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jet observables that are based on hierarchical clustering trees, where the nonlinear evolution

equations also exhibit tree-like structure at leading order. We develop a numeric code for

performing this evolution and study its phenomenological implications. As an application,
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1 Introduction

Fragmentation functions (FFs) have a long history in QCD for calculating cross sections

for collinear-unsafe observables. Ordinary FFs are process-independent nonperturbative

objects that describe the flow of momentum from a fragmenting quark or gluon into an

identified final-state hadron [1–7]. Since the momentum of a single hadron is not collinear

safe, cross sections for single-hadron observables have singularities beginning at O(αs).

These collinear singularities are absorbed by the FFs order by order in αs. From this

singularity structure, one can derive the renormalization group (RG) evolution for FFs,

leading to the well-known DGLAP equations [8–11]. This evolution is linear, since FFs

depend only on the momentum of a single hadron in the final state.

In this paper, we present a formalism for generalized fragmentation functions (GFFs),

which describe the flow of momentum from a fragmenting quark or gluon into subsets of

final-state hadrons. Because GFFs depend on correlations between final-state hadrons,

their evolution equations are nonlinear and therefore more complicated than in the ordi-

nary FF case. Motivated by the structure of the DGLAP equations, we define fractal jet

observables where the evolution, albeit nonlinear, takes a special recursive form that is

well-suited to numerical evaluation.1

Specifically, we focus on observables defined using hierarchical binary clustering trees

that mimic the leading-order tree-like structure of the evolution equations. A fractal jet

observable x can then be defined recursively according to figure 1 as

x = x̂(z, x1, x2), (1.1)

where x1 and x2 are the values of the observable on the branches of a 1 → 2 clustering

tree, and z is the momentum sharing between branches, defined by

z ≡ E1

E1 + E2
(1.2)

with Ei the energy of branch i.2 With these definitions, the leading-order evolution equa-

tion of the corresponding GFF takes the simplified form

µ
d

dµ
Fi(x, µ) =

1

2

∑
j,k

∫
dz dx1 dx2

αs(µ)

π
Pi→jk(z)Fj(x1, µ)Fk(x2, µ) δ[x− x̂(z, x1, x2)],

(1.3)

1This should not be confused with “extended fractal observables” recently introduced in ref. [12], which

are based on determining the fractal dimension of a jet.
2While it would be more accurate to call eq. (1.2) the “energy fraction”, we use momentum fraction

since that is more common in the fragmentation function literature.
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~p, x = x̂(z, x1, x2)
~p1,

x1

~p2 , x
2

Figure 1. Fractal jet observables are defined recursively on binary clustering trees. In each

recursive step, the value x for the mother is expressed in terms of the momentum fraction z and

the value x1 and x2 of the observable for the daughters.

where Fi(x, µ) is the GFF for parton i = {u, ū, d, . . . , g}, Pi→jk(z) is the 1 → 2 QCD

splitting function, and µ is the MS renormalization scale. This evolution equation has the

same structure as a 1→ 2 parton shower, which is sufficiently straightforward to implement

numerically. Although we mostly restrict ourselves to lowest order in perturbation theory,

our framework allows for the systematic inclusion of higher-order corrections, in contrast

to the semi-classical parton shower approach.

The class of fractal jet observables described by eq. (1.1) is surprisingly rich, allowing

for many collinear-unsafe observables to be calculated with the help of GFFs. For example,

eq. (1.3) describes the evolution of weighted energy fractions,

x =
∑
a∈jet

wa z
κ
a , za ≡

Ea
Ejet

, (1.4)

where wa is a weight factor that depends on non-kinematic quantum numbers such as

charge or flavor, κ > 0 is an energy weighting exponent, and the sum extends over all

jet constituents. These observables are defined by associative recursion relations, such

that their value is independent of the choice of clustering tree. Examples of weighted

energy fractions include weighted jet charge [13], whose nonlinear evolution was first studied

in ref. [14]; track functions which characterize the fraction of a jet’s momentum carried

by charged particles [15, 16]; and the observable pDT used by the CMS experiment for

quark/gluon discrimination [17, 18], whose nonlinear evolution was first studied in ref. [19].

While we focus on the case of e+e− collisions with jets of energy Ejet, our formalism easily

adapts to hadronic collisions with jets of transverse momentum pjet
T .

In addition to performing a more general analysis of weighted energy fractions, we

also present examples of fractal observables with non-associative recursion relations. These

quantities depend on the details of the clustering tree used to implement eq. (1.1), providing

a complementary probe of jet fragmentation. In particular, while eq. (1.1) does not involve

any explicit angular separation scales, the clustering tree does introduce an implicit angular

dependence. Remarkably, the details of the clustering do not affect the leading-order RG

evolution in eq. (1.3) considered in this paper, beyond the requirement that particles are

appropriately clustered in the collinear limit. An example of a non-associative fractal

observable is given by node-based energy products,

x =
∑

nodes

(4zLzR)κ/2 , (1.5)
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where the observable depends on the momentum fractions carried by the left and right

branches at each node in the clustering tree. We also study observables defined entirely in

terms of eq. (1.1), with no obvious simplification. This sensitivity to the tree structure al-

lows non-associative observables to probe parton fragmentation from a different perspective

than previously-studied jet observables. As one application, we consider the discrimina-

tion between quark- and gluon-initiated jets (see e.g. [19–27] for recent studies). We find

that fractal observables are effective for this purpose, in some cases yielding improved

quark/gluon separation power compared to weighted energy fractions.

For clustering trees obtained from the Cambridge/Aachen (C/A) algorithm [28, 29],

the depth in the tree is directly related to the angular separation scale between subjets.

This opens up the possibility of modifying the recursion relation x̂ in eq. (1.3) to be a

function of angular scale. For example, starting from a jet of radius R, one can introduce

a subjet radius parameter Rsub � R such that evolution equation takes a different form

below and above Rsub. A particularly simple case is if the weighted energy fraction with

κ = 1 is measured on the branches below Rsub, since this effectively amounts to defining

fractal observables in terms of subjets of radius Rsub. In this case, the initial conditions

for the GFF leading-order evolution is simply given by Fi(x, µsub) = δ(1− x) at the initial

scale µsub = EjetRsub � ΛQCD, such that no nonperturbative input is needed. By evolving

the GFFs to µ = EjetR, we achieve the resummation of leading logarithms of Rsub/R.

Related evolution techniques have been used to resum logarithms of the jet radius R in

inclusive jet cross sections [30–32].

The formalism of GFFs is reminiscent of other multi-hadron FFs in the literature. This

includes dihadron fragmentation functions which describe the momentum fraction carried

by pairs of final-state hadrons [33, 34], and fracture functions which correlate the properties

of one initial-state and one final-state hadron [35, 36]. In all of these cases, the RG evolution

equations are nonlinear. The key difference here is that fractal jet observables are not

based on a fixed number of hadrons, but rather allow for arbitrary hadron multiplicities.

Depending on the observable, this may require that all hadrons can be consistently labeled

by non-kinematic quantum numbers (e.g. charge). As discussed in ref. [14] for the case

of weighted jet charge, the n-th moment of GFFs can sometimes be related to moments

of n-hadron FFs. At the level of the full distribution, though, GFFs are distinct from

multi-hadron FFs, and thereby probe complementary aspects of jet fragmentation.

The rest of this paper is organized as follows. In section 2, we review the theoretical

underpinnings of ordinary parton fragmentation and explain how to extend the formalism

to generalized fragmentation and fractal observables. We then construct generic fractal jet

observables using clustering trees in section 3. In section 4, we treat the case of weighted

energy fractions, exploring their RG evolution for a range of parameters. We introduce two

new sets of non-associative fractal observables in section 5 — node products and full-tree

observables — and motivate their application in quark/gluon discrimination in section 6.

We briefly explain how our formalism also applies to fractal observables based on subjets

rather than hadrons in section 7. We conclude in section 8, leaving calculational details

and a description of the numerical RG implementation to the appendices.

– 4 –
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2 Formalism

To motivate the definition of fractal jet observables, it is instructive to first review the

formalism of standard fragmentation and then generalize it to arbitrary collinear-unsafe

observables. We give a general definition of fractal jet observables at the end of this section,

which serves as a preamble to the explicit constructions in section 3.

2.1 Review of standard fragmentation

Ordinary FFs, denoted by Dh
i (x, µ), are nonperturbative objects that describe the number

density of hadrons of type h carrying momentum fraction x among the particles resulting

from the fragmentation of a parton of type i. They are the final-state counterpart to

parton distribution functions (PDFs). For any parton flavor i, they satisfy the momentum

conservation sum rule ∑
h

∫ 1

0
dxxDh

i (x, µ) = 1 . (2.1)

At leading order, the FFs are independent of the factorization scheme (see e.g. [37]).

The field-theoretic definition of the bare unpolarized quark FF is given by [6, 7]

Dh
i (x, µ)=

1

x

∫
d2p⊥h

∫
dy+d2y⊥
2(2π)3

eip
−y+

∑
X

1

2NC
Tr

[
γ−

2
〈0|ψi(y+, 0, y⊥)|hX〉〈hX|ψi(0)|0〉

]
,

(2.2)

where we are working in a frame with quark transverse momentum ~p⊥ = 0 and using the

gauge choice A− = 0. The jet-like state |hX〉 contains an identified hadron h of momentum

ph with p−h ≡ xp−, and X refers to all other hadrons in that state. The factor 1/(2NC),

where NC = 3 is the number of colors, accounts for averaging over the color and spin of

the quark field ψ of flavor i. Here and in the rest of the paper, we adopt the following

convention for decomposing a four-vector wµ in light-cone coordinates:

wµ = w−
nµ

2
+ w+ n̄

µ

2
+ wµ⊥, w− = n̄ ·w, w+ = n ·w, (2.3)

where nµ is a light-like vector along the direction of the energetic parton, and n̄ is defined

such that n2 = n̄2 = 0 and n · n̄ = 2. Thus at leading order, p− = 2Ejet. Gauge invariance

requires adding eikonal Wilson lines in eq. (2.2) (see e.g. [38]), which we suppress here for

notational convenience. An analogous definition applies for the gluon FF.

In the context of e+e− annihilation, FFs are crucial ingredients in the factorization

formula for the semi-inclusive cross section at leading power in ΛQCD/
√
s,

1

σ(0)

dσ

dx
(e+e− → hX) =

∑
i

∫ 1

x

dz

z
Ci(z, s, µ)Dh

i (x/z, µ), (2.4)

where x = 2Eh/
√
s ≤ 1 is the hadron energy fraction, σ(0) is the tree-level cross section and

X represents all other final state particles in the process.3 The coefficients Ci(z, s, µ) are

3In the literature (see e.g. [39]), the cross section 1/σ(0) dσ/dx(e+e− → hX) = Fh(x, µ) is sometimes

referred to as the total FF, in which case Dh
i (x, µ) is called the parton FF.

– 5 –
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process-dependent perturbative functions that encode the physics of the hard subprocess.

The FFs Dh
i (x, µ) are universal, process-independent functions, which appear (with appro-

priate PDF convolutions) in related channels such as ep → hX or pp → hX. Since the

coefficients Ci contain logarithms of s/µ2, in order to avoid terms that could spoil pertur-

bative convergence in eq. (2.4), the renormalization scale µ should be chosen close to
√
s.

While computing the FFs themselves requires nonperturbative information about the

hadronic matrix elements in eq. (2.2), their scale dependence is perturbatively calculable.

This allows us to, for example, take FFs extracted from fits to experimental data at one

scale and evolve them to another perturbative scale. The RG evolution of FFs is described

by the DGLAP equations [8–11],

µ
d

dµ
Dh
i (x, µ) =

∑
j

∫ 1

x

dz

z

αs(µ)

π
Pji(z)Dh

j (x/z, µ). (2.5)

Here, the splitting kernels Pji(z) can be calculated in perturbation theory,

Pji(z) = P
(0)
ji (z) +

αs
2π
P

(1)
ji (z) + . . . , (2.6)

and are at lowest order the same as the splitting kernels for PDF evolution. The next-order

splitting function P
(1)
ji arises from 1 → 3 splittings as well as loop corrections to 1 → 2

splittings.

In order to motivate the transition to generalized fragmentation, it is convenient to

rewrite the lowest-order splitting function explicitly as a 1 → 2 process:

P
(0)
ji (z) ≡ Pi→jk(z), (2.7)

where the parton j carries momentum fraction z, e.g. Pg→gg(z) or Pq→qg(z) = Pq→gq(1−z).

With this notation, we can rewrite the leading-order DGLAP equation in a suggestive form4

µ
d

dµ
Dh
i (x, µ) =

1

2

∑
j,k

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dz

αs(µ)

π
Pi→jk(z)

×
(
Dh
j (x1, µ) δ[x− zx1] +Dh

k (x2, µ) δ[x− (1− z)x2]
)
. (2.8)

Though we have written eq. (2.8) as an integral over both x1 and x2, corresponding to the

two final state branches from the i→ jk splitting, the FFs only require information about

one single final-state hadron in each term, so the evolution simplifies to the linear form in

eq. (2.5). This will no longer be the case with generalized fragmentation, which depends

on correlations between the final-state hadrons.

2.2 Introducing generalized fragmentation

We now extend the FF formalism to handle the distribution of quantities x carried by a

subset S of collinear particles, where x can be more general than the simple momentum

4Because the splitting functions are divergent as z → 1 and as z → 0, plus-function regulators are

required at both endpoints when integrating over the entire range 0 ≤ z ≤ 1.

– 6 –
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fraction and S is defined by non-kinematic quantum numbers. For example, we will consider

observables defined on all particles within a jet, but also on charged particles only. For a

given observable x, there is a GFF for each parton species i, which we denote by Fi(x, µ).

At lowest order in αs, the GFF is the probability density for the particles in S to yield a

value of the observable x from jets initiated by a parton of type i. The GFF automatically

includes information about hadronization fluctuations. Being a probability density, the

GFFs are normalized to unity for each parton type,∫
dxFi(x, µ) = 1. (2.9)

For any collinear-unsafe (but soft-safe) observable x, we can give an operator definition

for GFFs analogous to that for fragmentation functions. A (bare) quark GFF for the gauge

choice A− = 0 is defined as

Fi(x, µ) =

∫
dy+d2y⊥e

ip−y+/2 1

2NC

∑
SX

δ[x− x̃(p−, S)]

× Tr

[
γ−

2
〈0|ψi(y+, 0, y⊥)|SX〉〈SX|ψi(0)|0〉

]
, (2.10)

to be compared with eq. (2.2). Here, |SX〉 is the asymptotic final state divided into

the measured subset S and unmeasured subset X, and x̃(p−, S) is the functional form

of the quantity being observed, which can depend on the overall jet momentum and any

information from S. We stress that, in contrast to the standard FFs, a GFF involves a

sum over polarizations and a phase-space integration over all detected particles in S; if the

measured set S consists of a single hadron, then eq. (2.10) reduces to eq. (2.2) for a quark

FF. The definition for gluon-initiated jets is

Fg(x, µ) = − 1

(d− 2)(N2
C − 1)p−

∫
dy+d2y⊥e

ip−y+/2
∑
SX

δ[x− x̃(p−, S)]

× 〈0|G−,aλ (y+, 0, y⊥)|SX〉〈SX|G−,a,λ(0)|0〉, (2.11)

where G−,aλ = nµGaµλ is the gluon field strength tensor for generator T a, the factor of

1/(d − 2) comes from averaging over the gluon polarizations in d space-time dimensions,

and the factor of 1/(N2
C − 1) comes from averaging over the color of the gluon.

The definitions in eqs. (2.10) and (2.11) extend the ones introduced in ref. [15] for track

functions. In the track function case, x is the momentum fraction carried by the charged

particles in the final states, irrespective of their individual properties or multiplicities. As

mentioned in the introduction, GFFs are reminiscent of multi-hadron FFs [33, 34], with

the key difference that multi-hadron FFs describe a fixed number of identified final-state

hadrons (i.e. two in the case of dihadron FFs), whereas GFFs allow for a variable number

of final-state hadrons in the subset S.

With these GFFs in hand, we can calculate the cross section differential in the fractal

observable x for an inclusive jet sample with radius parameter R � 1. Letting zJ be the

fraction of the center-of-mass energy carried by the measured jet (zJ ≡ 2Ejet/Ecm), we

– 7 –
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have

1

σ(0)

dσ

dzJ dx
(e+e− → jet +X) =

∑
i

∫
dy′

y′
Ci(zJ/y

′, Ecm, µ) (2.12)

×
{
δ(1− y′)Fi(x, µ) +

∑
j

J (1)
i→j(y

′, EjetR,µ)Fj(x, µ)

+ δ(1−y′) 1

2

∑
j,k

∫
dz dx1 dx2 J (1)

i→jk(z, EjetR,µ)Fj(x1, µ)Fk(x2, µ) δ[x−x̂(z, x1, x2)]

+
1

2

∑
j,k

∫
dz dx1 dx2 J (2)

i→jk(y
′, z, EjetR,µ)Fj(x1, µ)Fk(x2, µ) δ[x− x̂(z, x1, x2)] + . . .

}
,

where the ellipsis includes further terms at next-to-next-to leading order and σ(0) denotes

the tree-level cross section. There is a similar version of eq. (2.12) for pp and ep collisions

with the inclusion of PDFs, where the jet rapidity would appear in the Ci coefficients.

As in eq. (2.4), the effects of the hard interaction producing a parton i are encoded in

the coefficients Ci, which can be expanded perturbatively and depend on zJ and Ecm.

At leading order, the jet only consists of parton i, thus C
(0)
i (zJ) = δ(1 − zJ) and the

dependence on the fractal observable x arising from parton production and hadronization

is described simply by Fi. For most of the paper, we restrict ourselves to leading order,

though we stress that eq. (2.12) provides the tools to interface our GFF formalism with

fixed-order calculations and to extract GFFs beyond leading order.

At next-to-leading order in eq. (2.12), the parton i can undergo a perturbative splitting

into partons j and k. If only j is inside the jet then zJ < 1, as described by the perturbative

coefficient J (1)
i→j that can be derived from ref. [31], and the x-dependence is described by

Fj . If both partons belong to the jet then again zJ = 1, but the observable x now follows

from combining the values x1 and x2 of the GFFs for partons j and k with the momentum

fraction z of the perturbative splitting described by the J (1)
i→jk from ref. [14]. At next-to-

next-to-leading order, there are even more contributions, including one with three partons

in the jet involving J (2)
i→jk`. In eq. (2.12), we displayed only the term with two partons

belonging to the jet, since it is the first term that directly correlates zJ and z. The natural

scale of the coefficients Ji→j ,Ji→jk, . . . , is the typical jet invariant mass EjetR, so we

conclude that the GFFs should be evaluated at µ ' EjetR to minimize the effect of higher-

order corrections. If R & 1, then Ci and J can be combined, and the natural scale to

evaluate the GFF would be µ ' Ejet.

It is important to note that eq. (2.12) really combines two different formalisms. The

first is the formalism for GFFs discussed initially in refs. [14, 15] for track-based observables

and further developed here. The second is the formalism for fragmentation in inclusive jet

production of refs. [32, 40], which builds upon work on fragmentation in exclusive jet sam-

ples refs. [41–44]. Both of these formalisms are needed to perform higher-order jet calcula-

tions, though at leading order, the GFF formalism alone suffices. For the interested reader,

we provide all details of the matching for e+e− → jet + X at next-to-leading order in ap-

pendix A. As in refs. [14, 15], we expect that the absorption of collinear divergences by GFFs

can be carried out order-by-order in αs due to the universality of the collinear limits in QCD.

– 8 –
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2.3 Introducing fractal observables

The above generalized fragmentation formalism works for any collinear-unsafe (but soft-

safe) observable. The RG evolution for a generic Fi(x, µ), however, can be very com-

plicated. In order to deal with numerically tractable evolution equations, we focus on

observables whose RG evolution simplifies to a nonlinear version of eq. (2.8). Specifically,

we want to find the most general form of the function x̃(p−, S) in eqs. (2.10) and (2.11)

such that the RG evolution of Fi(x, µ) depends only on itself and other GFFs for the same

observable, and does not mix with other functions. An example of an observable that

involves GFF mixing is given in appendix B, where the evolution equation is considerably

more complicated than considered below.

We define fractal observables as those whose GFFs obey the (leading-order) RG equa-

tion in eq. (1.3), repeated here for convenience:

µ
d

dµ
Fi(x, µ) =

1

2

∑
j,k

∫
dz dx1 dx2

αs(µ)

π
Pi→jk(z)Fj(x1, µ)Fk(x2, µ) δ[x− x̂(z, x1, x2)],

(2.13)

where x̂(z, x1, x2) is a function related to x̃(p−, S), which now depends on the momentum

p only through the momentum sharing z. As advertised, the evolution of Fi(x, µ) depends

only on GFFs for the same observable x, and no other nonperturbative functions. We leave

a detailed discussion of higher-order evolution to future work, and focus primarily on the

leading-order evolution here. As a consistency check, the δ function in eq. (2.13) ensures

that the RG evolution automatically preserves the GFF normalization,

µ
d

dµ

∫
dxFi(x, µ) =

1

2

∑
j,k

∫
dz

αs(µ)

π
Pi→jk(z)

∫
dx1Fj(x1, µ)

∫
dx2Fk(x2, µ) = 0,

(2.14)

where we used the fact that
∑

j,k

∫
dz Pi→jk(z) = 0.

As a simple example of a fractal observable, consider the momentum fraction x carried

by a subset S of hadrons of a common type. This case has already been studied in the

context of track functions [15, 16], where S corresponded to charged particles. Treating

the states |SX〉 in eqs. (2.10) and (2.11) partonically, the next-to-leading-order bare GFF

in dimensional regularization with d = 4− 2ε satisfies

F (1)
i (x) =

1

2

∑
j,k

∫
dz

αs(µ)

2π

(
1

εUV
− 1

εIR

)
Pi→jk(z)

×
∫

dx1 dx2F (0)
j (x1, µ)F (0)

k (x2, µ) δ[x− x̂(z, x1, x2)]. (2.15)

Here, the function x̂(z, x1, x2) is the form of x̃(p−, S) written in terms of two subjets,

x̂(z, x1, x2) = z x1 + (1− z)x2, (2.16)

where x1 and x2 are the momentum fractions carried by particles belonging to subjets 1

and 2 within S, and z is the momentum fraction carried by subjet 1, as defined in eq. (1.2).

Renormalizing the UV divergences in eq. (2.15) in the MS scheme leads directly to the RG
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Figure 2. Tree structure for fractal observables. Each leaf node has a starting weight wa. Each

edge has a momentum value pi, which is used to calculate the momentum fraction z of the splitting

at each non-leaf node. The observable values at the non-leaf nodes are given by the x̂(z, x1, x2)

recursion relation. The final value of the observable measured on the tree as a whole is the value

obtained at the root node.

equation in eq. (2.13). Thus, the momentum fraction x carried by the final-state subset S

is indeed a fractal observable.

In the above analysis, we implicitly assumed massless partons, since otherwise the

parton mass m would regulate the 1/εIR divergence. As long as m� EjetR, it is consistent

to take the m→ 0 limit, which resums the large logarithms of EjetR/m in the cross section

for the fractal observable. At the scale µ = m, one has to match the GFF evolution onto

the appropriate heavy-quark description.

3 Fractal observables via clustering trees

We now present a straightforward way to build a broad class of fractal observables that

have the desired RG evolution in eq. (2.13). The idea is to use recursive clustering trees

that mimic the structure of the leading-order RG evolution equations. Our construction is

based on the following three ingredients, as shown in figure 2:

1. Weights wa for each final-state hadron;

2. An IRC-safe binary clustering tree;

3. The recursion relation x̂(z, x1, x2).

By implementing the function x̂ directly on recursive clustering trees, the resulting observ-

able is guaranteed to have fractal structure.

3.1 Construction

For this discussion, we start with a collection of hadrons from an identified jet, found using

a suitable jet algorithm, e.g. anti-kt [45] in the studies below. As the initial boundary
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condition for the observable, each final-state hadron within the jet is assigned a weight

wa (possibly zero) based on some non-kinematic quantum number associated with that

hadron. This weight controls how much each type of hadron contributes to the value of the

jet observable. For example, to construct an observable that only depends on the charged

particles in the jet, all charged particles would be given weight 1 and all neutral particles

weight 0. It is crucial that wa is independent of the energy and direction of the hadron,

otherwise the NLO GFF would not take the form in eq. (2.15).

These final-state hadrons are then used as inputs to an IRC-safe binary clustering tree,

which is in general different from any clustering algorithm used to determine the identified

jet. For our studies, we use the generalized-kt family of jet clustering algorithms [45], which

are designed to follow the leading-order structure of the parton shower. In the context of

e+e− collisions, these algorithms have the pairwise clustering metric

dij = min[E2p
i , E

2p
j ] Ω2

ij , (3.1)

where the exponent p parametrizes the tree-dependence of the observable, with p =

{−1, 0, 1} corresponding to the {anti-kt [45],C/A [28, 29], kt [46, 47]} clustering algo-

rithms, and Ω2
ij is a measure of the angular separation between two constituent’s momenta

scaled by the jet radius parameter R.5 For any value of p, generalized-kt provides a pair-

wise clustering structure that directly mimics eq. (2.13). For pp collisions, one insteads use

a form of eq. (3.1) based on transverse momenta pT and distance ∆Rij in azimuthal angle

and rapidity.

From this clustering tree, one can determine the observable x by applying the recursion

relation x̂(z, x1, x2) at each stage of the clustering. Specifically, the value of x at each node

depends on the momentum fraction z given by the 2→ 1 merging kinematics as well as on

the x1 and x2 values determined from the corresponding daughter nodes (which might be

the initial weights wa). When all nodes are contained in a single connected tree, the root

node represents the entire jet, and the root value of x determines the final observable.

Even though the clustering tree is IRC safe, the resulting fractal observable x is gen-

erally collinear unsafe. These collinear divergences are absorbed into the GFFs, and are in

fact responsible for the evolution in eq. (1.3).

3.2 Requirements

There are a few fundamental limitations on the choice of x̂(z, x1, x2) dictated by the fact

that this same function will appear in eq. (2.13). First, the recursion relation must be

symmetric under the exchange z ↔ 1 − z, x1 ↔ x2, since the assignment of these labels

is unphysical.6 Second, the recursion relation has to be IR safe, since the GFF formalism

5Since we start with the constituents of an identified jet, all of the particles are (re)clustered into a

single tree. For this reason, the single-particle distance measure and the jet radius parameter R in the

(re)clustering algorithm are irrelevant.
6In the case of jets with heavy flavor, one could use heavy-flavor tags to define asymmetric recursion

relations (see e.g. [48]). We do not give a separate treatment of heavy-flavor GFFs in this work, and instead

assume to always work in the mb,c � EjetR limit.
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only regulates collinear (and not soft) divergences. In order that an emission with z → 0

does not change the observable, IR safety translates into the conditions

lim
z→1

x̂(z, x1, x2) = x1, lim
z→0

x̂(z, x1, x2) = x2, (3.2)

such that an arbitrarily soft branch in the clustering tree has no impact on the values of

x. Third, the recursion relation has to have unambiguous limits. As a counterexample,

x̂(z, x1, x2) = xz1x
1−z
2 satisfies eq. (3.2) when x1 and x2 are non-zero, but not when they

vanish. Apart from these limitations, any choice of x̂(z, x1, x2) (along with starting weights

and a clustering tree) defines a fractal observable.

The tree traversal prescription, along with the requirement in eq. (3.2), helps ensure IR

safety to all αs orders. As a counterexample, consider the sum over all tree nodes of some

function f(z) which vanishes as z → 0 or z → 1. In that case, the resulting observable would

receive no contribution from a single infinitely soft splitting, but subsequent finite z split-

tings that followed the soft one would not be suppressed, violating IR safety. By contrast,

eq. (3.2) requires the contribution from an entire soft branch to be suppressed, as desired.

In this paper, we mainly focus on recursion relations that do not depend explicitly

on the opening angle θ between branches in the clustering tree. In section 7, we do

discuss how the recursion relation gets modified if a threshold value for θ is introduced

(i.e. θthr = Rsub � R). Of course, fractal observables depend indirectly on angular informa-

tion through the structure of the clustering tree, but as discussed below, the leading-order

evolution equations do not depend on the clustering algorithm. When explicit θ-dependence

is included in the x̂ function, this sometimes results in a fully IRC-safe observable, requir-

ing a different type of evolution equation that is beyond the scope of the present work (see

e.g. [49]).

3.3 Evolution equations

The generalized-kt clustering tree has an obvious mapping to a parton branching tree,

such that at order αs, the RG evolution is given precisely by eq. (2.13), with the flavor of

the GFF matching the flavor of the jet’s initiating parton. More formally, as discussed in

section 2.3, the NLO calculation of the bare GFF shows that the same recursion relation

x̂(z, x1, x2) appears in eq. (2.15), as desired.

In fact, to order αs, the evolution in eq. (2.13) is insensitive to the clustering tree, as

long as it is IRC safe, even if the fractal observable itself depends on the clustering order.

We explicitly test this surprising feature in section 5. Note that if the clustering tree is not

collinear safe, in the sense that particles with collinear momenta are not clustered with each

other first, then the collinear divergences in the GFF will not cancel against the collinear

divergences in the hard matching coefficients of eq. (2.12). If the clustering tree is not IR

safe, then the observable x is not IR safe, and the GFF formalism does not apply.

We stress that the evolution in eq. (2.13) is only valid to lowest order in αs. At higher

orders in αs, the evolution of fractal observables is more complicated, but, as discussed

more in the paragraph below, still satisfies the property that the evolution of Fi(x, µ)
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depends only on GFFs of the same observable. Schematically, this can be written as

µ
d

dµ
Fi =

αs
π
Pi→jk ⊗Fj ⊗Fk +

(αs
π

)2
Pi→jk` ⊗Fj ⊗Fk ⊗F` + . . . , (3.3)

where ⊗ represents a convolution. This equation includes 1 → n splittings at order αn−1
s .

There is no longer a one-to-one correspondence between pairwise clustering trees and GFF

evolution trees, and one has to explicitly carry out the calculation in eq. (2.15) to higher

orders to determine the evolution. In particular, there will be different clusterings of the

1→ n splitting into a binary tree when integrating over phase space, which depend on the

choice of clustering algorithm. Because our specific realization of fractal observables in this

section is based on recursive clustering trees, this guarantees that eq. (3.3) depends only

on GFFs of the same type as Fi at all perturbative orders.

To justify the structure of eq. (3.3) in a bit more detail, it is instructive to take a

closer look at the 1/εUV poles of Fi. As usual, the anomalous dimension of the GFFs

is determined by the single 1/εUV poles. At order αs, we get (1/εUV)Pi→jk, as shown

in eq. (2.15). At order α2
s, the 1 → 3 splitting factorizes into a sequence of two 1 → 2

splittings when the angles of the splittings are strongly ordered. This leads to a term

like (1/ε2UV)Pi→jk ⊗ Pj→`m which does not contribute to the GFF’s anomalous dimension.

However, it does justify attaching Fj and Fk to the external splittings in eq. (2.13), as

it corresponds to the cross term between a one-loop renormalization factor and one-loop

Fj (and tree-level Fk). Away from the strongly-ordered limit, the 1 → 3 splitting does

have a genuine 1/εUV divergence, contributing to the second term in eq. (3.3). The precise

structure of this term depends on how the clustering algorithm maps the three partons to

a binary tree. The justification for attaching GFFs to each of the three external partons

follows again by considering higher-order corrections with some strong ordering. For

example, consider a 1 → 5 splitting that is strongly ordered such that it factorizes in a

1 → 3 splitting, in which two partons undergo 1 → 2 splittings. Such a term would have

a 1/ε3UV divergence, corresponding to the cross term of the renormalization factor for the

1→ 3 splitting term at order α2
s with two one-loop F ’s and one tree-level F . Finally, the

1/εUV from the one-loop virtual contribution to the 1 → 2 splitting gives a higher-order

correction to the first term in eq. (2.13). For the remainder of this paper, we focus on the

leading-order evolution, leaving an analysis at higher orders to future work.

4 Weighted energy fractions

The procedure outlined in section 3 is very general, but for special choices of x̂(z, x1, x2),

the definition of a fractal observable can simplify greatly. In this section, we consider the

recursion relation

x̂(z, x1, x2) = x1 z
κ + x2 (1− z)κ, (4.1)

where κ > 0 is an energy exponent. As we will see, for any choice of pairwise clustering

tree, the resulting observable simplifies to a sum over the hadrons in a jet,

x =
∑
a∈jet

wa z
κ
a , za ≡

Ea
Ejet

, (4.2)
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Figure 3. The three binary trees which could be constructed by clustering three particles. For

associative observables studied in section 4, the order of the clustering does not affect the final

observable. The ordering of the clustering will matter for the non-associative observables studied

in section 5.

where κ is the same as in eq. (4.1), and wa is the hadron weight factor. We call these

observables weighted energy fractions.

Several examples of weighted energy fractions have already been studied in the liter-

ature. The weighted jet charge is defined for any κ > 0 and weights given by the electric

charges of final-state hadrons [13, 14, 50]. This quantity has, for example, been used in

forward-backward asymmetry measurements at e+e− experiments [51, 52], as well as to

infer the charge of quarks [53–55]. Recently, the scale dependence of the average jet charge

was observed in pp → dijets [56]. Track fractions correspond to the case of κ = 1, where

charged particles are given weight 1 and neutral particles given weight 0 [15, 16]. Jet pDT is

a weighted energy fraction with κ = 2 and all particles given weight 1 [17, 18]. Weighted

energy fractions with arbitrary κ > 0 and wa = 1 for all particles were studied in ref. [19]

for applications to quark/gluon discrimination.

4.1 Associativity

Weighted energy fractions have an associative recursion relation, meaning that the order of

the clustering tree does not affect the final observable. To see this, consider the case of just

three particles with weights {w1, w2, w3} and respective momentum fractions {z1, z2, z3}.
As shown in figure 3, there are three clustering trees that can be built using only 1 → 2

splittings, labeled as A, B, and C.7 The corresponding observables are

xA = x̂

(
z1, w1, x̂

(
z2

z2 + z3
, w2, w3

))
,

xB = x̂

(
z2, w2, x̂

(
z3

z3 + z1
, w3, w1

))
,

xC = x̂

(
z3, w3, x̂

(
z1

z1 + z2
, w1, w2

))
. (4.3)

Using eq. (4.1) and the fact that z1 + z2 + z3 = 1, it is straightforward to prove that

xA = xB = xC = w1 z
κ
1 + w2 z

κ
2 + w3 z

κ
3 , (4.4)

7Of course, for a specific choice of kinematics, not all of these trees will be possible from generalized-kt
clustering, particularly in the collinear limit.
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owing to the fact that the recursion relation has homogenous scaling with z. This argument

generalizes to an arbitrary numbers of particles, so the weighted energy fractions are indeed

independent of the clustering tree.8

Of course, there are other observables that have non-associative recursion relations,

where the observable does not simplify to a sum over final-state hadrons and the full tree

traversal is necessary. We explore some non-associative observables in section 5.

4.2 Extraction of GFFs

In general, to extract GFFs, one has to numerically match the cross section in eq. (2.12)

using perturbatively calculated values for the coefficients Ci, Ji→j , Ji→jk, . . . . For the

parton shower studies in this paper, we limit ourselves to leading order where C
(0)
i (zJ) =

δ(1 − zJ), and we use parton-shower truth information to assign the parton label i. To

generate pure samples of quark- and gluon-initiated jets, we use the e+e− → γ/Z∗ → qq̄ and

e+e− → H∗ → gg processes in Pythia 8.215 [57], switching off initial-state radiation. We

find jets using FastJet 3.2.0 [58], with the ee-generalized kt algorithm with p = −1 (i.e. the

e+e− version of anti-kt [45]) and then determine the various weighted energy fractions on

the hardest jet in the event. At leading order, the normalized probability distributions for

the weighted energy fractions directly give the corresponding GFF Fi(x, µ).

As discussed in section 2.2, for jets of a given energy Ejet and radius R, the character-

istic scale for GFFs is expected to be

µ = EjetR, (4.5)

which is roughly the scale of the hardest possible splitting in the jet. By varying Ejet and R

but keeping µ fixed, we can estimate part of the uncertainty in the extraction of the GFFs.

In addition, we assess the uncertainty from using different parton shower models. Here,

since our primary interest is in the perturbative uncertainty in different shower evolution

equations, we test the native Pythia parton shower along with the Vincia 2.0.01 [59] and

Dire 0.900 [60] parton shower plugins. A further source of uncertainty would be given by

the hadronization model, which enters the boundary conditions used for GFF evolution.

This is not included in our present study, since we decided to interface all of the showers

above with the Lund string model. In the context of an experimental analysis, one would

also have statistical and systematic uncertainties from the extraction of GFFs from data.

For each observable x, there are 11 GFFs, corresponding to 5 quark flavors {u, d, s, c, b},
5 anti-quark flavors, and the gluon. To avoid a proliferation of curves, it is convenient to

define singlet (denoted by 〈Quark〉 in the figures below) and non-singlet combinations for

the quark GFFs, respectively,

S(x, µ) =
1

2nf

∑
i∈{u,u,d,...b}

Fi(x, µ),

Nij(x, µ) = Fi(x, µ)−Fj(x, µ). (4.6)

8Remember that this tree is one obtained from reclustering the particles in the jet. The value of a

jet observable of course depends on the choice of initial jet algorithm, which may itself be a clustering

algorithm.
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Figure 4. Gluon and quark-singlet GFFs for weighted energy fractions with (top) κ = 0.5 and

(bottom) κ = 2, with all particles given starting weight 1. These distributions were extracted at the

scale µ = 100 GeV. The left column shows results from the Vincia parton shower, with uncertainty

bands from varying R = {0.3, 0.6, 0.9} while keeping µ fixed. The right column shows the fixed

jet radius R = 0.6, with uncertainty bands from testing three different parton showers: Pythia,

Vincia, and Dire. In this and subsequent figures, 〈Quark〉 always refers to the quark-singlet

combination S(x, µ) defined in eq. (4.6).

For the observables we study, the anti-quark GFFs are either identical to the quark GFFs

or simply involve the replacement x → −x, due to charge conjugation symmetry. We

start by showing numerical results for the gluon GFF and the quark-singlet combination,

postponing a discussion of the non-singlet case to section 4.5.
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In figure 4, we show the extracted gluon and quark-singlet GFFs at µ = EjetR =

100 GeV for the weighted energy fractions with wa = 1, comparing κ = 0.5 and κ = 2.

Since gluon jets have roughly a factor of CA/CF larger hadron multiplicity than quark jets,

the mean of the gluon GFF is roughly a factor of (CA/CF )1−κ higher than the mean of

the quark-singlet GFF. In the left column, we show the impact of changing the jet radius

R = {0.3, 0.6, 0.9}, leaving µ fixed. The envelope from changing R is very small, indicating

that µ = EjetR is an appropriate definition for the RG scale. In the right column, we show

the impact of switching between the Pythia, Vincia, and Dire parton shower models.

The envelope is larger, but still reasonably narrow, giving us confidence in the extraction of

the GFFs, at least as far as changing the perturbative shower model is concerned. Though

not shown here, we checked that the GFFs for the κ→ 1 and κ→∞ limits behave sensibly

as well (see section 4.4 below).

4.3 Evolution of GFFs

We now use these extracted GFFs as boundary conditions for the RG evolution in eq. (2.13).

In appendix C, we describe in detail the numeric implementation of the evolution. For-

mally, the evolution equations work equally well running up or down in µ, but in practice

downward evolution is numerically unstable, as discussed further in appendix D. As a proof

of principle for our RG evolution code, we show upward evolution from µ = 100 GeV to

µ = 4 TeV, comparing our RG evolution in eq. (2.13) to that obtained from parton showers.

In figures 5 and 6, we present the evolution results for gluon and quark-singlet GFFs

respectively, for the weighted energy fractions with κ = {0.5, 1.0, 2.0}. We test three

different choices for the particle weights: wa = 1 for all particles, wa = 1 (wa = 0) for

charged (neutral) particles, and wa = Qa with Qa being the particle’s electric charge. The

initial conditions extracted from the parton showers at µ = 100 GeV are the same as those

shown in figure 4, with the same color scheme of red for gluon GFFs and blue for quark-

singlet GFFs. As described in section 4.2, the uncertainty bands are given by the envelope

of values obtained both from varying the jet radius/energy (keeping µ fixed) and from using

different parton showers. The evolved distributions to µ = 4 TeV are shown in orange for

the gluon GFFs and light blue for the quark-singlet GFFs, where the uncertainty bands

show the spread in final values due to the spread in initial conditions.

For comparison, we show in dashed lines the GFFs extracted at µ = 4 TeV, averaged

over the three parton showers and three R values.9 Overall, our numerical GFF evolution

agrees well with parton shower evolution, with both methods giving the same shift in the

peak locations. As previously seen in ref. [14], the two evolution methods agree best for

κ ≥ 1, with larger differences seen in the widths of the distributions when κ < 1. This

is likely because κ < 1 is more sensitive to collinear fragmentation, with larger expected

corrections from higher-order perturbative effects. Note the expected δ-function when κ =

1 and wa = 1 for all particles, since the sum of the energy fractions for all particles in the

jet equals 1. The κ→ 1 limit of weighted energy fractions is discussed in section 4.4 below.

9The uncertainties from varying the jet radius/energy and changing parton showers at µ = 4 TeV are

similar to the ones shown at µ = 100 GeV.
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Figure 5. Gluon GFFs of weighted energy fractions with (top row) κ = 0.5, (middle row) κ = 1,

and (bottom row) κ = 2. Shown are distributions involving (left column) all particles, (middle

column) just charged particles, and (right column) charged particles weighted by their charge. The

GFFs extracted from parton showers at µ = 100 GeV are shown in solid red. The result of evolving

these initial conditions to µ = 4 TeV are plotted in solid orange, to be compared to the average

distribution obtained from parton showers at that value, plotted in dashed orange. The uncertainties

come from both varying R and the choice of parton shower (i.e. both variations shown in figure 4).
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Figure 6. Same as figure 5 but for quark-singlet GFFs, where the distributions extracted from

parton showers at µ = 100 GeV are shown in solid blue, the evolved distribution are shown in solid

light blue, and the distributions extracted at µ = 4 TeV are shown in dashed light blue.
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Figure 7. Gluon GFFs for (a) the modified weighted energy fractions from eq. (4.7) in the κ→ 1

limit, and (b) the κ-th root of the weighted energy fractions from eq. (4.9) in the κ→∞ limit. The

solid lines show the GFFs extracted from Vincia at µ = 100 GeV, while the dashed lines show the

evolution of these GFFs to µ = 4 TeV. The fact that the limits are smooth is a consistency check

on the evolution code.

4.4 Limits

There are a few interesting limits of the weighted energy fractions. For the case of κ = 0,

the energy fractions za drop out, so x simply counts the hadrons in the final state, weighted

by wa. Although hadron multiplicity is IR unsafe, it is possible to calculate the evolution of

the average hadron multiplicity using fragmentation functions, see e.g. refs. [61–63]. This

case requires special care, however, because of the soft gluon singularity of the splitting

functions. IR-safe variants of multiplicity that have only collinear singularities are explored

in ref. [49].

For the case of κ = 1 with all hadrons assigned weight 1, the weighted energy fraction

simply becomes x =
∑

a za = 1. Still, we can expand around the κ → 1 limit to find a

non-trivial observable [19]. Consider the modified weighted energy fraction and its limit,

x =
1

κ− 1

[ ∑
a∈jet

zκa − 1

]
, lim

κ→1
x =

∑
a∈jet

za ln za. (4.7)

In the limiting case, the recursion relation becomes

x̂(z, x1, x2) = z ln z + (1− z) ln(1− z) + x1 z + x2 (1− z), (4.8)

with initial hadron weights of wa = 0 (due to the −1 in eq. (4.7)). This is easy to verify

by testing the three clustering trees in figure 3.10

10Amusingly, the recursion relation in eq. (4.8) is associative for any choices of initial hadron weights,

leading to the fractal observable x =
∑

a∈jet za(wa + ln za).
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The behavior of the evolved GFFs in the κ→ 1 limit offers a non-trivial cross check of

our evolution code. Away from the limiting value, the RG evolution can be implemented

using the recursion relation in eq. (4.1). At the limiting value, we have to use a different

RG evolution based on the recursion relation in eq. (4.8). The smooth convergence of the

evolved distributions as κ → 1 is illustrated in figure 7a, showing the modified weighted

energy fraction from eq. (4.7). The solid curves show the extraction of the corresponding

GFFs at µ = 100 GeV with κ = 0.99 and κ = 1.01, which correctly bracket the κ → 1

limit.11 The dashed curves show the evolution to µ = 4 TeV, where there is again a smooth

approach to κ→ 1.

In the limit that κ → ∞, the most energetic hadron in the jet dominates the sum in

eq. (4.2). We can then take the κ-th root of the weighted energy fraction to have a smooth

κ→∞ limit:

x =

∣∣∣∣ ∑
a∈jet

waz
κ
a

∣∣∣∣1/κ, lim
κ→∞

x = max
wa 6=0

za, (4.9)

where the maximum is only taken over particles with non-zero weights. The corresponding

recursion relation is

x̂(z, x1, x2) = max(|zx1|, |(1− z)x2|), (4.10)

with modified initial hadron weights of w̃a = |sign(wa)| = {0, 1}. For these modified

weights, it is easy to verify that eq. (4.10) gives an associative recursion relation using

figure 3.12

In figure 7b, we show the approach to κ→∞ for the gluon GFFs, considering the case

of all particles with equal weight wa = 1. Here, the finite-κ evolution equations use the

recursion relation in eq. (4.1) while the κ→∞ limit uses eq. (4.10), and we plot the κ-th

root of the weighted energy fractions as given in eq. (4.9). Both the extracted distributions

at µ = 100 GeV and the evolved distributions to µ = 4 TeV show a smooth transition from

κ = 4 to κ = 6 to the final κ → ∞ limit. This is again a non-trivial cross check of our

evolution code.

4.5 Moment space analysis

To gain further insight into the evolution of the GFFs, it is instructive to examine the

evolution equations for the first two moments, which are related to averages and widths of

the distribution for the fractal observable. In general, the moments of a GFF are defined as

F i(N,µ) ≡
∫

dxxNFi(x, µ), (4.11)

11In practice, we first extract the κ = 0.99 and κ = 1.01 distributions for the unmodified weighted energy

fraction, and then do a simple change of variables to match the definition in eq. (4.7).
12It is also possible to keep track of the signs of hadron weights by using an alternative recursion relation

x̂(z, x1, x2) = signed-max(zx1, (1− z)x2), where the signed-max function takes the term (positive or nega-

tive) with the largest absolute value. Again, this only yields an associative recursion if the hadron weights

are a constant multiple of {−1, 0, 1}.
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Figure 8. The two eigenvalues of the matrix in eq. (4.15), as a function of κ. This matrix governs

the evolution of the first moment of weighted energy fraction GFFs. Only for κ = 1 is there a zero

eigenvalue.

with N ≥ 0. For the specific case of the weighted energy fractions, it is convenient to

introduce a transformed version of the splitting functions

P i→jk(α, β) ≡
∫

dz zα(1− z)βPi→jk(z), P i→jk(α) ≡ P i→jk(α, 0). (4.12)

Integrating eq. (2.13) against xN , the moment space evolution equation for a weighted

energy fraction is

µ
d

dµ
F i(N,µ) =

αs(µ)

2π

∑
j,k

N∑
M=0

(
N

M

)
P i→jk

(
κ(N −M), κM

)
F j(N −M,µ)Fk(M,µ),

(4.13)

where it is crucial that N is an integer. A derivation of this expression is given in

appendix E.

These evolution equations are more compact in the color singlet/non-singlet basis

introduced in eq. (4.6). For the quark-non-singlet pieces, the evolution of the first moment

(i.e. the mean) is given by

µ
d

dµ
N ij(1, µ) =

αs(µ)

π
P q→qg(κ)N ij(1, µ). (4.14)

Since P q→qg(κ) < 0 for all positive κ, eq. (4.14) implies that the averages of the different

(anti-)quark GFFs functions converge to a common value as µ evolves upward. This

behavior is expected, since QCD branchings only depend on the parton’s color charge,

so the low-scale differences between the (anti-)quark flavors, due to e.g. electric charge, get

washed out at high scales.
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The quark-singlet combination mixes with the gluon GFF. For the first moment this

is given by

µ
d

dµ

(
S(1, µ)

Fg(1, µ)

)
=
αs(µ)

π

(
P q→qg(κ) P q→gq(κ)

2nfP g→qq(κ) P g→gg(κ)

)(
S(1, µ)

Fg(1, µ)

)
. (4.15)

As shown in figure 8, the matrix in eq. (4.15) always has one negative eigenvalue for

all κ, which implies that the first moment of the quark-singlet GFF tries to track the

first moment of the gluon GFF. For example, in the case of κ = 1, the combination

2CF S(1, µ) − nfTF Fg(1, µ) asymptotes to zero at high µ. The second eigenvalue has

different signs depending on the value of κ. For κ < 1, it is positive, so the first moments

of both the quark-singlet and gluon GFF increase with µ. For κ > 1, the second eigenvalue

is negative, so the first moments decrease with µ. For the special case κ = 1, the second

eigenvalue is zero, and the corresponding eigenvector S(1, µ)+Fg(1, µ) stays constant with

µ. These broad features agree with the behaviors already seen in figures 5 and 6.

Turning to the second moments, the non-singlet evolution is

µ
d

dµ
N ij(2, µ) =

αs(µ)

π

[
P q→qg(2κ)N ij(2, µ) + 2P q→qg(κ, κ)N ij(1, µ)Fg(1, µ)

]
. (4.16)

Since the splitting function in the first term is negative for all values of κ, this term pushes

the second moment of the non-singlet GFFs towards zero as well. Note, however, that

the splitting function in the second term has the opposite sign. For the weighted energy

fractions with κ > 1, which have Fg(1, µ)→ 0 as µ→∞, this second term is not important,

so the different quark GFFs asymptote to the same second moment. For the weighted

energy fractions with κ ≤ 1, however, this is not the case. As shown below in figure 9d

for κ = 0.5, the growth of Fg(1, µ) outpaces the decrease in N ij(1, µ) from the first term,

which leads to differences in the widths (but not the means) of the different quark GFFs.

Assuming the asymptotic behavior N ij(1, µ) → 0 for simplicity, the evolution of the

second moments of the quark-singlet and gluon GFF can be written as

µ
d

dµ

(
S(2, µ)

Fg(2, µ)

)
=
αs(µ)

π

(
P q→qg(2κ) P q→gq(2κ)

2nfP g→qq(2κ) P g→gg(2κ)

)(
S(2, µ)

Fg(2, µ)

)
(4.17)

+
αs(µ)

π

(
2P q→gq(κ, κ)S(1, µ)Fg(1, µ)

2nfP g→qq(κ, κ)
[
S(1, µ)

]2
+ P g→gg(κ, κ)

[
Fg(1, µ)

]2
)
,

where the assumption allows us to write the nonlinear term as a function of S(1, µ) instead

of individual (anti-)quark contributions.13 Due to this nonlinear behavior, we now resort

to a numerical analysis.14

In figure 9, we show an example of the RG evolution of the first and second moments of

the gluon GFFs, quark-singlet GFFs, and u-d quark-non-singlet GFFs. Here, we consider

13For the weighted energy fractions in this study, this approximation is very accurate, giving corrections

at the per-mille level.
14Alternatively, if one assumes that Fg(1, µ) and S(1, µ) have also reached their asymptotic behavior, the

equation becomes linear again. This approximation turns out to be even more accurate than the assumption

N ij(1, µ)→ 0, though for our numerical studies, we make no simplifications.
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Figure 9. Evolution of the first and second moments of (top row) the gluon GFFs and quark-

singlet GFFs and (bottom row) the u-d quark-non-singlet GFFs. Shown are the first and second

GFF moments for weighted energy fractions of charged particles with (left column) κ = 0.5, (middle

column) κ = 1, and (right column) κ = 2. The initial conditions at µ = 100 GeV are obtained from

parton showers as described in section 4.2, with uncertainty bands from varying R and changing

the parton shower. The values from the parton shower average at µ = 4 TeV are shown as dots

(diamonds) for the first (second) moments.

weighted energy fractions where charged particles have weight 1 and neutral particles have

weight zero, comparing κ = 0.5, 1, and 2. The evolution starts from GFFs extracted

at µ = 100 GeV, as described in section 4.2. The GFF moments are then evolved up to

µ = 107 GeV using the equations above.15 To connect with the plots in figures 5 and 6,

we also indicate the first (second) moments extracted from the parton shower average at

µ = 4 TeV with dots (diamonds).

As expected, the first moments evolve in the direction predicted by the eigenvalues

in figure 8, with the κ < 1 first moment moving to larger values as µ increases, and the

κ > 1 first moment moving to smaller values. For the boundary case of κ = 1, the first

moment of the gluon and quark singlet GFFs move toward each other, leaving their sum

fixed. The second moments roughly evolve in the same direction as first moments, though

15We checked that this agrees with first evolving the full binned distributions and then calculating the

first and second moments.
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with different rates. The exception is the κ = 1 second moment, where both the gluon

and quark singlet values decrease (very slowly), as seen already in figures 5e and 6e. The

first moment of the non-singlet GFFs approaches zero, as indicated by P q→qg(κ) < 0. The

second moments behave as discussed above, decreasing for κ = 1 and κ = 2, and increasing

for κ = 0.5 since Fg(1, µ) grows very large.

We could continue our analysis to third and higher moments, which is a standard way

to efficiently solve the DGLAP equations. An interesting difference with the evolution of

the ordinary FFs is that we only get the simple expression in eq. (4.13) for integer moments.

In addition, the simple form of eq. (4.13) does not hold for general fractal observables with

more complicated recursion relations. For these reasons, we only show the evolution of the

first two moments here. Brief moment-space analyses for the non-associative observables

in section 5 are given in appendix E.

5 Tree-dependent observables

We now study fractal jet observables that do depend on the choice of clustering tree.

These are also called non-associative observables, since xA 6= xB 6= xC in the notation

of eq. (4.3). We start in section 5.1 with node-product observables, where the recursion

relation simplifies to a sum over internal nodes of the tree. We then turn to a more general

family of non-associative observables in section 5.2.

5.1 Node products

Node-product observables are based on the recursion relation

x̂ = x1 z
κ + x2 (1− z)κ + (4z(1− z))κ/2. (5.1)

Note that the last term in eq. (5.1) is independent of x1 and x2, and the factor of 4 is

added for convenience, to normalize the contribution of a balanced splitting with z = 1/2

to be 1. It is straightforward to check that this recursion relation is not associative for

generic values of κ, by considering the three-particle trees in figure 3. For the special case

of κ = 2, the recursion relation is associative, yielding an observable closely related to pDT
(i.e. the weighted energy fraction with κ = 2),

κ = 2 : x = 2 +
∑
a∈jet

(wa − 2)z2
a. (5.2)

For generic values of κ, this recursion relation simplifies to a sum over the leaves and

nodes in the binary tree,

x =
∑
a∈jet

waz
κ
a +

∑
nodes

(4zLzR)κ/2 , zL,R =
EL,R
Ejet

, (5.3)

where zL,R are the momentum fractions carried by the two branches at this node, relative

to the whole jet (i.e. zL + zR 6= 1).16 To see how this simplification arises, note that

16If zL and zR had been relative to the node instead, this observable would not be IR safe, as the contribu-

tion from an arbitrary soft gluon that subsequently splits collinearly would not be suppressed; see eq. (3.2).
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Figure 10. Gluon GFFs for the node-product observables with wa = 0, taking (a) κ = 1, (b)

κ = 2, and (c) κ = 4. These are extracted from Vincia at µ = 100 GeV. The tree dependence of

these observables is parametrized by the generalized-kt exponent in eq. (3.1), with p = −1 (anti-kt,

red dashed), p = 0 (C/A, green), and p = 1 (kt, blue dotted). For κ = 2 in (b), there is no tree

dependence, as this observable is identical to 2(1 − pDT ) (black dot-dashed).

the (4z(1 − z))κ/2 term in eq. (5.1) adds the product of branch energy fractions to the

observable; the x1 z
κ and x2 (1 − z)κ terms then rescale the energy product to the whole

jet momentum. In this way, node products have intermediate complexity between the

weighted energy fractions (with no tree dependence) and more general observables (where

the full tree recursion is required).

For simplicity, we focus on the case with starting weights of wa = 0, such that the node-

product observable only depends on non-leaf nodes, as advertised in eq. (1.5). In figure 10,

we show the distributions for the gluon GFFs for the node products extracted from Vincia

at a jet scale of µ = 100 GeV. Here, we take κ = {1, 2, 4}, testing three different values of the

generalized-kt clustering exponent p = {−1, 0, 1}. The tree dependence of this observable

for κ = 1 and κ = 4 is evident. This is particularly true for κ = 4, where the spikes near

x = 1.1 (and x = 0.8) come from balanced splittings that are more prevalent in kt trees

than C/A or anti-kt trees. For κ = 2, the node-product observable is independent of p,

since it is identical to the associative observable 2(1 − pDT ), as shown in eq. (5.2).

Observables measured on anti-kt clustering trees tend to be qualitatively distinct from

observables measured on p ≥ 0 trees. This is expected, because C/A and kt trees are

constructed according to angular and kt ordering, respectively, so these observables more

directly mirror the singularity structure of QCD and the expected dynamics of the parton

shower. By contrast, anti-kt trees have a hybrid ordering where angles tend to go from

small to large, but energies tend to go from large to small. Indeed, this reversal in the

energy ordering is reflected in figure 10, where the product zLzR tends to be smaller

for anti-kt trees, leading to larger (smaller) values of node-product observable for κ = 1

(κ = 4). Because of this hybrid anti-kt ordering, one might expect higher-order perturbative

corrections to be more important for p < 0 when evolving the GFFs, but this can only be

confirmed by doing an explicit calculation, which is beyond the scope of the present work.
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Figure 11. Evolution of the gluon GFFs for node products with (top row) κ = 1 and (bottom row)

κ = 4, comparing (left column) p = −1, (center column) p = 0, and (right column) p = 1. Shown

are the gluon GFFs extracted from parton showers at µ = 100 GeV (red solid), the GFFs evolved

to µ = 4 TeV (orange solid), and the GFFs extracted from parton showers at µ = 4 TeV (orange

dashed). The evolution agrees qualitatively with parton shower predictions, though the agreement

is somewhat worse for p = −1.

Despite the fact that different values of p lead to different observables, the leading-order

evolution equations are independent of p. To check whether this is a sensible feature, we

evolve the gluon GFFs in figure 11 for node products with κ = {1, 4} and p = {−1, 0, 1}.
The uncertainty bands in figure 11 are obtained from the variation of jet radius R =

{0.3, 0.6, 0.9} and parton shower PS = {Vincia,Pythia,Dire}, as described in section 4.2.

If the evolution from 100 GeV to 4 TeV would perfectly agree with the extraction at 4 TeV,

this would confirm that the evolution is independent of p and all p dependence resides in

the initial conditions. Although the agreement is not perfect, the amount of agreement

between the evolution from 100 GeV to 4 TeV and the extraction at 4 TeV seems to be

fairly independent of p, suggesting that this is a reasonable first approximation. Given the

interesting features in the node-product observables as a function of scale, this motivates

both higher-order calculations of their RG evolution, as well as measurements in data.

For completeness, we show the evolution of the first and second moments for the node-

product observables in appendix E.2.
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Figure 12. Same as figure 10, but for the full-tree fractal observable in eq. (5.4) defined with

κ = 2 on only charged particles, for (a) ξ = −2, (b) ξ = 0, and (c) ξ = 2. Recall that full-tree

observables with ξ = 0 are the same as weighted energy fractions, so panel (b) is the same as the

100 GeV curve in figure 5h, which is plotted as a dash-dotted black line for comparison.

5.2 Full-tree observables

As our final example of a fractal observable, we present a recursion relation that depends

on the full structure of the clustering tree,

x̂ =
(
zκx1 + (1− z)κx2

)
eξz(1−z). (5.4)

This recursion relation satisfies the requirements in eq. (3.2), making this observable IR

(but not collinear) safe. Eq. (5.4) defines a family of fractal observables which depend on

the initial particle weights wa, the generalized-kt clustering exponent p, and the parameters

κ and ξ. We know of no alternative way to calculate this observable apart from performing

the full leaf-to-root recursive traversal of the clustering tree. Of course, for the special

value of ξ = 0, these observables become weighted energy fractions.

The tree dependence of this observable is illustrated in figure 12 for κ = 2 and ξ =

{−2, 0, 2}, where charged particles are given weight 1 and neutral particles weights 0. For

nonzero ξ, we see that the GFFs depend on the choice of p, with rather different behaviors

for anti-kt compared to kt and C/A. The (associative) observables plotted in figure 12b are

equivalent to the weighted energy fraction with the same weights and κ = 2, shown on this

plot for comparison. Corresponding results for the evolution of the gluon GFFs are shown

in figure 13. In this case, it is much clearer that the amount of agreement between the

evolution from 100 GeV to 4 TeV and the extraction at 4 TeV is independent of p. Thus,

the fact that the leading-order RG evolution is independent of p seems reasonable, even

though the GFFs themselves are tree dependent. This is highlighted by figure 13d, where

the double hump structure at 100 GeV is smoothed out both by the RG evolution equations

and the parton shower.

Again for completeness, we discuss the evolution of the first two GFF moments for

these full-tree observables in appendix E.3.

– 28 –



J
H
E
P
0
6
(
2
0
1
7
)
0
8
5

10−4 10−2 100

x

0.0

0.5

1.0

1.5

xFg

Gluon GFF
ξ = −2, κ = 2

Charged Particles

Full Tree RG: p = −1

PS: µ = 100 GeV

100 GeV → 4 TeV

PS: µ = 4 TeV

(a)

10−4 10−2 100

x

0.00

0.25

0.50

0.75

1.00

xFg

Gluon GFF
ξ = −2, κ = 2

Charged Particles

Full Tree RG: p = 0

PS: µ = 100 GeV

100 GeV → 4 TeV

PS: µ = 4 TeV

(b)

10−4 10−2 100

x

0.00

0.25

0.50

0.75

1.00

xFg

Gluon GFF
ξ = −2, κ = 2

Charged Particles

Full Tree RG: p = 1

PS: µ = 100 GeV

100 GeV → 4 TeV

PS: µ = 4 TeV

(c)

0.0 0.5 1.0
x

0

1

2

3

Fg

Gluon GFF
ξ = 2, κ = 2

Charged Particles

Full Tree RG: p = −1

PS: µ = 100 GeV

100 GeV → 4 TeV

PS: µ = 4 TeV

(d)

0.0 0.5 1.0
x

0

1

2

3

Fg

Gluon GFF
ξ = 2, κ = 2

Charged Particles

Full Tree RG: p = 0

PS: µ = 100 GeV

100 GeV → 4 TeV

PS: µ = 4 TeV

(e)

0.0 0.5 1.0
x

0

1

2

3

Fg

Gluon GFF
ξ = 2, κ = 2

Charged Particles

Full Tree RG: p = 1

PS: µ = 100 GeV

100 GeV → 4 TeV

PS: µ = 4 TeV

(f)

Figure 13. Same as figure 11, but for the full-tree fractal observable in eq. (5.4) defined with κ = 2

on only charged particles, for (top row) ξ = −2 and (bottom row) ξ = 2.

6 Application in quark/gluon discrimination

Robust and efficient discrimination between quark- and gluon-initiated jets is a key goal of

the jet substructure community [64–67], with applications both in searches for physics be-

yond the SM and precision tests of QCD (see further discussions in [12, 19–27]). Weighted

energy fractions are already used for quark/gluon discrimination, specifically the pDT ob-

servable [17, 18] used by CMS in its quark-gluon likelihood analysis [68]. Here, we explore

the potential discrimination power of non-associative fractal jet observables, corresponding

to non-associative variants of pDT . An alternative application of the GFF formalism to

quark/gluon discrimination is presented in ref. [49].

It is not immediately obvious that non-associativity should be a valuable feature to help

distinguish quark- from gluon-initiated jets. Compared to pDT , non-associative observables

are of course sensitive to the angular structure of the jet through the clustering tree. Then

again, discriminants like the (generalized) angularities [19, 69–71] and energy correlation

functions [22] also encode angular information about particles in the jet, either their angular

distance to the jet axis or their pairwise angular distance to each other. As we will see,

there are non-associative observables that do exhibit better performance than pDT , at least
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Figure 14. GFFs for two strong quark/gluon discriminants based on C/A trees: (a) the node-

product observable with κ = 1, and (b) the full-tree observable with κ = 2 and ξ = 4 with all

particle weights one. Shown are the gluon GFF (red solid), quark-singlet GFF (blue solid), down-

quark GFF (light-blue dashed), and bottom-quark GFF (violet dotted) as extracted from Vincia

at µ = 100 GeV.

in the context of a parton shower study, but we do not (yet) understand the origin of that

improvement from first principles.

Here, our primary interest in non-associative observables is for testing the evolution

of quark/gluon discrimination power as a function of RG scale µ. As recently studied in

refs. [24, 27], different parton showers exhibit different quark/gluon discrimination trends

as a function of jet energy. Therefore, the study of fractal jet observables might help

identify which higher-order effects in the parton shower are most important for correctly

modeling the radiation patterns of quarks and gluons.

As an initial investigation into non-associative fractal observables for quark/gluon dis-

crimination, we consider some examples of the node-product and full-tree observables from

section 5. In figure 14, we show two good quark/gluon discriminants, comparing the gluon

GFF distribution to the quark-singlet GFF distribution. We also show the down-quark

and bottom-quark GFFs as a cross check. An example of a node-product observable from

eq. (5.3) is shown in figure 14a, where we take κ = 1 and wa = 0 on a C/A tree. An

example of a full-tree observable from eq. (5.4) is shown in figure 14b, where we take κ = 2

and ξ = 4 on a C/A tree with all particles given weight 1. There are noticeable differ-

ences between the gluon and quark-singlet GFFs which can be exploited for the purposes

of discrimination. Among the observables we tested, these two performed among the best,

outperforming, for example, variants using only charged particles.

To evaluate the potential quark/gluon discrimination power more quantitatively, we

show ROC (receiver operating characteristic) curves showing the efficiency of identifying
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Figure 15. Quark/gluon ROC curves from Vincia for the node-product observables at (a) µ =

100 GeV and (b) µ = 4 TeV. The curves correspond to κ = 1 (dark green solid), κ = 2 (green

dashed), and κ = 4 (light green dotted). Note that the κ = 2 case has the same ROC curve as pDT ,

and the gray dashed line represents an observable with no discrimination power.

0.0 0.2 0.4 0.6 0.8 1.0
Quark Efficiency

0.0

0.2

0.4

0.6

0.8

1.0

G
lu
on

M
is
ta
g
R
at
e

κ = 1, p = 0

Node Product ROC Curves RG

PS: µ = 100 GeV

100 GeV → 4 TeV

PS: µ = 4 TeV

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Quark Efficiency

0.0

0.2

0.4

0.6

0.8

1.0

G
lu
on

M
is
ta
g
R
at
e

κ = 2, p = 0

Node Product ROC Curves RG

PS: µ = 100 GeV

100 GeV → 4 TeV

PS: µ = 4 TeV

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Quark Efficiency

0.0

0.2

0.4

0.6

0.8

1.0

G
lu
on

M
is
ta
g
R
at
e

κ = 4, p = 0

Node Product ROC Curves RG

PS: µ = 100 GeV

100 GeV → 4 TeV

PS: µ = 4 TeV

(c)

Figure 16. Evolution of the ROC curves for node-product observables with (a) κ = 1, (b) κ = 2

(equivalent to pDT ), and (c) κ = 4. Shown are the ROC curves extracted from parton showers at

100 GeV (light purple band) and 4 TeV (dark purple, dashed), as well as the ROC curve obtained

from evolving the GFF from µ = 100 GeV to 4 TeV (medium purple band). The spread of these

curves is obtained from calculating the ROC curves from the spread of distributions, as described

in section 4.2.
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Figure 17. Same as figure 15 but for the full-tree observables with κ = 2 and ξ = {0, 2, 4, 6}. Note

that the ξ = 0 case is identical to pDT .

quark jets against the mistag rate for gluon jets. These plots are obtained from Vincia,

comparing the discrimination performance at µ = 100 GeV to µ = 4 TeV. In figure 15,

we show variants of the node-product observables defined on C/A trees for κ = {1, 2, 4},
recalling that κ = 2 is the same as 2(1− pDT ). The node product with κ = 1 exhibits much

better discrimination power than κ = 2, especially at µ = 4 TeV. The discrimination

power does continue increasing (slowly) with lower κ, but approaching the κ → 0 limit,

the observable becomes IR unsafe and the GFF formalism no longer applies.

We can check whether this jet-energy dependence is reasonable using the RG evolution

equations, as shown in figure 16. For κ = 1, the discrimination power does indeed increase

with increasing µ, but not as much as predicted by the parton showers. This could have al-

ready been anticipated from the results in figure 11b, where the RG-evolved gluon GFF does

not shift as dramatically as predicted in the parton showers. This could either be a sign that

the parton showers are too aggressive in their evolution, or that higher-order terms in the

evolution equation are important for getting the proper shape of the κ = 1 distribution. For

κ = 2, the evolution of the ROC curves according to eq. (2.13) does match the evolution in

the parton shower, but this evolution is very slight, less than the spread in the ROC curves

at either scale from varying R and the parton shower. For κ = 4, the discrimination power is

poor at all scales, but the evolution matches well between eq. (2.13) and the parton showers.

We next turn to the full-tree observables in figure 17, using a C/A tree with κ = 2 on all

particles. We compare ξ = {0, 2, 4, 6}, where ξ = 0 is identical to pDT . The ξ = 4 observable

yields comparable performance to pDT at µ = 100 GeV, but performs somewhat better than

pDT at µ = 4 TeV. Note that the quark/gluon discrimination power is not monotonic as

a function of ξ. We can again check whether this evolution is reasonable using the RG

equations, as shown in figure 18. For all three ξ values, the evolution of the ROC curves

in eq. (2.13) matches the parton shower, but the evolution is extremely slow.
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Figure 18. Same as figure 16 but for the full-tree observables with κ = 2 and (a) ξ = 2, (b) ξ = 4,

and (c) ξ = 6. The ξ = 0 case is identical to pDT , shown in figure 16b.

As emphasized in ref. [19], predicting the quark/gluon discrimination power from first

principles is a much more challenging task than predicting the distributions themselves.

Because the ROC curve shapes depend sensitively on the overlap between the quark and

gluon distributions, small changes in the distribution shapes can lead to large changes

in the predicted discrimination power. This is especially evident in figure 18, where the

uncertainties in the ROC curves at the same scale are generally larger than the evolu-

tion between scales. This highlights the importance of precision calculations for correctly

predicting quark/gluon discrimination behavior.

7 Fractal observables from subjets

As our final investigation into the structure of fractal jet observables, we now consider the

possibility that the recursion relation in eq. (1.1) is modified to depend on the angular scale

of the clustering. For simplicity, we only consider observables defined on angular-ordered

C/A clustering trees, since in that case the depth in the C/A tree is directly associated with

an angular scale θ. This opens up the possibility to define a modified recursion relation

with θ dependence, for example,

x̂(z, x1, x2) =

{
x̂1(z, x1, x2) if θ < Rsub,

x̂2(z, x1, x2) if θ > Rsub.
(7.1)

As shown in figure 19, the nodes as defined by x̂1 become the starting weights for the

subsequent nodes defined by x̂2.

It is straightforward to implement the leading-logarithmic resummation of an observ-

able defined by eq. (7.1). Starting from a low-energy boundary condition, this involves an

initial evolution to the scale

µsub = EjetRsub (7.2)

using eq. (2.13) with the recursion relation x̂1, followed by an evolution to µ = EjetR using

x̂2 instead. The discontinuity in anomalous dimensions of the evolution equations across
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Figure 19. Modified fractal jet observables where the recursion relation changes at a characteristic

scale Rsub. When using a C/A tree, it is possible to switch the recursion relation from x̂1 to x̂2

for angular scales θ > Rsub. This is equivalent to determining the observable x̂1 on all subjets of

radius Rsub and then using these as initial weights for the tree with x̂2.
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Figure 20. Evolution of the fractal observable defined by equations eqs. (7.1) and (7.3), where x̂1

and x̂2 are given by weighted energy fractions measured on all particles with κ1 = 1 and κ2 = 2,

respectively.

the threshold µsub will be compensated by a fixed-order correction at that scale, but this

only enters at next-to-leading-logarithmic order.

One interesting case is when the observable defined at small angular scales θ < Rsub

is the weighted energy fraction of all particles with κ = 1. This observable is simply 1 for

each of the branches, so the GFFs at the scale µsub are

Fi(x, µsub) = δ(1− x) , (7.3)

which are then the input for the fractal observable x̂2 for θ > Rsub. This effectively removes

the sensitivity to nonperturbative physics, allowing us to calculate fractal observables ana-
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lytically, as long as the scale µsub is perturbative. An example of this kind of observable is

shown in figure 20, where the observable is clustered using the recursion relation eq. (4.1)

with κ = 1 for angles θ < Rsub and κ = 2 for θ > Rsub. The spike at x = 1 persists in

the numerical evolution, even with very fine bins and a large amount of computing time.17

This feature is not seen in the Vincia evolution, which at every stage in the parton shower

uses a scale closer to µ ' z Ejet θ, where z and θ are the momentum fraction and opening

angle of the splitting. Compared to our choice of µ = EjetR for the shower as a whole, we

would expect the Vincia scale, which corresponds to a larger coupling, to accelerate the

depletion of the δ function in the evolution. It will be interesting to see if this behavior

persists with higher-order evolution equations.

An alternative way of viewing the above prescription is that we can build fractal jet

observables not just out of hadrons but also out of subjets of radius Rsub, thus enlarging the

range of applicability of the GFF framework. By taking Rsub not too small, the observable

becomes perturbative. On the other hand, we still want Rsub � R, such that the leading

logarithms of R/Rsub dominate the observable and eq. (2.13) gives a reliable description

of its behavior.

8 Conclusions

To date, the bulk of analytic jet physics studies are based on either single-hadron frag-

mentation functions or IRC-safe jet shapes. In this paper, we emphasized the intermediate

possibility of IR-safe but collinear-unsafe jet observables defined on a subset of hadrons. We

started by introducing the framework of Generalized Fragmentations Functions (GFFs),

which are applicable to general collinear-unsafe jet observables. The GFFs are universal

functions that absorb collinear singularities order by order in αs, which not only restores

calculational control, but also implies that the GFFs evolve under a nonlinear version of

the DGLAP equations. We then discussed fractal jet observables, defined recursively on

an IRC-safe clustering tree with certain initial hadron weights, which satisfy a self-similar

RG evolution at leading order given by eq. (2.13). The higher order evolution is no longer

universal, but still self-similar, and has the schematic form in eq. (3.3).

The simplest fractal jet observables are those with associative recursion relations,

whose value does not depend on the choice of clustering tree. This is indeed the case for the

weighted energy fractions, studied in section 4, which include several observables already

in use at colliders, including pDT , weighted jet charge, and track fractions. More exotic

fractal jet observables depend on the clustering sequence, including the node-product and

full-tree observables studied in section 5. Remarkably, the structure of the RG evolution

for these observables is independent of the clustering tree at leading order.

As one potential application of fractal observables, we studied whether non-associative

observables could be useful for quark/gluon discrimination. Indeed, we found examples in

section 6 which do perform better than the weighted energy fraction pDT currently used by

17The generating functional approach (see e.g. ref. [72]) provides an alternative implementation of the

evolution in eq. (1.3) that can be used to resum (sub)jet radius logarithms [30]. This approach may be

more amenable to an initial condition with a delta function.
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CMS. Though the GFF formalism does not allow us to predict the absolute discrimination

power of collinear-unsafe observables, it does allow us to predict the RG evolution of

the discrimination power, a feature that is further exploited in ref. [49]. To gain more

perturbative control, one can work with fractal observables defined on subjets (instead of

hadrons), as briefly discussed in section 7.

Looking to the future, the next step for fractal jet observables is pushing beyond the

leading-order evolution equations. This will require computing the bare GFFs to higher

orders in αs, as well as extracting GFFs using the matching scheme sketched in eq. (2.12),

and presented in detail at next-to-leading order for e+e− collisions in appendix A. More am-

bitiously, one would like to study correlations between two or more fractal jet observables,

which would require multivariate GFFs. Such correlations are known to be important for

improved quark/gluon discrimination [19, 21, 26], though even for IRC-safe jet shapes, there

are relatively few multivariate studies [73–75]. Together with the work in this paper, higher-

order and correlation studies would facilitate a deeper understanding of jet fragmentation,

with important consequences for analyses at the LHC and future collider experiments.
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A Generalized fragmentation in inclusive jet production

In this appendix, we explicitly verify eq. (2.12) at O(αs). We first calculate the left-hand

side of this equation for the measurement of the fractal variable x together with the fraction

of the center-of-mass energy carried by the jet, zJ ≡ 2Ejet/Ecm. Assuming that R is not

so large that all final-state partons get clustered into one jet, we get

1

σ(0)

dσ

dzJ dx
=

1

σ(0)

∫
dy1 dy2

dσ

dy1dy2

{∑
i<j

θ(R−φij)
(
δ(zJ−yk)F (0)

k (x,µ)

+δ(zJ−yi−yj)
∫

dx1 dx2F (0)
i (x1,µ)F (0)

j (x2,µ)δ

[
x− x̂

(
yi

yi+yj
,x1,x2

)])
+θ(φ12−R)θ(φ13−R)θ(φ23−R)

∑
i

δ(zJ−yi)F (0)
i (x,µ)

}
. (A.1)

Here, i, j = 1, 2, 3 and yi is the parton momentum fraction normalized such that y1 + y2 +

y3 = 2. In the following calculations, we identify parton 1 with the quark, 2 with the
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antiquark, and 3 with the gluon. The angle φij between partons i and j is given by

φij = arccos

[
1− 2(1− yk)

yi yj

]
, (A.2)

and k denotes the parton different from i and j. Although the angle φij becomes ambiguous

when yi or yj is zero, IR safety ensures that the measurement is not. The term in eq. (A.1)

with φij < R describes the situation where partons i and j are clustered in a jet but parton

k is in a separate jet. The final term, where all φij > R, corresponds to the situation

where all partons are in separate jets. Each of the three partons has a leading-order GFF

attached to it. The squared matrix element that enters in eq. (A.1) is given up to O(αs) by

1

σ(0)

dσ

dy1dy2
=δ(1−y1)δ(1−y2)+

αsCF
2π

{
θ(1−y3)(y2

1 +y2
2)

2(1−y1)+(1−y2)+
+

(
π2

2
−4

)
δ(1−y1)δ(1−y2)

+δ(1−y2)

[
Pq→qg(y1)

CF

(
− 1

εIR
+ln

y1E
2
cm

µ2

)
+(1+y2

1)

(
ln(1−y1)

1−y1

)
+

+1−y1

]
+(y1↔y2)

}
, (A.3)

where

Pq→qg(y) = CF

(
1 + y2

1− y

)
+

. (A.4)

Let us now focus on the right-hand side of eq. (2.12). In our case, the coefficients Ci are

the standard ones for inclusive fragmentation in e+e− collisions [4, 76, 77] since the only

kinematic variable appearing on the left-hand side of eq. (A.1) is the jet energy fraction zJ :

Cq(z, Ecm, µ) = δ(1− z) +
αs
2π

{
Pq→qg(z) ln

E2
cm

µ2
+ CF

[
(1 + z2)

((
ln(1− z)

1− z

)
+

+
2 ln z

1− z

)
− 3

2

1

(1− z)+

+ δ(1− z)

(
2π2

3
− 9

2

)
− 3

2
z +

5

2

]}
,

Cg(z, Ecm, µ) =
αs
2π
Pq→qg(1− z)

(
ln
E2

cm

µ2
+ ln(1− z) + 2 ln z

)
. (A.5)

The coefficients J (1)
q→qg and J (1)

q→gq for an e+e− kT -like jet algorithm were calculated

using the MS scheme in ref. [14],

J (1)
q→qg(z,EjetR,µ)=

αs
2π

{
2CFL

2 δ(1−z)+
[
2Pq→qg(z)−3CF δ(1−z)

]
L+CF

[
4z

(
ln(1−z)

1−z

)
+

+2(1−z) ln(1−z)+2

(
1+z2

1−z

)
lnz+1−z− π

2

12
δ(1−z)

]}
,

J (1)
q→gq(z,EjetR,µ)=J (1)

q→qg(1−z,EjetR,µ) , (A.6)
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while J (1)
q→q and J (1)

q→g are given by the finite terms of eq. (2.34) and eq. (2.35) in ref. [31]

J (1)
q→q(z, EjetR,µ) =

αs
2π

[
CF δ(1− z)

(
− 2L2 + 3L+

π2

12

)
− 2LPq→qg(z)− 2CF (1 + z2)

(
ln(1− z)

1− z

)
+

− CF (1− z)

]
,

J (1)
q→g(z, EjetR,µ) = J (1)

q→q

(
1− z, 1− z

z
EjetR,µ

)
, (A.7)

where

L ≡ ln

(
EjetR

µ

)
. (A.8)

The coefficients for anti-quarks are identical. Note that the relation between J (1)
q→q and

J (1)
q→g is not simply z ↔ 1 − z, because the jet energy Ejet rather than the energy of

the initiating parton is held fixed. Since J (1)
q→q and J (1)

q→qg describe the same splitting

in complementary regions of phase space (in-jet versus out-of-jet), their sum vanishes in

dimensional regularization,

J (1)
q→qg(z, EjetR,µ) + J (1)

q→q(z, z EjetR,µ) = 0 . (A.9)

The final ingredient we need is the renormalized one-loop expression for the GFF (see

eq. (2.15)),

Fi(x) = F (0)
i (x)− 1

2 εIR

∑
j,k

∫
dz

αs(µ)

2π
Pi→jk(z)

×
∫

dx1 dx2F (0)
j (x1, µ)F (0)

k (x2, µ) δ[x− x̂(z, x1, x2)] . (A.10)

Let us first verify the cancellation of IR divergences between left- and right-hand sides

in eq. (2.12). On the latter, these solely come from C
(0)
q (zJ , Ecm, µ)[F (1)

q (x, µ)+F (1)
q̄ (x, µ)].

On the left-hand side, we find

1

σ(0)

dσ

dzJ dx

∣∣∣∣
IR div

=

∫
dy1 dy2

αs
2π

[
− 1

εIR
δ(1− y1)Pq→qg(y2)

]
δ(zJ − 1)

[
F (0)
q (x, µ)

+

∫
dx1 dx2F (0)

q̄ (x1, µ)F (0)
g (x2, µ) δ

(
x− x̂(y2, x1, x2)

)]
+ (q ↔ q̄)

= δ(zJ − 1)[F (1)
q (x, µ) + F (1)

q̄ (x, µ)], (A.11)

which demonstrate the cancellation of the IR divergences. Note that the term on the first

line of eq. (A.11) proportional to F (0)
i does not contribute here because it is y2-independent

and ∫
dy2 Pq→qg(y2) = 0 . (A.12)

To verify that also the finite terms match in eq. (2.12), we expand the angular con-

straint in the small R limit as

θ(R− φij) ≈ θ
(
R2

4
− 1− yk

yi yj

)
, (A.13)

– 38 –



J
H
E
P
0
6
(
2
0
1
7
)
0
8
5

which implies yk ≈ 1 and yj ≈ 1− yi. We first consider the θ(R − φ13) term in eq. (A.1),

which gives

1

σ(0)

dσ

dzJ dx

∣∣∣∣
13

=
αsCF

2π

∫
dy1 dy2

{
1 + y2

1

(1− y1)+

1

(1− y2)+

+ (π2 − 8)δ(1− y1)δ(1− y2)

+ δ(1− y2)

[
Pq→qg(y1)

CF
ln
y1E

2
cm

µ2
+ (1 + y2

1)

(
ln(1− y1)

1− y1

)
+

+ 1− y1

]}
× θ
(
R2

4
− 1− y2

y1 (1− y1)

)[
δ(zJ − 1)F (0)

q̄ (x, µ)

+ δ(zJ − 1)

∫
dx1 dx2F (0)

q (x1, µ)F (0)
g (x2, µ) δ

(
x− x̂(y1, x1, x2)

)]
=
αs
2π

∫
dz

{
Pq→qg(z) ln

z2E2
jetR

2

µ2
+ CF

[
2(1 + z2)

(
ln(1− z)

1− z

)
+

+ 1− z + (. . . )δ(1− z)

]}[
δ(zJ − 1)F (0)

q̄ (x, µ)

+ δ(zJ − 1)

∫
dx1 dx2F (0)

q (x1, µ)F (0)
g (x2, µ) δ

(
x− x̂(z, x1, x2)

)]
= δ(1− zJ)

∫
dz dx1 dx2 J (1)

q→qg(z, EjetR,µ)Fq(x1, µ)Fg(x2, µ)

× δ[x− x̂(z, x1, x2)] + (. . . )13. (A.14)

As the integral over y2 yields a ln(1−y1), the resulting ln(1−y1)/(1−y)+ is not properly reg-

ularized, leaving the coefficient of δ(1−z) undetermined. As we will see, however, this am-

biguity cancels exactly against the one arising from J (1)
q→q, due to eq. (A.9). The θ(R−φ23)

term gives the corresponding contribution with quark and anti-quark interchanged, whereas

the θ(R− φ12) term is O(R2) suppressed due to the e+e− → qq̄g squared matrix element.

For the last contribution in eq. (A.1), we rewrite

θ(φ12 −R) θ(φ13 −R) θ(φ23 −R) = 1− θ(R− φ12)− θ(R− φ13)− θ(R− φ23) . (A.15)

where the first term in the sum corresponds to the calculation of the matching coefficients

for inclusive fragmentation, thus yielding the Ci(zJ , Ecm, µ)Fi(x, µ) contribution on the

right-hand side of eq. (2.12). For the remaining terms, we can follow the same strategy as

in eq. (A.14). For example, the −θ(R− φ13) term gives

1

σ(0)

dσ

dzJ dx

∣∣∣∣
−13

= −αsCF
2π

∫
dy1 dy2

{
1 + y2

1

(1−y1)+

1

(1−y2)+

+ (π2 − 8)δ(1−y1)δ(1−y2)

+ δ(1− y2)

[
Pq→qg(y1)

CF
ln
y1E

2
cm

µ2
+ (1 + y2

1)

(
ln(1− y1)

1− y1

)
+

+ 1− y1

]}
× θ
(
R2

4
− 1− y2

y1 (1− y1)

)[
δ(zJ − y1)F (0)

q (x, µ)

+ δ(zJ − 1)F (0)
q̄ (x, µ) + δ(zJ − 1 + y1)F (0)

g (x, µ)

]
= −αs

2π

∫
dz

{
Pq→qg(z) ln

z2E2
cmR

2

4µ2
+ CF

[
2(1 + z2)

(
ln(1− z)

1− z

)
+
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+ 1− z + (. . . )δ(1− z)

]}[
δ(zJ − z)F (0)

q (x, µ)

+ δ(zJ − 1)F (0)
q̄ (x, µ) + δ(zJ − 1 + z)F (0)

g (x, µ)

]
(A.16)

= J (1)
q→q(zJ , EjetR,µ)Fq(x, µ) + J (1)

q→g(zJ , EjetR,µ)Fg(x, µ)− (. . . )13.

The similarity with the calculation in eq. (A.14) and the relationship between J (1)
q→q, J (1)

q→g
in eq. (A.7) together with eq. (A.9) make this straightforward to verify. The (. . . )13 term

cancels in the sum with eq. (A.14). The −θ(R − φ23) term corresponds to the term with

quark and anti-quark interchanged and the −θ(R − φ12) contribution is again suppressed

by O(R2). This completes the check of eq. (2.12) at O(αs).

B A non-fractal example: sums of weighted energy fractions

While eq. (1.1) is rather general, there are of course many collinear-unsafe observables

that are not fractal jet observables. In this appendix, we give an explicit example of an

observable that does not satisfy the requirements in section 2.3.

Consider two weighted energy fractions

x =
∑
i∈jet

wi z
κ
i , y =

∑
i∈jet

vi z
λ
i , (B.1)

for particle weights wi and vi, and energy exponents κ and λ. Individually, x and y are

described by the evolution equation in eq. (2.13). On the other hand, their sum

t = x+ y (B.2)

is not a fractal jet observable, though it still can be described by a GFF.

To see this, consider the GFF for t, Fi(t), which can be written in terms of a joint

GFF for x and y as

Fi(t) =

∫
dx dyFi(x, y) δ[t− x− y]. (B.3)

The evolution equation for the joint GFF follows from the analysis in eq. (2.15), leading to

µ
d

dµ
Fi(x, y;µ) =

αs(µ)

2π

∑
j,k

∫
dz dx1 dx2 dy1 dy2 Pi→jk(z)Fj(x1, y1;µ)Fk(x2, y2;µ)

× δ
[
x− zκx1 − (1− z)κx2

]
δ
[
y − zλy1 − (1− z)λy2

]
. (B.4)

Plugging eq. (B.4) into eq. (B.3), we can insert a factor of

1 ≡
∫

dt1 dt2 δ[t1 − x1 − y1] δ[t2 − x2 − y2] (B.5)

to perform the integrals over y1 and y2. The resulting equation is

µ
d

dµ
Fi(t;µ) =

αs(µ)

2π

∑
j,k

∫
dz dt1 dt2 dx1 dx2 Pi→jk(z)Fj(x1, t1 − x1)Fk(x2, t2 − x2)

× δ
[
t− zλt1 − (1− z)λt2 − (zκ − zλ)x1 −

(
(1− z)κ − (1− z)λ

)
x2

]
. (B.6)
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As written, this is a valid GFF evolution equation, but the GFF for t explicitly involves

the joint GFF for x and y, so we do not get an evolution equation of the form of eq. (2.13).

If and only if κ = λ, can we cancel the x1 and x2 terms inside of the δ function in

eq. (B.6). In that case, we can rewrite the joint probabilities as probability densities for

the sums t1 = x1 + y1 and t2 = x2 + y2, so that the evolution equation is of the desired

fractal form. Of course, κ = λ just corresponds to a regular weighted energy fraction with

weights wi + vi, so this is not a new fractal observable.

C Software implementation

The software to perform the RG evolution in this paper is available from the authors upon

request. In this paper, we discuss some of the specifics of its implementation. A public

version of the code is planned for a release some time in the future.

C.1 Running coupling

Because we only perform leading-order evolution, the running of αs is strictly speaking

only required at leading-logarithmic accuracy. In our implementation, though, the running

of the strong coupling is included using the β function at O(α3
s),

µ
dαs(µ)

dµ
= −2αs

(
β0

(αs
4π

)
+ β1

(αs
4π

)2
)
, (C.1)

β0 =
11

3
CA −

4

3
TFnf , β1 =

34

3
C2
A −

20

3
CATFnf − 4CFTFnf . (C.2)

The running coupling at the scale µ is given by solving eq. (C.1) iteratively to order O(α3
s),

αs(µ) =
4π

β0

(
1

L
− β1

β2
0L

2
lnL

)
, (C.3)

where L = ln µ2

Λ2
QCD

. Using the PDG value αs(MZ) = 0.1181 gives the boundary condition

ΛQCD = 0.2275 GeV. The group theory factors for QCD are CF = 4
3 , TF = 1

2 , and CA = 3.

For applications to the LHC running at 13 TeV, the number of quark flavors is nf = 5.

C.2 Discretization

The evolution equation in eq. (2.13) can be solved by binning the values of the GFFs in

the x variable. If the GFF domain is partitioned into N bins, eq. (2.13) becomes a set of

(2nf + 1)N coupled ordinary differential equations. The evolution equation for the binned

GFF for bin n, F̃i(n, µ), is given by18

d

dlnµ
F̃i(n,µ)≡ d

dlnµ
N

∫ n/N

(n−1)
N

dxFi(x,µ) (C.4)

=
N

2

∑
j,k

∫ n/N

(n−1)
N

dx
∑
n1,n2

∫ n1/N

(n1−1)
N

dx1

∫ n2/N

(n2−1)
N

dx2

∫ 1

0
dzPi→jk(z)

18This equation is written for N equal-width bins for simplicity of notation. The generalization to unequal

bins is straightforward, and the software implementation is set up to handle variable bin widths if desired.

– 41 –



J
H
E
P
0
6
(
2
0
1
7
)
0
8
5

×Fj(x1,µ)Fk(x2,µ)δ
[
x− x̂(z,x1,x2)

]
=
N

2

∑
j,k

∫ n/N

(n−1)
N

dx
∑
n1,n2

∫ 1

0
dzPi→jk(z)F̃j(n1,µ) F̃k(n2,µ)δ

[
x− x̂(z,xn1 ,xn2)

]
,

where xn1 and xn2 are the positions of the midpoints of the n1-th and n2-th bins. Note

that eq. (C.4) is written in terms of lnµ instead of µ, since this is how the evolution was

implemented numerically to make the step size and numerical errors more consistent. In

principle, the δ function could be used to carry out the z integral exactly. In practice, it is

easier to discretize the z integral and use the δ function to choose the x-bin corresponding

to each triplet (z, x1, x2). This is because inverting x̂ to solve for z analytically for general

x1 and x2 is not possible. Doing so in advance separately for each value of x, x1 and x2

can be prohibitively memory intensive for large numbers of bins.

The splitting functions are approximated by the analytic value of their integral over

the width of the bin. For our analysis, we need the following splitting functions:

Pq→gq(z) = Pq→qg(1− z) = CF

(
1 + (1− z)2

z+
+

3

2
δ[z]

)
,

Pg→qq̄(z) = TF
(
z2 + (1− z)2

)
,

Pg→gg(z) = 2CA

(
1− z
z+

+
z

(1− z)+

+ z(1− z)

)
+
β0

2

(
δ[1− z] + δ[z]

)
, (C.5)

where Pq→gq(z) is the splitting function for a quark radiating a gluon with momentum

fraction z, the integration constant for integrals of the plus distributions are fixed by∫ 1

0

dz

z+
= 0 ,

∫ 1

0

dz

(1− z)+

= 0 , (C.6)

and β0 is given in eq. (C.2).19 When performing the integration, terms with a plus-function

regulator must be handled correctly for the endpoint bins. If the regulated functions have

the following primitives

dF (z)

dz
=
f(z)

z
,

dG(z)

dz
=

g(z)

1− z , (C.7)

then their integrals over the n-th bin are implemented by∫ z+0.5∆z

z−0.5∆z
dz′

f(z′)

z′+
=

{
F (z + 0.5 ∆z)− F (z − 0.5 ∆z) n 6= 0,

F (z + 0.5 ∆z) n = 0,∫ z+0.5∆z

z−0.5∆z
dz′

g(z′)

(1− z′)+
=

{
G(z + 0.5 ∆z)−G(z − 0.5 ∆z) n 6= nfinal,

G(z − 0.5 ∆z) n = nfinal.
(C.8)

In our implementation, the integration range z ∈ [0, 1] is divided into nrough bins,

and the first and last bin are then further subdivided by a factor of nfine. The user can

19The 1/z+ and δ(z) terms in Pq→gq(z) and Pg→gg(z) are necessary because the evolution in eq. (1.3)

requires distributions that are also regulated at z = 0.
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Figure 21. Sensitivity of the evolution from µ = 100 GeV to 4 TeV on the choice of fine bin width.

Shown are the (left) gluon GFF and (right) quark-singlet GFF for the weighted energy fraction

with κ = 0.5. The curves labeled ∆nX are the difference between the result using nfine = X and

the result using nfine = 1000. For the default value of nfine = 100 used in this paper, the results are

indistinguishable by eye.

specify these two parameters. For the results presented in this paper, the values used were

nrough = 1000 and nfine = 100. The finer division of the endpoint bins is necessary to

accurately capture the singular behavior of the splitting functions near z = 0 and z = 1.

For many GFFs, this is not necessary, but consider the weighted energy fractions, whose

recursion relation satisfies

x̂(z, x1, x2) = zκx1 + (1− z)κx2 =⇒ ∂x̂

∂z
= κ (zκ−1x1 − (1− z)κ−1x2). (C.9)

For κ < 1, there are poles in the derivative of x̂ at z = 0 and z = 1, resulting in a noticeable

dependence on nfine. This is shown in figure 21 for the case of κ = 0.5, with all particle

weights one. Once we increase nfine = 100 → 1000, the maximum change in the value of

the evolved GFFs in a single x-bin is less than 0.06%.

C.3 Runge-Kutta algorithm

After the discretization in eq. (C.4), the RG evolution is performed with an embedded fifth-

order Runge-Kutta method adapted from ref. [78]. This method requires six evaluations

of the right side of eq. (2.13), which on the kth step can be combined to give a fifth-order

estimate yk+1 of the desired function after a step of size hk. These computations can be

recombined with different coefficients to give a fourth-order Runge-Kutta estimate y∗k+1.

The difference between these two methods then gives an estimate of the local truncation

error. The error estimated this way applies to the fourth-order value y∗k+1, but we take the

(more accurate) fifth-order value. This ensures that our solution is actually slightly more
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accurate than our error indicates. Estimating the error on this fifth-order solution would

require calculating a still-higher order step.

Once a step hk is taken, with an error Ek, we would like to choose an appropriate trial

value for our next step. This fourth-order error estimate scales as O(h5), so we choose the

next step, hk+1, to be

hk+1 =

{
S hk|Ek+1

Ek |
0.20 Ek+1 > Ek,

S hk|Ek+1

Ek |
0.25 Ek+1 < En.

(C.10)

Here, Ek+1 is the projected error in the (k + 1)th step, and S is a safety factor taken to

be 0.9. This formula allows the step size to grow if the error is much smaller than our

tolerance. If the error is larger than the tolerance, the step fails, and is retried with a

smaller step.

It is important that the algorithm be able to dynamically change step size in order to

evolve a solution efficiently while keeping errors within desired limits. At low scales, the

strong coupling grows large, and the solution changes rapidly. Numerical precision therefore

requires small step sizes in this region. At high scales, asymptotic freedom ensures that

the solutions change slowly, so much larger step sizes result in the same level of accuracy.

This procedure requires a prescription for the maximal acceptable error. For a system of

M ≡ (2nf + 1)n coupled ODEs, there is a separate Emk for each m ∈ M . The step is

considered a failure unless every equation is within its error tolerance. The error Emk for

the mth equation on the kth step is required to satisfy∣∣∣∣∣ Emk
|ymk |+ |hk

(
dymk /d lnµ

)
|+ 10−6

∣∣∣∣∣ < ε. (C.11)

The value ε is an overall upper limit which was set to 10−9 for the GFF evolution. The

last numerical term in the denominator is required to avoid artificially large errors when

the domain of the GFFs input into the program exceeds the actual support of the GFF.

As an additional constraint, our algorithm sets a maximum step size of d ln µ ≤ 0.4. Note

that the same step size is used for every equation in the system.

D Numerical stability

All of the RG results in this paper are based on the numerical solution of eq. (2.13) for

upwards evolution in the scale µ. The reason is because downward evolution is numerically

unstable, in the sense that small irregularities in the initial conditions amplify into large

fluctuations, especially for the gluon GFFs. This behavior is illustrated in figure 22, where

gluon and quark-singlet GFFs are evolved downward from 4 TeV to 100 GeV.

Heuristically, if evolution upwards in scale is analogous to convolution of the GFFs,

evolution downwards is akin to deconvolution, a problem known to be ill-posed. To verify

that the instability is inherent to the differential equation, and not merely a numerical

artifact, we checked that the envelope shown in figure 22 is not affected by choosing a

smaller step size or more stringent error bound in the Runge-Kutta algorithm. To get a
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Figure 22. Downward evolution from µ = 4 TeV to µ = 100 GeV of the (left column) gluon GFF

and (right column) quark-singlet GFF with (top row) κ = 0.5 and (bottom row) κ = 2.0. The

envelopes of the evolved distributions are constructed as in section 4.2 by varying the jet radius R

and the choice of parton shower, which highlight the numerical instability of downward evolution.

sensible result, one could use a numerical regularization method such as Tikhonov regu-

larization [79], though we do not do so here. Note that in general, if the evolution in one

direction is stable, such that small fluctuations get washed out, the evolution is expected

to be unstable in the reverse direction.

– 45 –



J
H
E
P
0
6
(
2
0
1
7
)
0
8
5

E Moment space details

In this appendix, we give details of the moment space analysis from section 4.5, as well as

perform similar analyses for the non-associative observables from section 5. The moments

of the GFFs are defined by

F i(N,µ) =

∫
dxxNFi(x, µ) , (E.1)

where the zeroth moment is just the normalization,

F i(0, µ) =

∫
dxFi(x, µ) = 1. (E.2)

This convention follows the standard nomenclature of probability theory. Applying∫ +∞
−∞ dxxN to both sides of the evolution equation in eq. (2.13) gives the moment space

evolution equation,

µ
d

dµ
F i(N,µ) =

1

2

∑
j,k

∫
dz dx1 dx2

(
x̂(z, x1, x2)

)N αs(µ)

π
Pi→jk(z)Fj(x1, µ)Fk(x2, µ).

(E.3)

In order to proceed further, we need the specific form of the recursion relation, x̂. We now

discuss the details for each of the sets of observables studied in this paper.

E.1 Weighted energy fractions

Inserting the weighted energy fraction recursion relation eq. (4.1) into eq. (E.3) leads to

µ
d

dµ
F i(N,µ) =

αs(µ)

2π

∑
j,k

N∑
M=0

(
N

M

) ∫ 1

0
dz zκ(N−M)(1− z)κMPi→jk(z)

×
∫

dx1 x
N−M
1 Fj(x1, µ)

∫
dx2 x

M
2 Fk(x2, µ), (E.4)

assuming that N is integer and using the binomial theorem. As in eq. (4.12), the moments

of the splitting functions are defined as

P i→j,k(N,M) =

∫ 1

0
dz zN (1− z)MPi→j,k(z) , (E.5)

with the convention that P i→j,k(N) ≡ P i→j,k(N, 0). For any real N > 0, they can be

expressed in terms of the digamma function ψ0(N) and the Euler-Mascheroni constant γE ,

P q→qg(N) = CF

(
3

2
+

1

N + 1
+

1

N + 2
− 2γE − 2ψ0(N + 3)

)
,

P q→gq(N) = CF

(
N2 + 3N + 4

N(N + 1)(N + 2)

)
,

P g→qq̄(N) = TF

(
N2 + 3N + 4

(N + 1)(N + 2)(N + 3)

)
,

P g→gg(N) = 2CA

(
11

12
+

2(N2 + 3N + 3)

N(N + 1)(N + 2)(N + 3)
− γE − ψ0(N + 2)

)
− 2

3
TFnf . (E.6)
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Figure 23. Moment space evolution of the node-product observables with (top row) κ = 1

and (bottom row) κ = 4 for the generalized-k − t clustering trees with (left column) p = −1,

(middle column) p = 0, and (right column) p = 1. Shown are the first (solid curves) and second

(dashed curves) moments of gluon (red) and quark-singlet (blue) GFFs. The first (second) moments

extracted from the parton shower average at µ = 4 TeV are shown as points (diamonds).

Alternatively, one can use the harmonic number function, HN = γE + ψ0(N + 1). These

expressions for all positive real numbers are necessary to evaluate the moment space evo-

lution equation in eq. (4.13) for non-integer κ. Note that N is shifted up by one from the

expression usually seen in the literature, because our convention for moments in eq. (E.1)

is shifted by one as well compared to Mellin moments.

E.2 Node products

We now insert the recursion relation for the node products from eq. (5.1) into eq. (E.3).

This leads to evolution equations with additional terms compared to those for the weighted

energy fractions. These terms have splitting kernels of the form∫ 1

0
dz
(
4z(1− z)

)a
zb(1− z)cPi→j,k(z) (E.7)

for a > 0 and b, c ≥ 0. These integrals are convergent, so no plus function regulators are

required. They can also be performed analytically for general a, b, and c. Explicitly, the
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first moments of the quark-singlet and gluon GFFs evolve as

µ
d

dµ

(
S(1, µ)

Fg(1, µ)

)
=
αs(µ)

π

(
P q→qg(κ) P q→gq(κ)

2nfP g→qq(κ) P g→gg(κ)

)(
S(1, µ)

Fg(1, µ)

)
+
αs(µ)

π

(
P

Node
q1 (κ)

P
Node
g1 (κ)

)
.

(E.8)

The additional constant terms are defined as

P
Node
q1 (κ) ≡ 1

2

∫ 1

0
dz
(
Pq→qg(z) + Pq→gq(z)

)(
4z(1− z)

)κ/2
,

P
Node
g1 (κ) ≡ 1

2

∫ 1

0
dz
(
2nfPg→qq̄(z) + Pq→gg(z)

)(
4z(1− z)

)κ/2
, (E.9)

which can be evaluated in terms of Γ functions. The additional terms drop out of the

equation for the first moments of the non-singlet GFFs, so these still evolve according to

eq. (4.14). The third term in eq. (5.1) leads to several more terms in the evolution equations

for higher moments.

In figure 23, we plot the µ evolution of the gluon and quark-singlet GFF moments for

node products with κ = {1, 4} and p = {−1, 0, 1}. The first and second moments were

computed at the scale µ = 100 GeV from the GFFs in figure 10, averaged over the different

parton showers and R values (as described in section 4.2). These average moments were

evolved to the scale µ = 107 GeV using eq. (E.8) and the corresponding second moment

equation. For comparison, the first and second moments of the GFFs extracted from the

parton shower average at the scale µ = 4 TeV are shown as dots and diamonds, respectively.

E.3 Full-tree observables

For full-tree observables with recursion relation given in eq. (5.4), the moment space evo-

lution equations are of the same general form as for the weighted energy fractions,

µ
d

dµ
F i(N,µ) =

αs(µ)

2π

∑
j,k

N∑
M=0

(
N

M

)
P

FT
i→j,k(N,M)F j(N −M,µ)Fk(M,µ), (E.10)

but with different splitting kernels,

P
FT
i→j,k(N,M) ≡

∫ 1

0
dz eNξz(1−z)zκ(N−M)(1− z)κMPi→j,k(z). (E.11)

To our knowledge, these integrals do not have a closed form solution for general values of

the parameters κ and ξ, but it is straightforward to evaluate them numerically. If M = 0

or M = N , these integrals are sensitive to the plus-prescription in the splitting functions.
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Figure 24. The same as figure 23, except now for the full-tree observables with κ = 2 measured

on charged particles, with (top row) ξ = −2 and (bottom row) ξ = 2.

Explicitly, for the first moment in the quark-singlet basis,

µ
d

dµ
S(1, µ) =

αs(µ)

π

[
CF

(
3

2
+

∫ 1

0
dz

eξz(1−z)zκ(1 + z2)− 2

1− z

)
S(1, µ) (E.12)

+ CF

∫ 1

0
dz
(
eξz(1−z)zκ−1(1 + (1− z)2)

)
Fg(1, µ)

]
,

µ
d

dµ
Fg(1, µ) =

αs(µ)

π

[
2nfTF

∫ 1

0
dz
(
eξz(1−z)zκ(z2 + (1− z)2)

)
S(1, µ)

+ 2CA

∫ 1

0
dz

(
eξz(1−z)(zκ−1(1− z) + zκ+1(1− z))

+
eξz(1−z)zκ+1 − 1

1− z +
11

6
− 2

3

TFnf
CA

)
Fg(1, µ)

]
.

In figure 24, we show the evolution of the first two moments of the GFFs for κ = 2,

ξ = {−2, 2}, and p = {−1, 0, 1}. In this case, the evolution agrees well with the value

extracted from the parton shower average at µ = 4 TeV.
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