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ABSTRACT4

The energy dissipated in vehicle’s suspension system due to road roughness affects rolling5

resistance and the resulting fuel consumption and greenhouse gas emission. The key parame-6

ters driving this dissipation mechanism are identified via dimensional analysis. A mechanistic7

model is proposed that relates vehicle dynamic properties and road roughness statistics to8

vehicle dissipated energy and thus fuel consumption. Scaling relationship between the dissi-9

pated energy and the most commonly used road roughness index, International Roughness10

Index (IRI), is also established. It is shown that the dissipated energy scales with IRI11

squared and scaling of dissipation with vehicle speed V depends on road waviness number12
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w in the form of V w−2. The effect of marginal probability distribution of road roughness13

profile on dissipated energy is examined. It is shown that while the marginal distribution of14

road profile does not affect the identified scaling relationships, the multiplicative factor in15

these relationships does change from one distribution to another. As an example of practical16

application, the model is calibrated with the empirical HDM-4 model for different vehicle17

classes.18

Keywords: roughness-induced dissipation, pavement vehicle interaction, IRI, roughness19

power spectral density, stationary stochastic process, translation process theory20

INTRODUCTION21

Pavement roughness affects rolling resistance (Beuving et al., 2004), and thus vehicle fuel22

consumption. In fact, when a vehicle travels at constant speed on an uneven road surface,23

the mechanical work dissipated in the vehicle’s suspension system is compensated by ve-24

hicle engine power, resulting in excess fuel consumption. In addition to pavement texture25

effects (Sandberg et al. (2011)) and viscoelastic dissipation in the pavement material (see26

e.g., Pouget et al. (2011), Akbarian et al. (2012), Louhghalam et al. (2013), Louhghalam27

et al. (2014b)), pavement roughness manifesting itself as surface unevenness with wave-28

lengths above 50 mm (Flintsch et al., 2003), has been recognized as a main contributor29

to Pavement Vehicle Interactions (PVI) affecting vehicle operating costs (VOC) (Zaabar30

and Chatti (2010)). While the phenomenon is well known, the intricate links between road31

roughness parameters, vehicle dynamic characteristics, and vehicle speed remain yet to be32

established. The mechanistic model developed herein, aims at quantitatively assessing the33

impact of these parameters on roughness-induced vehicle fuel consumption and the relating34

greenhouse gas emission. Such models are in high demand for evaluating the environmental35

footprint of pavement structures during their use-phase, contributing to the development of36
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a quantitative frameworks for pavement sustainable design and maintenance. The develop-37

ments presented in this paper aim at contributing to the growing field of mechanics-based38

quantitative engineering sustainability. In contrast to empirical approaches, the originality of39

the approach herein developed relies on a combination of a thermodynamic quantity (energy40

dissipation) with results from random vibration theory in order to identify scaling relations41

of roughness-induced vehicle energy dissipation.42

To motivate the forthcoming developments, consider the classical two-degree-of-freedom43

(2-DOF) quarter-car model (Sayers (1995)) shown in Figure 1: a two-mass system in series44

composed of a tire (stiffness kt) and a spring-dashpot parallel suspension unit (stiffness ks45

and viscosity coefficient Cs). We are interested in the dissipation rate (δD) of mechanical46

work into heat form due to the relative motion, ż = dz/dt (with z the relative displacement47

of sprung mass ms with respect to the unsprung mass mu) of the suspension unit. This48

dissipation depends on the vehicles dynamic properties (ms,mu, kt, ks, Cs), the vehicle speed49

V ; and parameters that quantify the pavement roughness. This roughness, ξ, is typically50

assessed by longitudinal profile data, and condensed, after Fourier transformation, into the51

power spectral density (PSD) of roughness which describes the distribution of roughness52

across various wavenumbers (Ω) in the form of Sξ (Ω) = cΩ−w, where c is the unevenness53

index and w is the waviness number (Dodds and Robson (1973), Robson (1979), Kropac and54

Mucka (2008)). We thus seek a relationship between the dissipation per distance traveled55

(δE = δD/V ) and these parameters; that is:56

δE =
CS ż

2

V
= f (ms,mu, kt, ks, Cs, V, c,Ωi) (1)57

It is useful to perform a dimensional analysis of Eq. (1) by considering an extended58
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base dimension system (LxLzMT ) that considers, in addition to mass (M) and time (T ),59

two independent characteristic length dimensions, one for the driving direction (Lx), the60

other for the vertical direction of vehicle motion (Lz). For instance, in this extended base61

dimension system, the dissipation per lane mile traveled δD has dimension [δE ] = [δD/V ] =62

[Fz] [dz/dt] [V ]−1 = L−1x L2
zMT−2 (where Fz stands for the force in the dashpot); while the63

speed has dimension [V ] = LxT
−1. Similarly, we obtain [kt] = [ks] = MT−2, [Cs] = MT−1,64

[Ωi] = L−1x , whereas for the unevenness index [c] = [Sξ] [Ωw] = L1−w
x L2

z, since [Sξ (Ω)] = LxL
2
z.65

The exponent matrix of dimension reads for the problem thus defined:66

[δE ] [ms] [mu] [kt] [ks] [Cs] [V ] [c] [Ωi]

Lx −1 0 0 0 0 0 1 1− w −1

Lz 2 0 0 0 0 0 0 2 0

M 1 1 1 1 1 1 0 0 0

T −2 0 0 −2 −2 −1 −1 0 0

(2)67

The rank of the matrix which characterizes the number of dimensionally independent param-68

eters, is k = 4 independent of the value of w. This allows one, according to the PI-Theorem69

(Buckingham (1914)), to reduce the dimensional problem defined by Eq. (1) to a dimen-70

sionless relation of the form:71

δE
cCsV w−2ω3−w

s

= F

(
γ =

mu

ms

, β =
ωu
ωs
, ζ =

Cs
2msωs

, ωi =
ωi
ωs

)
(3)72

where ωu =
√
kt/mu and ωs =

√
ks/ms are the natural frequency of respectively the un-73

sprung and the sprung masses, whereas ωi = V Ωi stands for the angular frequencies. The74

dimensional analysis is able to isolate –on the left-hand-side of Eq. (3)– the impact of75
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pavement roughness (captured by the unevenness index c and the waviness number w) on76

the dissipation, from the dimensionless dynamic vehicle properties on the right-hand-side,77

namely mass-ratio γ = mu/ms, natural frequency ratio β = ωu/ωs, and damping ratio78

ζ = Cs/ (2mωs). Specifically, it reveals that the energy dissipation scales with the vehicle79

speed as δE ∝ V w−2. That is, for waviness numbers w > 2, the dissipated energy increases80

with the vehicle speed, and for values w < 2, it is the inverse.81

With the problem thus defined, the focus of the rest of this paper is to quantify by means82

of a mechanistic modeling the relationship between vehicle properties and road roughness83

statistics, and the dimensionless roughness-induced energy dissipation.84

ROUGHNESS-INDUCED DISSIPATION85

Since road roughness ξ is random, the suspension motion and consequently energy dissi-86

pation in Eq. (1) are stochastic quantities. Modeling road roughness and suspension motion87

as stochastic processes defined in space and time, Eq. (1) is rewritten in the form:88

E [δE ] =
Cs
V

E
[
ż2
]

(4)89

where E [·] denotes the operation of mathematical expectation. The mean-square of sus-90

pension motion can be determined in terms of properties of the stochastic input, namely91

roughness profile, using random vibrations theory. In what follows a brief review of the92

elements of this theory used in our model development is provided. Readers interested in93

more details are referred to classical textbooks on the subject (see e.g. Crandall and Mark94

(1963) and Lutes and Sarkani (1997)).95
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Elements of Random Vibration Theory96

Stochastic Processes, Definition and Properties97

Function ξ (t) of an independent variable t is a random process, if ξ (ti) is a random98

variable for any value of ti. Independent variable t can represent time or space for temporally99

or spatially varying stochastic processes. Moments of a stochastic process provide a great100

deal of information about its characteristics. The first moment is the mean µξ (t) = E [ξ (t)]101

and the second moment is the autocovariance function:102

Kξ (s, t) = E [(ξ (t)− µξ (t)) (ξ (s)− µξ (s))] (5)103

The autocorrelation function of a stochastic process, which is identical to the autocovariance104

function for zero-mean processes, is defined as:105

Rξ (s, t) = E [ξ (t) ξ (s)] (6)106

A stationary random process has properties that are independent of the absolute time107

values; i.e. for the case of first two moments (so-called weakly stationary), the mean value108

does not depend on time (µξ (t) = µ), and the autocorrelation function depends only on109

the time difference or lag (Rξ (s, t) = Rξ (τ = t− s)). For a zero-mean stationary process110

the Wiener-Khintchine theorem (Khintchine (1934), Champeney (1987)) states that auto-111

correlation function Rξ (τ) and power spectral density function Sξ (ω) are Fourier transform112
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pairs:113

Sξ (ω) =
1

2π

∫ ∞
−∞

Rξ (τ) exp (−iωτ) dτ (7)114

Rξ (τ) =

∫ ∞
−∞

Sξ (ω) exp (iωτ) dω (8)115

where ω is the angular frequency. The power spectral density (PSD) of a stationary process116

which is truncated at ±T/2 can also be expressed in terms of the Fourier transform of that117

process:118

Sξ (ω) = lim
T→∞

2π

T
E

[∣∣∣ξ̂T (ω)
∣∣∣2] (9)119

with ·̂ denoting Fourier transform. It can be shown that for any stochastic process ξ (t),120

PSD function Sξ (ω) is positive, real and even; hence it can also be specified as a one-sided121

function over only positive frequencies. Of special interest is the case where the time lag is122

τ = 0 in Eq. (8), since this gives the mean-square of ξ (t) as the area under its PSD:123

E
[
ξ2(t)

]
= Rξ (0) =

∫ ∞
0

Sξ (ω) dω (10)124

The stochastic process ξ (t) is Gaussian (normal), if the random variables {ξ (ti)}ni=1125

are jointly Gaussian for any n ∈ N and all values of ti. A stationary Gaussian process is126

completely characterized by its mean µ and autocorrelation function Rξ (τ).127

Response of a Linear Dynamical System to Random Excitations128

Once the input excitation ξ (t) to a linear system is decomposed into its harmonics via129

Fourier transformation, the steady-state response in frequency domain ẑ (ω) can be expressed130

as:131

ẑ (ω) = Hz (ω) ξ̂ (ω) (11)132
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where Hz (ω) is the frequency response function (FRS) defined as the ratio of input excitation133

ξ (t) to output of interest z (t) when input is the pure harmonic (i.e. when ξ (t) = exp (iωt)).134

Frequency response function for derivatives of response is readily obtained from the fre-135

quency response function of the original response using the properties of Fourier transform136

of derivatives (i.e. ̂dx (t) /dt = iωx̂ (ω)):137

Hż (ω) = iωHz (ω) (12)138

Once FRS is known, the PSD of response can be related to the PSD of input excitation via:139

Sz (ω) = |Hz (ω)|2 Sξ (ω) (13)140

Roughness-Induced Dissipation in the Quarter-Car141

For the 2-DOF quarter-car system in Figure 1 subjected to a displacement excitation142

ξ (t) the equations of motion can be expressed in terms of the dimensionless parameters in143

Eq. (3) in the form:144

 1 0

1 γ


 ÿs

ÿu

+ 2ωsζ

 1 −1

0 0


 ẏs

ẏu

+ ω2
s

 1 −1

0 γβ2


 ys

yu

 =

 0

1

 γβ2ω2
sξ (t)

(14)145

with ys and yu denoting the displacement of sprung and unsprung masses, respectively. In146

the presence of a pure harmonic input ξ (t) = exp (iωt) these displacement responses are147

expressed as ys = Hys (ω) exp (iωt) and yu = Hyu (ω) exp (iωt). The frequency response148
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functions are obtained by substituting these expressions in Eq. (14) and are of the form:149

 Hys (ω)

Hyu (ω)

 =


 −ω2 + κ −κ

−ω2 −ω2γ + γβ2



−1  0

γβ2

 (15)150

with κ = 2iωζ + 1. The frequency response function of interest herein relates the relative151

displacement between the two masses z = ys−yu to the input excitation in frequency domain152

(i.e. ẑ (ω) = Hz (ω) ξ̂ (ω) ), and is obtained from:153

Hz (ω) = Hys (ω)−Hyu (ω) =
−ω2γβ2

(ω2 − κ) (ω2γ − γβ2)− ω2κ
(16)154

Using Eqs. (10), (11) and (12) the mean-square of suspension motion is expressed in terms155

of the frequency response function Hz (ω) and power spectral density of roughness Sξ (ω):156

E
[
ż2
]

=

∫ ∞
0

Sż (ω) dω =

∫ ∞
0

ω2 |Hz (ω)|2 Sξ (ω) dω (17)157

For a vehicle traveling with constant speed V the PSD of roughness Sξ (ω) in function of the158

angular frequency relates to the PSD of roughness in function of the wave number Ω = ω/V159

through Sξ (Ω) = V Sξ (ω). The expected value of dissipation in Eq. (4) thus reads:160

E [δE ] = CsV
w−2c

∫ ∞
0

ω2−w |Hz (ω)|2 dω (18)161

or in the dimensionless functional form Eq. (3) expressed in terms of road roughness variables162

(c and w) as well as vehicle parameters (γ, β, and ζ):163

Π =
E [δE ]

msω4−w
s V w−2c

= 2ζ

∫ ∞
0

ω2−w |Hz (ω)|2 dω = F (γ, β, ζ, w) (19)164
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The result of the above analysis has two main practical applications. First, it provides a165

means to understand how roughness-induced dissipation scales with various vehicle and road166

parameters. Second, one can relate the above mechanistic model with mechanical-empirical167

models developed to estimate vehicle fuel consumption, such as calibrated HDM-4 model168

(Chatti and Zaabar, 2012). The insight gained from the mechanistic approach can be used169

to advance such models.170

Relation with IRI171

To achieve the above goals one important step is to establish a relationship between172

the dissipated energy and frequently used roughness metrics. It is common practice to173

capture road roughness through a single roughness index, such as the Average Rectified174

Slope (ARS), which is the accumulated suspension motion divided by the distance traveled,175

i.e. ARS = (V L)−1
∫ L
0
|ż| dx (Sayers et al. (1986), Johannesson and Rychlik (2012)). For176

a specific quarter-car, the golden-car with properties shown in Table 1 traveling at a speed177

of V0 = 80 km/h, ARS corresponds to the International Roughness Index (IRI). Here we178

assume that the road profile can be modeled via a zero-mean Gaussian process (Dodds and179

Robson (1973), ISO-8608 (1995), Sun et al. (2001)) – we comment later on how the results180

are affected if the road profile consists of bumps and valleys that cannot be captured by181

the “light” tails of a Gaussian distribution. Assuming a Gaussian marginal distribution for182

road profile, the absolute value of golden-car suspension motion |ż| follows a folded normal183

distribution with mean
√

2E [ż2] /π (Leone et al., 1961). The expected value of IRI thus184

reads:185

E [IRI] =
1

V0

√
2

π

[∫ ∞
0

ω2
∣∣Hz−GC

(ω)
∣∣2 Sξ (ω) dω

]1/2
(20)186
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with subscript GC denoting that the quantity relates to the properties of the golden-car.187

The above equation can be expressed in terms of the PSD parameters:188

E [IRI] =

[
2c

πV 3−w
0

∫ ∞
0

ω2−w ∣∣Hz−GC
(ω)
∣∣2 dω

]1/2
(21)189

We note that IRI depends both on the golden-car dynamic properties (through frequency190

response function Hz−GC
(ω)), and road roughness characteristics via roughness PSD param-191

eters c and w. The above relation can be written in terms of the dimensionless variables192

defined in (3):193

E [IRI] =

[
ω3−w
s−GC

V 3−w
0

ΠGC

πζGC
c

]1/2
= α
√
c (22)194

The dimensionless dissipation of the golden-car, ΠGC = Π(γGC , βGC , ζGC) is evaluated from195

Eqs. (16) and (19) using the values given in Table 1. It only depends on the waviness number196

w, which typically varies between 1.5 and 3 (Kropac and Mucka (2004)). Specifically, for197

w = 2 as suggested by the International Standard Organization (ISO) (ISO-8608, 1995), the198

following relation between unevenness index c and IRI is obtained:199

E [IRI] =

√
ωs−GC

V0

ΠGC

πζGC
c (23)200

which agrees with the expression E [IRI]=2.21
√
c reported by Kropac and Mucka (2004) and201

Johannesson and Rychlik (2012). Finally, eliminating the unevenness index c between Eqs.202

(19) and (22), the expected value of dissipated energy is obtained in function of IRI and203

waviness number w:204

E [δE ] = k2dmsωs−GC
ζGCV0

(
V0
V

)2−w (
ωs

ωs−GC

)4−w
Π

ΠGC

E [IRI]2 (24)205
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where kd =
√

2/κ with κ = E[|ż|]/
√

E[ż2]. The coefficient kd in the above equation depends206

on the marginal distribution of the suspension motion process and is equal to π when the207

road profile (and consequently the suspension motion) follows a Gaussian distribution. Other208

forms of distributions will be addressed later on.209

Scaling of Energy Dissipation210

We are interested in the scaling of energy dissipation with different vehicle and road211

properties.212

Scaling with road condition: The expected value of dissipation is proportional to E[IRI]2.213

For a specific vehicle (i.e. constant values of β, γ and ζ) the ratio of dimensionless dissipation214

Π/ΠGC only depends on w, and decreases as w increases. Figures 2 and 3 show the variation215

of this dimensionless ratio as a function of w for different values of β, γ. The dissipation216

also scales with vehicle speed as V w−2 which indicates that dissipation increases with speed217

if w > 2, decreases with speed if w < 2 and is independent of speed when w = 2.218

Scaling with vehicle properties: For fixed road condition (i.e. fixed values of IRI and219

w), the dissipation scales according to Eq. (24), with vehicle sprung mass ms and the220

corresponding natural frequency as ω4−w
s . Our parametric studies show that the roughness-221

induced dissipation does not change significantly with variation in the dimensionless damping222

ratio ζ, and therefore it is disregarded in the analysis. The ratio of dimensionless dissipation223

Π/ΠGC in functions of the two vehicle specific invariants β and γ shown in Figure 4 reveals224

that for a specific road condition, the dimensionless dissipation increases with both β and γ.225
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Special case w = 2: For the special case of w = 2 one can express the dimensionless226

dissipation in function of dimensionless invariants γ and β:227

Π =
πγβ2

2
(25)228

Therefore the roughness-induced dissipation reduces to:229

E [δE ] = msω
2
sc
πγβ2

2
=
πc

2
kt (26)230

That is, for a specific road roughness, the dissipation only depends on tire stiffness, kt.231

IMPACT OF MARGINAL PROBABILITY DENSITY FUNCTION: NON-GAUSSIAN232

BUMPS AND VALLEYS233

Here we discuss how the results presented in previous section are affected if the road profile234

data exhibits bumps and valleys that are not captured by the “light” tails of a Gaussian235

distribution. In fact, there is evidence that non-Gaussian distributions with heavier tails236

are better suited for modeling the frequency of observed values in road elevation profile237

data, especially when the phenomenon to be examined is analyzed for longer sections of238

the road profile (Bruscella et al. (1999), Steinwolf and Connon (2005), Johannesson and239

Rychlik (2013)). For example, Bruscella et al. (1999) analyzed several hundred kilometers of240

Victorian (Australia) road profile data, and observed that the normalized histogram of the241

elevation profile has heavier tails compared to that of a Gaussian distribution. Figure 5 shows242

the empirical probability distribution function (PDF) associated with the data reported in243

this study against a Gaussian distribution with the same mean and variance in both linear244

and logarithmic scales. Deviation from Gaussian assumption is evident indicating that the245

road profile needs to be modeled as a non-Gaussian stochastic process. In fact using a246
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Gaussian distribution to model marginal distribution of the elevation profile in such cases247

results in the loss of statistically uncommon events and extreme values (e.g. elevations248

exceeding ±3 standard deviation pertaining to, for example, faulting).249

A natural way to relax the Gaussian assumption and enrich the modeling process by250

incorporating distributions of the type shown in Figure 5 where the lack of shoulders and251

heavy tails are the main attributes, is to use probability distributions with higher kurtosis.252

Kurtosis, defined as the ratio of fourth central moment to the square of the variance (β2 =253

µ4/µ
2
2, with µn the nth central moment), is a measure of tail weight and peakedness in254

a distribution (with higher kurtosis representing heavier tails and more peakedness). It255

represents a movement of probability mass that does not affect the variance. It is thus256

instructive to compare the empirical probability density function of road profile data to257

distributions which look similar to the Gaussian distribution but have heavier tails and258

higher peaks, and choose a distribution that best fits the profile data. Figure 6 illustrates259

PDF of the road profile examined by Bruscella et al. (1999) along with Gaussian distribution260

(β2 = 3) and three non-Gaussian but symmetric distributions, i.e. logistic distribution,261

hyperbolic secant distribution and Laplace distribution, each having kurtosis equal to 4.2,262

5 and 6 respectively. It is observed that PDF of the road profile matches closely a Laplace263

distribution which has the heaviest tails among the three distributions.264

Adopting a non-Gaussian distribution to describe the road profile data the scaling re-265

lationships previously derived need to be revisited. This is achieved by using a simulation266

framework that allows the generation of realizations from a non-Gaussian random process267

given its power spectral density (c and w in our case) and marginal distribution. Once such268

realizations of the road profile are available they are fed into the golden-car model to ob-269

tain realizations of IRI. The functional relationship between c and IRI is then numerically270
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determined by averaging over multiple runs, with each run simulating the dynamics of the271

golden-car run over a single realization of the road profile.272

Translation Process Theory273

Realizations of the road profile are generated based on the translation process theory274

introduced by Nataf (1962) and later developed by Grigoriu (1984), Liu and Der Kiureghian275

(1986) and Grigoriu (1998). A nonlinear transformation of the form:276

Y (s) = F−1Y (Φ (X(s))) (27)277

with X(s) a standard stationary Gaussian process, is used to model a stationary non-278

Gaussian process Y (s). Herein, FY (y) is the (target) marginal cumulative distribution func-279

tion of the process Y (s), and Φ represents the standard Gaussian cumulative distribution280

function. It can been shown that the autocorrelation function of the resulting non-Gaussian281

process RY (τ) is related to the autocorrelation function of the underlying Gaussian process282

R(τ) by (Grigoriu (1998)):283

RY (τ) =

∫ ∞
−∞

∫ ∞
−∞

F−1Y (Φ(x1))F
−1
Y (Φ(x2))φ (x1, x2, ρ(τ)) dx1dx2 (28)284

with ρ(τ) = R(τ)/σ2 and φ the bivariate Gaussian probability density function. Generating285

realizations of the non-Gaussian process then boils down to: (i) finding the autocorrelation286

function R(τ) of the Gaussian process given the target autocorrelation function or PSD287

(note these two are directly related). This is achieved by numerically inverting Eq. (28)288

provided the target marginal CDF and autocorrelation functions are “compatible”, or by289

means of iterative schemes that converge toward the best match for the autocorrelation290

function or the associated PSD (see Grigoriu (1998) or Shields et al. (2011)); (ii) generating291
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samples of the Gaussian process using one of the available techniques (see e.g. Shinozuka292

and Deodatis (1991) and Grigoriu (1993)); and (iii) using the nonlinear transformation Eq.293

(27) to generate samples of the non-Gaussian process.294

Impact on Scaling Relations295

A total of 5,000 road profile realizations were generated from a stochastic process with296

Laplace marginal distribution and roughness PSD function Sξ = cΩ−w. Two sample profiles297

are illustrated in Figure 7 along with their Gaussian counterparts. The profiles with marginal298

Laplace distributions have more observable bumps and extremes compared to the ones with299

Gaussian distribution. The response, i.e. suspension motion of the golden-car, ż, due to road300

roughness is then evaluated by solving the equations of motion Eq. (14) for each of these301

realizations. The average IRI of simulated profiles is evaluated and plotted in function of c in302

Figure 8 for a wide range of unevenness index c that covers the range of IRI values in practice.303

While scaling with IRI of the unevenness index remains constant, the multiplicative factor304

α in the functional relationship (22) changes. We also included the c− IRI curves obtained305

by approximating the marginal PDF of the suspension motion process by the same family of306

distributions as the one used in describing the road profile elevation. The curve associated307

with logistic distribution is, for example, obtained assuming the following distribution of ż:308

f (ż) =
1

4s
sech2

(
ż − µż

2s

)
(29)309

where µż is the mean value and s =
√

3σż/π with σż standard deviation of ż. The absolute310

value of response Y = |ż| has then a folded logistic distribution with the following CDF:311

FY (y) =
1

1 + exp
(
−y−µż

s

) +
1

1 + exp
(
−
(
y+µż
s

)) − 1 (30)312

16



For the special case of zero-mean ż, one can readily show that E [|ż|] = 2s ln 2. Eqs. (21)313

and (22) can thus be rewritten as follows:314

E [IRI] =
2 ln 2

π

[
3c

V 3−w
0

∫ ∞
0

ω2−w |Hz (ω)|2 dω

]1/2
=

ln 2

π

[
c
6ω3−w

s

V 3−w
0

ΠGC

ζGC

]1/2
(31)315

Table 2 summarizes the result of similar calculations for different distributions of the316

marginal PDF of the suspension motion. Numbers associated with a Gaussian marginal317

PDF are also included for the sake of comparison. As shown in Figure 8 the hyperbolic318

secant distribution provides the best approximation for the functional relationship between319

unevenness index c and IRI. This can be explained by carefully examining the marginal320

distribution of suspension response. In fact, Figures 9 and 10 depict this distribution for321

waviness number w = 2.5 and different values of unevenness index c plotted against the322

associated Gaussian, Laplace, hyperbolic secant and logistic distributions. It is observed323

that the marginal PDF of response has heavier tails than that of a Gaussian distribution.324

This is manifested in a higher kurtosis value of 4.85 as compared to that of a Gaussian325

distribution, 3. Comparing the marginal PDF of ż to three different non-Gaussian PDFs,326

one also observes that the marginal distribution of suspension motion process is very close327

to hyperbolic secant distribution.328

APPLICATION: HANDSHAKE WITH HDM-4 MODEL329

The framework developed herein relates road surface characteristics and dynamic prop-330

erties of a quarter-vehicle to the roughness-induced dissipation, and thus fuel consumption.331

In practice, however, vehicle dynamics is far more complex than the simplified quarter-car332

model. In addition, measuring all dynamic properties of vehicle with a reasonable accuracy333

may not be always feasible. For instance, while it is possible to measure the inertial proper-334
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ties (sprung and unsprung masses) accurately, the total stiffness involved in different parts335

of a vehicle is more complicated than stiffness of suspension and tire and may be very hard336

to measure. In the absence of such detailed measurements empirical models such as the337

HDM-4 model (Zaabar and Chatti (2010)) can be used to calibrate the proposed roughness-338

induced mechanistic model. In such a calibration, the stiffness properties for different classes339

of vehicles, together with the road waviness number as an additional adjustable parameter340

are estimated (Louhghalam et al. (2014a)). The HDM-4 model reports the variation of ex-341

cess fuel consumption due to change in IRI at different vehicle speeds and for five classes of342

vehicle: medium car, SUV, van, light truck and heavy truck.343

To calibrate the mechanistic model, the dissipated energy is first converted to fuel con-344

sumption using engine efficiency coefficient (ξb in mL/kW/s). The calibration parameters,345

i.e. stiffness properties of each vehicle class and a single road waviness number, are then346

determined by minimizing the difference between two model predictions of change in fuel347

consumption. Calibration is performed for practical ranges of IRI and vehicle speed, corre-348

sponding to the field measurements in Chatti and Zaabar (2012). A detailed description of349

the calibration procedure is explained in Louhghalam et al. (2014a), where the marginal dis-350

tribution of road profile was assumed to be Gaussian (see Table 3 for a summary of results).351

The results of our calibrated model are illustrated in Figure 11 for vehicle speeds 70 and 100352

km/h and compared with the predictions of calibrated HDM-4 model (Chatti and Zaabar353

(2012)). The plots show the change in total fuel consumption in function of IRI for five vehicle354

classes. In contrast to the HDM-4 model, where fuel consumption is linearly related to IRI,355

the developed mechanistic model establishes a quadratic relation between energy dissipation356

and IRI. It is worth noting that the HDM-4 model for estimating roughness-induced fuel357

consumption is an empirical model where a functional relationship, presumed to be varying358
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linearly with IRI, is fitted to the experimental measurements. Hence the scaling in IRI is as-359

sumed a priori and is not the result of dynamic analysis of road roughness-vehicle interaction.360

The calibration parameters can also be determined if the Gaussian assumption for profiles is361

relaxed. Table 3 also shows the stiffness parameters for the three non-Gaussian distributions362

discussed before. The waviness number w =2.4117 is the same for all distributions studied,363

which agrees well with the results of statistical analysis of the Long-Term Pavement Per-364

formance program of the US Federal Highway Administration (FHWA) reported by Kropac365

and Mucka (2008), exhibiting a mode at around w = 2.5.366

CONCLUDING REMARKS367

The mechanistic model developed in this paper quantifies the impact of road roughness368

characteristics on vehicle fuel consumption as one of the sources of energy dissipation related369

to rolling resistance. Such models are necessary for assessing the environmental footprint370

of pavement structures during their use phase, thus contributing to the emerging quanti-371

tative framework of engineering sustainability. The unique feature of this model is that it372

integrates the uncertainty in pavement profiles into a thermodynamic quantity (energy dissi-373

pation) using random vibration techniques. This provides a means to identify the governing374

parameters that drive roughness-induced dissipation and related excess fuel consumption.375

The results of our analysis establish the relationship between the statistical characteris-376

tics of road profile and vehicle dynamic properties and energy dissipation. The scaling of377

dissipation with IRI proposed by the mechanistic model (i.e. δE ∝ IRI2) is different from378

the linear scaling of dissipation with IRI reported by empirical models such as HDM-4. In379

our mechanistic model the road roughness is represented by two independent parameters,380

IRI and w. This is in contrast with empirical models in which only IRI is normally used to381

represent the road surface condition.382
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Furthermore, for a specific vehicle, scaling of the dissipated energy with speed varies383

with the waviness number as E [δE ] ∝ V w−2. This implies that the dissipation increases384

with speed for w > 2, and for w < 2 it is the inverse. In return, since the waviness number385

of pavements varies in the range w = 2.5 ± 0.5, the variation of speed does not change386

the roughness-induced dissipation significantly. For instance, for w = 2.41 obtained from387

calibration, increasing the speed by 100 % results in only 33 % increase in dissipation. In388

other words, the variation of fuel consumption due to change of speed should generally not389

be attributed to roughness-induced dissipation.390

When Gaussian distributions fail to represent the frequency of extreme values and bumps391

in the road, the found scaling relationships of energy dissipation with road surface param-392

eters and vehicle dynamic properties remain unchanged. In return, all what changes is the393

multiplicative factor in the functional form relating energy dissipation and these parameters394

and properties.395
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TABLE 1: Properties of the golden-car (data from Sayers (1995))

Property Value Units
kt/ms 653 [s−2]
ks/ms 63.3 [s−2]
Cs/ms 6.0 [s−1]
mu/ms 0.15 [1]
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TABLE 2: Values of α in E [IRI] = α
√
c and kd in Eq. (24) for various distributions

Probability distribution α kd
Gaussian 1.9154

√
π

Logistic 1.8348 π/
√

6ln2

Hyperbolic Secant 1.7823
√

2π2/7.328
Laplace 1.6975 2
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TABLE 3: Vehicle dynamic properties per axel

Vehicle class
Medium
car

SUV Van
Light
truck

Articulated
truck

Total mass, mt (tons) 1.461 2.51 2.541 6.51 34.91

Unsprung mass, mu (kg) 802 1253 1347 3955 5446

Suspension stiffness ks
(kN/m)

29.442 1893 484 3375 7006

Fuel efficiency coefficient
ξb (mL/kW/s)

.0961 .0721 .0721 .0621 .0591

β (Gaussian) 46.98 28.03 31.00 14.90 13.30
β (Logistic) 44.46 26.51 29.32 13.95 12.54
β (Hyperbolic secant) 42.84 25.53 28.24 13.42 12.04
β (Laplace) 40.24 23.95 26.51 12.57 11.26

1 - Chatti and Zaabar (2012)
2 - Dixon (1996)
3 - CarSim template
4 - Dastun1200 (2013)
5 - GMC Specification manual
6 - Fancher (1986)
7 - Winkler (1983)
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FIG. 11: Change in roughness-induced excess fuel consumption in function of IRI at V =
70 and 100 km/h for (a): Medium car (b): SUV (c): Van (d):Light truck (e): Articulated
truck
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