our hardware design. Specifically,
1. What is a reasonable on-chip cache memory size?
2. What throughput should the backing store support?
3. What is the accuracy for queries not linear in state?

Setup. We simulate the query SELECT COUNT GROUPBY
5tuple on our split hardware design, over a 5 minute
CAIDA Internet traffic trace from April 2016, containing
157M packets at a 10 Gbit/s link speed [14]. The aggrega-
tion key (5-tuple) requires 104 bits, and we assume a 24-bit
counter value, which totals 128 bits per key-value pair.

We tested 3 LRU geometries (Figure 4).
1. The hash table (m=1) evicts a key on hash collisions.
2. The fully associative cache (n=1) is a full LRU.
3. The 8-way associative cache (m=8) is an 8-way LRU

similar to many processor L1 caches [8].
Based on a study of datacenter traffic [16], we pick an av-

erage packet size of 850 bytes and a network utilization of



30%. Under these typical conditions, a switch processing
a billion 64-byte packets per second (1 GHz) will process
22.6M average-sized packets per second.

Cache memory size. SRAM densities are now around
7000Kb/mm2 [13]. The smallest switching chips occupy
200 mm2 [20]. Relative to these chips, a 32-Mbit cache in
SRAM costs under 2.5% additional area, which we believe is
reasonable. Thus, we target a cache size of 32 Mbits, and test
a range of cache capacities around this target, from 8 Mbits
(216 pairs) to 256 Mbits (221 pairs).

The split design is crucial: the backing store can not sus-
tain line rate, and storing all keys in the on-chip cache is
infeasible. For instance, our 5 minute trace has around 3.8M
unique 5-tuples; if stored on-chip, we would need a 486-
Mbit cache for a prohibitive 38% chip area overhead. To
make matters worse, in an always-on system, the number of
unique 5-tuples will increase with time.

Eviction Rate. Keys evicted from the SRAM cache must
be persisted in the backing store, which requires the backing
store to process keys at the eviction rate. Figure 5 shows
the average eviction rate over a range of cache capacities,
reported in two ways: (i) as a fraction of total packets seen,
which is independent of the switch’s line rate, and (ii) as a
write rate to the backing store, which assumes the typical
workload conditions and query described above.
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Figure 5: Eviction rates for a range of cache sizes.

The results provide two insights. First, even though a fully
associative cache provides the lowest eviction rates, using
just an 8-way associative cache comes within 2% of this op-
timum. Second, the eviction rate of the 8-way associative
cache at the target SRAM size of 32 Mbits is 3.55%. For
the typical datacenter workload described above, the abso-
lute eviction rate is 802K writes per second. This is within
the capabilities of scale-out key-value stores that support a
few hundred thousand requests per second per core [5, 24,
10, 1].

Accuracy for queries that are not linear-in-state. For
queries that do not satisfy the linear-in-state condition, we
mark keys evicted multiple times to the backing store as
invalid. However, these invalid keys are still valid over a
shorter time interval (until they reappear in the cache after
their first eviction). Thus, if we quantify the result’s accu-
racy as the percent of valid keys over the time window dur-
ing which the query was run, the accuracy is higher if we
run the query over a shorter time interval. Figure 6 shows
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Figure 6: Accuracy for a query not linear-in-state.

this accuracy-time tradeoff for 8-way associative caches of
varying size. As an example, for a 32-Mbit cache, running
the query over 1-min (instead of 5-min) intervals increases
accuracy from 74% to 84%.

5. RELATED WORK
Prior switch-based network measurement systems [18, 19,

32, 23, 40, 22] are constrained by their raw data, sourced
from limited measurement support in existing switches, e.g.,
NetFlow, match-action rules, and packet mirroring. More
recently, Gupta et al. [22] propose to partition monitoring
queries between switches and a stream processor (e.g., Spark
streaming [12]), iteratively refining the set of packets cap-
tured through match-action rules in the switch. In contrast,
by designing new switch primitives, we enable operators to
answer a more diverse set of performance questions.

Endpoint-based solutions [21, 31] do not allow an operator
to directly localize problems deep inside the network. For
instance, using TPP/INT [26, 6], it is hard to track which
applications contribute to TCP incast at a particular queue,
because the data needed to answer this question is scattered
over multiple endpoints. Further, the fate of measurement is
tied to the fate of packets: if packets are dropped, telemetry
information is lost, leading to inaccurate diagnoses.

Sketch-based systems [39, 29, 28, 30] track flow-level
counters. However, performance queries allow operators to
ask questions much broader than per-flow counters (Fig. 2).
Further, our hardware design scales to a large number of
keys, sidestepping the accuracy-memory tradeoff of sketches
for the broad class of queries that are linear-in-state.

Concurrently with our work, Nelson et al. [33] make the
case for new switch features to check stateful invariants for
network protocols. We designed our programmable key-
value store for performance monitoring, but it can be used
to implement some of these checks in the data plane as well.

6. CONCLUSION
This paper suggests that co-designing declarative perfor-

mance queries along with their associated hardware primi-
tives can bring the benefits of programmability to high-speed
network performance measurement. We are further study-
ing the expressiveness of our query language, designing a
query compiler, and carrying out a detailed investigation of
our hardware design.
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