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Abstract

Recently, next-generation HVAC technologies have gained attention as potential

alternatives to the conventional vapor-compression system (VCS) for dehumidification

and cooling. Previous studies have primarily focused on analyzing a specific technol-

ogy or its application to a particular climate. A comparison of these technologies is

necessary to elucidate the reasons and conditions under which one technology might

outperform the rest. In this study, we apply a uniform framework based on fundamen-

tal thermodynamic principles to assess and compare different HVAC technologies from
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an energy conversion standpoint. The thermodynamic least work of dehumidification

and cooling is formally defined as a thermodynamic benchmark, while VCS perfor-

mance is chosen as the industry benchmark against which other technologies, namely

desiccant-based cooling system (DCS) and membrane-based cooling system (MCS), are

compared. The effect of outdoor temperature and humidity on device performance is

investigated, and key insights underlying the dehumidification and cooling process are

elucidated. In spite of the great potential of DCS and MCS technologies, our results

underscore the need for improved system-level design and integration if DCS or MCS

are to compete with VCS. Our findings have significant implications for the design and

operation of next-generation HVAC technologies and shed light on potential avenues to

achieve higher efficiencies in dehumidification and cooling applications.
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Nomenclature

Roman symbols

cp specific heat at constant pressure, kJ/(kg · K)

COP coefficient of performance

h specific enthalpy, kJ/kg dry air

hfg enthalpy of vaporization, kJ/kg

ṁ mass flow rate of dry air, kg/s

Q̇ rate of heat transfer, kW

P pressure, kPa

rp compression ratio

Ra ideal gas constant of dry air, 0.287 kJ/(kg · K)

RH relative humidity

s specific entropy, kJ/(K · kg dry air)

Ṡgen rate of entropy generation, kW/K

T temperature, K

Ẇ rate of work transfer, kW

ẇ specific work transfer, kJ/kg dry air

Greek symbols

α humidity removal fraction

ηII second law efficiency

εHX heat exchanger effectiveness

εS membrane exchanger sensible effectiveness

εL membrane exchanger latent effectiveness

ω humidity ratio, kg moisture/kg dry air

ω̃ mole fraction of vapor to air in the moist air mixture
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ξ total specific exergy, kJ/kg dry air

Subscripts

a dry air

ad adsorption

c cooling

cool cooling load

coil cooling coil

cond condensation

h heating

i stream identity

lat latent load

p pressure

reg regeneration

sat saturation

v vapor

w liquid water

0 environment or dead state

Abbreviations

DCS desiccant-based cooling system

DW desiccant wheel

IEC indirect evaporative cooler

MCS membrane-based cooling system

VCS vapor-compression system
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1 Introduction

Building operation consumes more than 40 percent of the total energy used in the United

States,1 and building heating and cooling loads comprise the largest fraction. Demand for

cooling energy is exacerbated in hot and humid climates. High humidity poses a serious lim-

itation to the design and operation of buildings, promoting mold and dust mites and often

associated with increased disease transmission. Consequently, dehumidifying air in build-

ing ventilation systems is normally a requirement to mitigate the effects of high humidity,

improve indoor thermal comfort, and meet indoor design conditions.

For over a century, the vapor-compression system (VCS) has been the de facto technol-

ogy of choice in heating, ventilation, and air conditioning (HVAC), especially for dehumid-

ification and cooling. In spite of its success, research, policy, and economics all encourage

change in light of its many inherent shortcomings. From an energy standpoint, the inability

of the VCS system to decouple latent and sensible loads leaves condensation, an energy in-

tensive process, as the only means for dehumidification. The heart of the VCS system lies in

the refrigerant, whose chemistry has evolved in response to policy and environmental con-

cerns. From chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), banned

under the Montreal Protocol in 1987,2 to hydrofluorocarbons (HFCs), such as R-134a with a

global warming potential (GWP) 1430 times that of carbon dioxide (CO2),3 environmental

concerns associated with VCS can no longer be overlooked. These concerns, coupled with

potential excess greenhouse gas (GHG) emissions resulting from the inefficiencies inherent

in the system, place research on future HVAC technologies at the cornerstone of any effort

aimed at mitigating climate change.

The United States, Canada, and Mexico recently proposed to curb their use of HFCs

by 85% between 2016–2033,4 while several members of the European Union supported an

agreement to phase out HFCs by 80% between 2016–2030.5 These efforts, among others,

paved the way for the Kigali accord, an amendment to the Montreal Protocol signed by

more than 170 countries to phase out HFCs. In response to the rising interest in the future
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of HVAC, Chua et al.6 presented a review of recent HVAC innovations to achieve improved

air-conditioning efficiency, while the U.S. DOE published a study shortlisting potential next-

generation HVAC technologies,7,8 highlighting the potential of two technologies of interest

to our study, desiccant and membrane technologies.

Desiccant technology employs desiccants, normally solid or liquid materials with a high

affinity for water vapor, to separate water vapor from outdoor air and thereby decouple de-

humidification from the cooling process.9 Daou et al.10 reviewed different configurations of

the desiccant cooling system (DCS), and La et al.11 pointed out the merits of the solid ro-

tary DCS (known as a desiccant wheel): compactness, continuous working hours, and lower

susceptibility to corrosion during operation. To analyze its potential for regeneration using

low-grade heat, Angrisani et al.12,13 experimentally investigated the effect of outdoor con-

ditions and regeneration temperature on desiccant wheel performance. Given the promise

desiccants offer for more efficient air conditioning, several configurations employing desic-

cant wheels, such as the combined chilled-ceiling desiccant cooling system,14 continue to be

investigated in the literature.

In contrast with desiccant technology, the isothermal nature of chemical separation in

membrane technology poses a unique advantage, and its incorporation in HVAC has lately

been an active field of research. In recent reviews, Woods15 and Zhang16 provided overviews

of the latest membrane developments in HVAC and a summary of potential avenues for future

research, while another review by Yang et al.17 highlighted the major advances membrane

technology has made in air dehumidification. In search of membranes with the greater

selectivity necessary to make this process viable, Zhang et al.18 developed a novel membrane

using a polyethersulfone (PES) support layer coupled with a polyvinylalcohol (PVA) active

layer, while Bui et al.19,20 later reported the fabrication of a robust hydrophilic PVA/LiCl

composite membrane. Other studies explored boosting air-conditioning performance through

incorporating membrane-based total heat recovery,21,22 enabling heat and mass exchange

across air streams.
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Another prominent application of membrane technology has been membrane-based liq-

uid desiccant dehumidification, recently reviewed by Huang et al.23 and Abdel-Salam et al.24

Compared to solid desiccants, liquid desiccants allow for localized dehumidification and for

regeneration to occur at lower temperatures,9 while integrating them with membranes elim-

inates the challenge of desiccant cross-over.23 Research in the field continues to investigate

several aspects of this technology, including modeling system performance,25–27 improving

system design,28 and employing renewable energy.29

Apart from the question of which technology produces the dehumidification and cooling

effect, HVAC is an energy conversion process, whose design and performance can considerably

benefit from a greater thermodynamic understanding. Even many decades after the inception

of VCS, for example, thermodynamic analysis aimed at improving VCS performance and

efficiency continues to be relevant to this day, as evident from the works of Kumar et al.,30

Bayrakçi and Özgür,31 and a recent review by Ahamed et al.,32 to name a few. Similarly,

Zhang33 presented an energy analysis of several air dehumidification systems, Sakulpipatsin

et al.34 applied energy and exergy analysis to buildings and HVAC systems, while Qureshi

and Zubair35 applied them to analyze various psychrometric processes, and Caliskan et al.36

extended the analysis to assess the performance of the novel Maisotsenko cycle (M-Cycle). In

addition, energy analysis for a desiccant wheel (DW) has been performed by Mohsen et al.,37

while a recent work by Bynum38 explored the thermodynamic modeling of a membrane-based

dehumidification system.

While significant progress continues to be made in the area of energy/exergy analysis

and next-generation HVAC technologies, a broader impact study comparing the advantages

and limitations of each technology, while bringing about further insights into the dehumidi-

fication and cooling process, has been missing in the literature. In spite of the advancements

made thus far, our understanding of how these technologies perform relative to a thermo-

dynamic benchmark (a step necessary to gauge the current status of the technology), how

each technology fares relative to competitors, and how much room is left for improvement,
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has been limited. Similarly, an investigation into the effect of climate conditions on system

performance and the implications of such an effort on technology adoption under different

climates is still needed. In spite of the significant improvements that dehumidification and

cooling technologies could potentially achieve through careful system design, integration,

and energy recuperation, as our study demonstrates, studies in the literature have mainly

focused on either one system configuration or on multiple commercially existing ones.

Our work presents an evaluation of different HVAC technologies from the standpoint

of energy conversion. A framework based on fundamental thermodynamic principles is de-

veloped to define a thermodynamic benchmark in terms of the least work and to assess the

potential of the DCS and the MCS compared to the conventional VCS, while uncovering the

prospects and limitations of each technology. Unlike previous studies, different technologies

are compared against each other, the effect of climate conditions on technology adoption is

explored, and insights underlying a technology’s superior performance under specific climate

conditions are emphasized. As these technologies can be hybridized or integrated with other

recuperation devices, we propose two approaches for evaluation: one aimed at the tech-

nologies themselves, and the other built on the developed insights to achieve more efficient

system-design and integration. Our results demonstrate the great potential of the DCS and

the MCS in dehumidification and cooling and reflect the dramatic impact of system-design

and integration on system efficiency.

2 Thermodynamic least work of dehumidification and

cooling

Before exploring the thermodynamics and energy costs associated with the different tech-

nologies, the thermodynamic least work, an overall benchmark, needs to be set up. This

benchmark defines an idealized performance for dehumidification and cooling and gives in-

sight into the loss mechanisms limiting the energy efficiency of real systems. In this section,
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we start by defining a generalized dehumidification and cooling unit, then derive an ex-

pression for the thermodynamic least work of dehumidification and cooling, and close by

conducting parametric studies to evaluate how the least work varies under different outdoor

conditions.

2.1 Generalized dehumidification and cooling unit

To arrive at an expression for the thermodynamic least work of dehumidification and cooling,

we begin by considering a typical ventilation system, depicted in Fig. 1. Outdoor air at a

predefined state 1 (dependent on the geographical location/time of the year) and a flow rate

(the lower bound of which is dictated by ASHRAE Standard 62.139 to satisfy indoor air

quality requirements) enters the reversible/ideal dehumidification and cooling unit, and is

processed to the prescribed supply conditions given by state 3. To simplify the analysis, we

focus our attention in this study on the cooling loads associated with the outdoor ventilation

air under the assumption that a separate system is employed to handle the indoor cooling

loads. As Fig. 1 illustrates, the reversible dehumidification and cooling unit introduced may

later be swapped for any of the three technologies of interest to this study without loss of

consistency.

In addition to the processed stream, another interesting aspect of this separation process

is the waste stream given by state 2 in Fig. 1. Depending on the technology we encounter

later, minimizing the work input requires the separated moisture to leave the system at

ambient conditions either in pure liquid form or as a saturated air/vapor mixture. Both cases

will be considered in this derivation, allowing us to later invoke the appropriate definition

based on the state of the waste stream (pure water or air/vapor mixture) generated for any

given technology. Since the least work is defined under isothermal and isobaric conditions,

the thermodynamic properties at state 2 are fixed for each case.
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Figure 1: Control volume (dotted line) around dehumidification and cooling systems for least
work calculation.

2.2 Theoretical derivation of the least work

Following our definition of the generalized dehumidification and cooling unit, we start the

least work derivation by drawing a control volume around this unit, and allowing it to interact

with the environment, as shown in Fig. 1. By combining the steady state first and second

laws of thermodynamics, the rate of work transfer Ẇ , following the positive work input sign

convention, can be expressed as:40

Ẇ = ṁ2ξ2 + ṁ3ξ3 − ṁ1ξ1 − Q̇
(

1− T0
T

)
+ T0Ṡgen (1)

where ξ is the specific total exergy of the ith stream, T is the temperature at which the heat

transfer at a rate Q̇ enters the system, Ṡgen refers to the rate of entropy generation in the

system, ṁi indicates the mass flow rate of dry air or condensed water, and the subscript 0

refers to the environment condition (or dead state).

Following the classical framework of modeling humid air as an ideal gas mixture, the

total exergy of humid air per kilogram of dry air is evaluated following the relation:41

ξ = (cp,a +ωcp,v)T0

(
T

T0
−1− ln

T

T0

)
+(1+ ω̃)RaT0 ln

P

P0

+RaT0

(
(1+ ω̃) ln

1 + ω̃0

1 + ω̃
+ ω̃ ln

ω̃

ω̃0

)
(2)

where cp,a and cp,v are the specific heat of air and vapor at a constant pressure P , ω the
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humidity ratio, ω̃ the mole fraction of vapor to air in the mixture, and Ra the ideal gas

constant of dry air. Similarly, the specific total exergy of condensed water, a pure substance,

is evaluated as:41

ξ = hw(T, P )− h0(T0, P0,w)− T0sw(T, P ) + T0s0(T0, P0,w) (3)

where h and s are the enthalpy and entropy of water evaluated at a given temperature and

pressure, and P0,w is the vapor partial pressure at ambient conditions, computed as:41

P0,w =

(
ω̃0

1 + ω̃0

)
P0 (4)

The minimum work is defined as the work input in a reversible process with no entropy

generation, which corresponds to a thermodynamically ideal process. If no external heat

source or sink (other than the environment) is assumed to exchange heat with the system,40

the least work can then be expressed as:

Ẇmin = ṁ2ξ2 + ṁ3ξ3 − ṁ1ξ1 (5)

The mass conservation of dry air implies:

ṁ1 = ṁ2 + ṁ3 (If state 2 is a saturated air/vapor mixture)

ṁ1 = ṁ3 (If state 2 is condensed water) (6)

Similarly, the conservation of water mass implies:

ṁ1ω1 = ṁ2ω2 + ṁ3ω3 (If state 2 is a saturated air/vapor mixture)

ṁ1ω1 = ṁ2 + ṁ3ω3 = ṁw + ṁ3ω3 (If state 2 is condensed water) (7)

Here ṁw is the mass flow rate of liquid water.
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Due to the irreversibility of the thermodynamic process, the actual work input will

always be larger than the least work and thus a second-law efficiency is defined to measure

the relative performance of a given system compared to the ideal system:

ηII =
Ẇmin

Ẇactual

(8)

A different efficiency, the Coefficient of Performance (COP), is commonly used in HVAC

systems to measure the ratio of useful cooling provided to the actual work input on a system.

COP =
Q̇

Ẇ
=
ṁ3(h1 − h3)
Ẇactual

(9)

In this definition, Q̇ refers to the sensible and latent heat removed from the outdoor air, and

Ẇ refers to the corresponding actual work input.

2.3 Modeling results

The indoor air temperature is set as 24 ◦C in the following analysis, and the relative humid-

ity is set to 50% since lower values may cause dry skin issues and higher ones may promote

mold and bacteria growth.37 To investigate the effect of outdoor conditions on performance,

a parametric study has been performed with varying outdoor temperature and relative hu-

midity, with a range of 24–53 ◦C in temperature and 50–95% in relative humidity.

As is shown in Fig. 2, the least work increases with rising outdoor temperature. At

the same time, air with higher dry bulb temperature can absorb more water vapor, which

increases the work to separate water vapor from the mixture. This rise is even more pro-

nounced with increasing relative humidity. As our results demonstrate, the overall least

work for the dehumidification and cooling process is below 13 kJ/kg dry air, and in nor-

mally hot days, the least work is under 5 kJ/kg dry air for both scenarios in state 2, which

agrees with results reported by previous researchers.42 The least work featuring a condensed

waste stream in state 2 always exceeded that featuring a saturated air/vapor waste stream.
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The difference between these two processes, however, did not exceed 25%, and diminished

considerably with rising humidity.
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Figure 2: Least work for outdoor air conditions.

3 Energy analysis for VCS

In addition to the least work analysis presented, analyzing the performance of the VCS

sets an industry benchmark against which the merits of other technologies can be assessed.

This section starts by adopting the industry standard VCS with a traditional cooling coil

to achieve the desired dehumidification and cooling effect. A thermodynamic model is de-

veloped, and parametric studies are run to quantify the limitations of this technology and

unveil potential avenues for improvement.

3.1 Thermodynamic model of VCS

Figure 3 depicts a VCS with a traditional cooling coil, conditioning an indoor space.43 To

lower the energy consumption, a hot and humid outdoor air stream exchanges heat with

return air before being passed through the cooling coil to reach the dew point temperature.

At this point, water vapor starts condensing as the process follows the saturation line on

the psychrometric chart until the desired humidity is reached. From there, the supply air

is usually cold, and requires further conditioning to supply air to the room at the stated
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conditions.

1 2 3

Outdoor air Supply air

Cooling Coil

Indoor

4

Return air

5

Exhaust air

HX

Figure 3: VCS with heat recovery.

This VCS process has the inherent limitation of not separating latent and sensible

loads and requires unnecessary sensible cooling to lower the dew point of the supply air to

the design value. Given our interest in supplying air at a particular design condition, we

refrain from rewarding the system for supplying air that is cooler than necessary although a

portion of this overcooling energy could be recuperated by mixing with indoor air. Likewise,

we neglect any energy penalty associated with increasing the dry bulb temperature of the

supply air to the design condition under the assumption that it is either unnecessary or that

the ambient environment could be employed.

Developing a thermodynamic model for this system requires applying mass and energy

balances to a control volume encompassing the cooling coil to arrive at:

ṁw = ṁ2(ω2 − ω3) (10)

Q̇ = ṁ2(h2 − h3)− ṁwhw (11)

The second term is usually small relative to the first term on the right of Eq. 11, and may
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reasonably be neglected.43 The cooling work is then calculated according to the relation:

Ẇ =
Q̇

COPc

=
ṁ2(h2 − h3)

COPc

(12)

where COPc is the coefficient of performance of the system used to provide the sensible

cooling necessary. A value of COPc = 3 has consistently been adopted in this study. In

tandem with our least work definition in Section 2.2, Ẇ is normalized per unit outdoor air

when calculating the second law efficiency.

3.2 Modeling results

By parametrically fixing the inlet and outlet states, the performance of the VCS is analyzed

under different climate conditions. Figure 4 illustrates that the second law efficiency increases

with increasing temperature and decreasing humidity. These results underscore the fact that

this technology, while being more efficient at cooling, is highly inefficient at dehumidification

as it necessitates the condensation of water, an energy-intensive process.
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Figure 4: Performance of the VCS.

As our results indicate, this process is least efficient in low temperature and high humid-

ity climates, and its performance improves as the conditions approach those of a hot and dry

climate. In spite of its being most efficient under hot and dry conditions, the VCS system

is challenged the most under such climates by alternative technologies as our assessment
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of desiccant and membrane systems will demonstrate. The observation that this technol-

ogy achieves a second law efficiency of around 20% at best suggests there is a significant

opportunity for improvement.

4 Energy analysis for DCS

Compared to VCS, a desiccant-cooling system (DCS) avoids the limitation of having to lower

the temperature to the dew point for dehumidification to occur. In addition, the ability

of the DCS to dehumidify the air without the compressors needed in the VCS and MCS

presents it with competitive advantages under some climate conditions as we explore next.

This section addresses the development of thermodynamic models to describe desiccant-

based technologies. Modeling is extended to investigate the effects of system integration and

recuperation, and parametric studies are employed to uncover the prospects and limitations

of this technology.

4.1 Thermodynamic model of desiccant-based dehumidification and

cooling

Desiccant cooling is typically operated in two units, a desiccant dehumidifier and a cooling

unit. The dehumidifier unit can be in the form of a washing tower with a liquid desiccant

solution or in the form of a solid desiccant bed. Desiccant wheels, the focus of our analysis, are

gaining popularity as a result of compact system sizes and controllable operation conditions

for individual buildings or building zones. The cooling unit is operated using a traditional

cooling coil, featuring chilled water for example, or an Indirect Evaporative Cooling (IEC)

system as our discussion later shows.
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4.1.1 Model development

As shown in Fig. 5a, the process air first undergoes dehumidification as it interacts with

the desiccant layer, experiencing an increase in temperature due to the adsorption heat. A

traditional cooling coil is employed to cool the hot dry air to the desired state. Desiccant

dehumidifiers usually operate under high moisture removal rates; in order to fairly compare

with other technologies, the humidity ratio at the outlet of the dehumidifier in this study is

assumed to be the same as that required for other technologies to meet the design conditions

given by state 3. The exhaust air stream denoted by state 4 is preheated with Q̇ad to

regenerate the desiccant.

1 2 3

Outdoor Processed air
DW

Cooling Coil

Indoor

4

Exhaust air

(a) Desiccant cooling process
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(b) Second-law efficiency and COP

Figure 5: Performance of the desiccant cooling process

Performing an energy analysis of the desiccant wheel requires adopting a numerical
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model to predict the state of the streams leaving the wheel. Models in the literature largely

fall into two categories: (1) coupled partial differential equation models accounting for the

dynamic processes occurring within the wheel44–46 and (2) simplified models based on cor-

relations derived empirically.47 More recently, Fu et al.48 presented a micro-scale molecular

dynamics sub-model coupled to a macro-scale heat and mass transfer sub-model. While the

other models are more detailed and comprehensive, empirical models are sufficiently accu-

rate for an energy analysis33 and are adopted here. Based on the model adopted,33,49 two

empirical constants for effectiveness, ηf1 and ηf2, are defined according to the correlations:

ηf1 =
f1so − f1si
f1ei − f1si

(13)

ηf2 =
f2so − f2si
f2ei − f2si

(14)

f1j = −2865T−1.49
j + 4.344ω0.8624

j (15)

f2j = T 1.49
j /6360− 1.127ω0.07969

j (16)

Here, ηf1 and ηf2 are determined based on a desiccant wheel’s specifications, s and e denote

supply and exhaust states, i and o denote inlet and outlet states, and j refers to the stream

index. Following the silica gel desiccant wheel configuration proposed by Zhang et al.33,49

and summarized in the Appendix, the effectiveness constants are taken to be ηf1 = 0.30 and

ηf2 = 0.85 herein. The modeling system is closed by solving for the unknown temperature

in two states, the dehumidified and the regeneration air states.

According to the first law applied to the cooling system, the work input necessary to

meet the cooling requirement is calculated as:

Ẇcool =
Q̇

COPc

=
ṁ3(h2 − h3)

COPc

(17)

Another source of work input is the electric motor that provides rotational power for the
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desiccant wheel. An experimental regression result37 of the motor work Ẇm with rotational

speed shows that the motor work accounts for less than 1% of the total work, which can

reasonably be neglected.

Although desiccant cooling does not require any form of work input to separate the water

vapor from the inlet air, desiccants can only adsorb finite amounts of water vapor before

they reach a saturated state at which no more moisture can be harvested. A fraction of the

surface area must be used to regenerate the saturated desiccant. Generally, the regeneration

process requires heat input and a relatively high operational temperature, typically around

60 ◦C,11,50 which cannot be accessed directly using ambient conditions absent solar thermal

collectors or electrical heaters. The enthalpy difference between the inlet and outlet states to

the heater is used to calculated the adsorption heat Qad in this model.51,52 Assuming a heat

pump is used to supply the regeneration heat with COPh = 3, the amount of regeneration

work input Ẇreg is evaluated as:

Ẇreg =
Q̇ad

COPh

(18)

The total work input of the system is then the sum of regeneration work, cooling work and

motor work.

4.1.2 Modeling results

The second-law efficiency and the COP of desiccant cooling are shown in Fig. 5b for varying

outdoor conditions. The results demonstrate how both metrics decrease with rising humidity,

with a minimum occurring under very hot and humid climates. These observations reflect

the increase in latent cooling loads, raising the temperature and associated sensible cool-

ing requirement of the processed air post-dehumidification. For a fixed relative humidity,

however, our results indicate an initial boost followed by a decline in second-law efficiency,

with this behavior becoming more prominent at higher humidities. These trends are a result

of competition between cooling and necessary regeneration. Under lower outdoor tempera-

tures, desiccant efficiency is lowered by the increase in cooling work imposed by the hot dry
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air leaving the wheel, and large heat input necessary to reach the regeneration temperature.

With rising temperatures, nonetheless, both cooling and regeneration work play a major role

in lowering system performance under hot climates as observed.

Although desiccant cooling does not directly require any separation work, a large pro-

portion of the work input is used for regeneration, and this results in much lower efficiency

than the VCS. However, if the regeneration heat can be provided from heat recovery systems

or solar power, the efficiency of the desiccant cooling could rise to nearly 40%.11 When the

outdoor air is very hot and humid, the outlet air temperature post-dehumidification will

increase notably due to the adsorption heat. As a result, the system experiences two energy

penalties as part of the dehumidification process: one for cooling the air considerably to reach

the required supply conditions, and another for regenerating the desiccant. A stand-alone

DCS will forgo the opportunity to recuperate the heat from the high temperature dehumid-

ified air. The low efficiency calculated here reminds us of the importance of integrating a

heat recovery system to improve efficiency and boost the technology’s competitiveness.

4.2 DCS system integration

4.2.1 Design development

A stand-alone DCS cannot achieve optimal efficiency. To recuperate the heat from the hot

dehumidified air, a heat exchanger is set up in an integrated design (shown in Fig. 6a)

between the hot dehumidified air and the cool return air, saving energy for both cooling and

regenerative heating.

In order to fulfill the requirement of humidity removal, we first need to determine

whether the desiccant can adsorb the required amount of water vapor. This requirement has

been validated using a detailed model of desiccant adsorption, presented in the Appendix.

In this work, we assume the maximum capacity of the desiccant to absorb moisture is set by

the desired humidity ratio removal rate, and thus ω2 = ω3 = ω4.

The effectiveness of the heat exchanger, εHX , defined in Eq. 19, determines how much
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(b) Efficiency of the DCS with cooling coil system
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(c) Efficiency of the DCS with IEC system

Figure 6: Performance of the integrated DCS.

heat is recovered from the hot dehumidified air and how much additional cooling work is

necessary to reach the desired supply conditions. Considering the limiting case of counter

flow with a finite heat transfer rate and a finitely large exchange area, εHX is taken as 0.8.

εHX =
T2 − T3
T2 − T5

(19)

For the two streams across the heat exchanger, we can also arrive at the enthalpy equality
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between inlet and outlet with the assumption of well-insulated walls for the heat exchanger,

as Eq. 20 shows:

h2 + h5 = h3 + h6 (20)

A cooling system, such as a conventional cooling coil or an IEC system, must be em-

ployed after the heat exchanger. As defined in Eq. 17, the cooling work provided by the

cooling coil is calculated with the predefined COPc. For the IEC system, the same approach

is followed using its corresponding COPiec, valued in a range of 10 to 25 according to previous

research results.53,54 Note that only sensible heat is removed by the IEC system.

In contrast to the dehumidification process, return air increases in humidity when flowing

across the regeneration zone of the desiccant wheel. To guarantee the steady humidity

removal of the water vapor from the outdoor air, the return air in the regeneration zone

is assumed to drain out the adsorbed water vapor in the desiccant. The prerequisites to

maintaining this performance are to make sure the temperature of the air in the regeneration

zone exceeds the regeneration temperature, and to simultaneously ensure the exhaust stream

is not saturated. Ensuring these conditions are met requires an additional heat source (e.g.,

heat pump or solar thermal collector) to further raise the temperature of the return air at

state 6. The regeneration work is calculated with a heat pump COPh of 3. Lastly, we assume

that the pressure drop across the desiccant wheel is small and the corresponding pump work

is negligible.

4.2.2 Modeling results

To investigate the effect of outdoor conditions on performance, we performed a parametric

study by varying outdoor temperature and relative humidity. The rotational speed may be

adjusted to guarantee that the humidity ratio of the dehumidified air matches indoor design

conditions for different outdoor air conditions. Angrisani et al.55 analyzed the effect of

rotational speed on desiccant wheel performance, while Wang et al.56 presented an optimal

humidity control model (OHCM) to optimize desiccant wheel operation while satisfying
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design constraints.

As shown in Fig. 6b and 6c, the integrated system experiences a boost in performance

with the addition of a heat exchanger, while the performance trends remain similar to those

of the component-level design. System performance drops with rising humidity due to the

increase in both latent and sensible loads. While the heat exchanger raises system efficiency

by enabling energy recuperation between the inlet and outlet streams, the rise in cooling

work is still significant so that performance deteriorates with rising humidity. Furthermore,

the presence of a heat exchanger is less significant at low temperatures and humidities as the

temperature rise post-dehumidification becomes less severe. Given a heat exchanger’s finite

area and effectiveness, hot and humid climates place a similar limitation on the total energy

the system can recuperate.

Substituting the conventional cooling coil with an IEC system raises the efficiencies by

about 15%. However, improvement of the performance is not free as evaporative coolers will

require a steady supply of liquid water to remove the sensible heat through evaporation. To

put this in perspective, Fig. 6c shows the volume rate of water consumption in the unit of

L/kW h work input. As the second-law efficiency becomes higher in hotter climates, the

water consumption also rises. The requirement of large water supply limits the use of the

IEC system to geographic locations where water is not scarce.

5 Energy analysis for MCS

Unlike vapor-compression or desiccant-based systems, the performance of membrane-based

systems is governed by radically different operating principles. This section focuses on de-

veloping thermodynamic models for various membrane systems, starting with the simplest

and then building up in complexity. Similar to our DCS analysis, system integration and

recuperation are later incorporated to boost performance, and parametric studies are run to

investigate the potential membranes offer given their isothermal operation.
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5.1 Thermodynamic model of membrane-based dehumidification

and cooling

Unlike other technologies, an outdoor air stream in the MCS is dehumidified by a hydrophilic

semi-permeable membrane with a transmembrane vapor pressure difference. To simplify the

analysis, the membranes in this study are assumed to be perfect membranes that allow

only water vapor to permeate. This assumption presents a reasonable approximation as

recent membranes developed by researchers have been reported to achieve a selectivity, or

a water/air permeance ratio, of around 10,000.20 Membranes with lower selectivity tend to

require higher transmembrane pressures or larger areas to achieve the desired dehumidifica-

tion effect. In addition, separation across the membrane is assumed to be isothermal and

hydraulic losses are ignored for simplicity.

5.1.1 Model development

To demonstrate the concepts underlying the MCS, we start with the simplest configuration

depicted in Fig. 7a. Hot and humid air enters the membrane module with predefined con-

ditions and the membrane acts to dehumidify the process air isothermally, such that the

humidity ratio at the module outlet matches design targets. Thereafter, a traditional cool-

ing coil, as encountered in the DCS, is employed to sensibly cool the dry air to the desired

temperature, completing the dehumidification and cooling process. A vacuum pump is ap-

plied on the sweep side to drive mass transport. Similar to gas separation, the flux of water

across the membrane is primarily governed by the transmembrane vapor pressure difference.

The membrane designs proposed in this work and others take advantage of this principle to

minimize the transmembrane pressure, which directly affects pumping work, while keeping

the transmembrane vapor pressure at a maximum.

Similar to the setup proposed by Bui et al.,20 P6 is taken to equal atmospheric conditions,

while P5 is set at 1 mbar. Better membranes might be able to reduce the necessary work with

higher permeances. Two major constraints on the vapor pressure should always be satisfied
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(b) Second-law efficiency and COP of the MCS with a vacuum pump

Figure 7: Performance of the MCS with a vacuum pump.

during membrane operation in dehumidification. First, the pressure at all points should

not exceed the saturation pressure, Psat, at the ambient temperature to avoid condensation.

Second, the vapor pressure on the sweep side should always be lower than the feed side to

drive transport.

Throughout this paper, the isentropic efficiency of the vacuum pump is assumed to be

0.9. The design in Fig. 7a suffers from undesirable condensation in the pump. Given its

low volumetric density, vapor compression is also associated with higher energy penalties.

As an alternative, we propose a two-stage pumping approach inspired by the Rankine cycle

and first introduced by Cladridge and Culp,57,58 where the vapor will be condensed before

complete compression.

As Fig. 8a illustrates, pure vapor is first compressed from state 5 to 6 before it is

condensed and pumped back to ambient conditions. In this design, the first pumping stage
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(b) Second-law efficiency and COP of the MCS with a condenser pump

Figure 8: Performance of the MCS with a condenser pump.

serves to avoid potential freezing of the vapor in the condenser as can be ascertained from

a phase diagram. The values of P5 and P6 were set at 1 and 20 mbar herein. Although the

work of the second-stage pump is expected to be small, the energy cost of condensation, as

calculated by Eq. 21, is still high.

Q̇con = ṁw(h6 − h7) (21)

5.1.2 Modeling results

Figure 7b shows the results generated for the MCS configuration with a vacuum pump, which

show that the second law efficiency increases with increasing temperature and decreasing
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humidity. Given the high compression ratio of the proposed configuration, the compression

work is a significant portion of the energy requirement, often displaces any advantages of

using the MCS over the VCS, and makes this configuration unpractical in an HVAC context.

For most environmental conditions studied, the COP of this MCS design did not outperform

that of the VCS.

Implementing a two-stage pumping design with a condenser boosts performance con-

siderably as Fig. 8b attests, underscoring the importance of reducing the compressor work

to make membranes more competitive. While in both technologies harvested vapor is con-

densed, the proposed MCS is at an advantage relative to the VCS by not requiring the process

air to be unnecessarily cooled to the dew point temperature to achieve the dehumidification

desired.

Similar to the VCS, system performance, as measured by the second law efficiency in

Fig. 8b, improves with increasing temperature and decreasing humidity since our analysis

accounts for the cost of condensation. These trends look different when this energy penalty

is neglected by assuming that the ambient environment acts as a heat sink, with the MCS

performance remaining high at higher humidities and second law efficiencies falling in the

range of 12%–28%. Such an analysis, however, would be limited to relatively cooler climate

zones, and is not generalizable. Any potential increase in capital cost associated with the

additional heat exchangers necessary should also be considered.

In summary, modeling results indicate that high compression ratios are not only im-

practical in an HVAC context but also undermine the overall system performance. Any

economically-feasible implementation of membrane technology in dehumidification and cool-

ing must address this problem a priori. A more subtle conclusion is that membranes are

more likely to become competitive through more advanced system design and integration

specifically aimed at exploiting their characteristics more effectively, as we explore next.
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5.2 MCS system integration

5.2.1 Design development

While our analysis shows that a stand-alone MCS has lower efficiency than VCS, a membrane

system differs from vapor-compression in many respects. One advantage the MCS possesses

over the VCS and the DCS is its ability to separate water vapor at high purity. This opens

up the opportunity for water reuse in evaporative cooling, direct or indirect, whose operation

can be sustained solely by the harvested water. Water recovery in this form can act as a

form of energy recuperation by which a portion of the energy spent achieving separation

is recovered through evaporative cooling. On the other hand, water recovered in the VCS

cannot be reused in evaporative cooling since the air stream is already highly humid during

pre-processing, and relatively cold during post-processing.

Employing direct evaporative cooling would require air to be dried beyond the design

conditions for it to produce supply air at specified conditions. Accordingly, a design with

a direct evaporative cooler is likely to suffer from two opposing trends. Such a design

will reduce the energy penalty of sensible cooling, while adding to the energy penalty of

membrane separation and sweep condensation. Since an evaporative cooler can only cool

an air stream along a constant enthalpy line, a cooling coil might still be required to meet

design conditions.

Figure 9a depicts a design similar to the one discussed, employing a cooling system

with an evaporative cooler (direct or indirect) and an additional heat exchanger to increase

energy recovery and raise efficiency. This design has been modeled following the framework

and assumptions developed throughout this work. Another alternative to investigate will be

replacing the IEC system with both a direct evaporative cooling system and a cooling coil

to satisfy the cooling requirements.

Instead of employing membranes to mechanically separate the vapor prior to condensa-

tion, Fig. 10a presents an alternative approach combining a membrane total heat recovery
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(b) Second-law efficiency and COP of the membrane-evaporative cooler hybrid

Figure 9: Performance of the Membrane-Evaporative Cooler Hybrid

with the DCS analyzed previously in Section 4.2. Unlike the previous design, this MX-DCS

hybrid, reviewed by Zhang,16 is thermally driven and allows the incoming and outgoing

streams to exchange heat and moisture through a membrane exchanger. The result is greater

energy recuperation and lower sensible and latent loads imposed on the DCS regardless of

climate as our results will demonstrate later. The performance of the membrane exchanger

is dictated by two empirical constants, the sensible effectiveness and latent effectiveness,

defined by Eqs. 22-23 following the notation in Fig. 10a. Following studies reported in the

literature33 based on current state-of-the-art, a sensible effectiveness εS = 0.8 and a latent

effectiveness εL = 0.9 were adopted herein. The DCS subsystem is modeled as explained
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(c) Efficiency of the MX-DCS total heat recovery hybrid with IEC system

Figure 10: Performance of the MX-DCS total heat recovery hybrid.

εS =
T1 − T2
T1 − T6

(22)
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εL =
ω1 − ω2

ω1 − ω6

(23)

Figure 11a illustrates our last proposed design, inspired by another invented by Claridge

and Culp59 and reviewed by Woods,15 that also aims to achieve cooling and dehumidification

absent any condensation. The system features two membrane modules, one that extracts

humidity and one that actively rejects it back to the outdoor air. For vapor harvested in

the top module to leave through the bottom module, the vapor pressure on the sweep side

(P9) should exceed that of the rejected air (P7,v) while still being below saturation pressure

(Psat), following Eq. 24.

P7,v < P9 < Psat (24)

To ensure flux continuity (no vapor build-up) in the system, the vapor pressure difference

across both membranes modules should be set equal, leading to the relationship:

P8 + P9 = P1,v + P6∗,v (25)

To fully close the system of equations, the pressure at state 8 is defined according to a

preset compression ratio referred to as rp, defined in Eq. 26 and given a value of 5 herein.

A larger compression ratio decreases the pressure on the sweep side of the top module,

increasing the flux, but only at the expense of increased energy penalty.

rp =
P9

P8

(26)

One important aspect of this design is the on-demand heat pump, which reduces the

risk of membrane fouling by ensuring no condensation occurs in the lower module. The heat

pump is only operated when the amount of vapor harvested from the outdoor air exceeds

the additional amount allowable at state 6 before saturation. When this condition is met,

the temperature is then raised to state 6∗, such that the air stream exits the lower module

at state 7 as a saturated air/vapor mixture. This situation is likely to occur when operating
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Figure 11: Performance of the integrated membrane-recuperation system.

at high humidity, such that cooling the air stream could induce condensation. The rest of

the system operates as explained previously.

5.2.2 Modeling results

Similar to the VCS and the DCS, parametric studies were run to investigate the prospects

and limitations of the proposed MCS designs. For the design proposed in Fig. 9a featuring

a direct evaporative cooler, it remains unclear what fraction α of ω1 should be harvested

to achieve optimal performance. Running sensitivity analyses reveals that ηII decreases

monotonically with increasing α, starting from the minimum α necessary to meet design

conditions. For this reason, α was assigned its minimum value herein. These results indicate
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that employing a direct evaporative cooler is not justified as the penalty incurred from

the additional dehumidification and condensation necessary outweighs any potential savings

(unless the cost of condensation could be dropped as discussed previously).

Apart from this observation, the MCS remains at an advantage relative to other tech-

nologies as the harvested water could be employed in indirect evaporative cooling. Modeling

results indicate that the amount of water harvested at the minimum α was always sufficient

to meet the desired cooling loads using an IEC system. Further simulation results reveal

that system performance is not a strong function of the heat exchanger, which could be dis-

carded in this case to minimize CAPEX. This observation is in contrast to the DCS, whose

performance is strongly affected by the presence of an efficient heat exchanger to recover

the adsorption energy for use in desiccant regeneration, and makes the MCS more attractive

than the DCS from a CAPEX standpoint.

Figure 9b depicts the system’s performance in response to varying climate conditions.

Comparing these results to those reported previously for the corresponding component de-

sign in Fig. 8b reveals that only a minor improvement was attained through better system

integration, which focused on lowering the processed stream’s sensible loads by incorporating

a heat exchanger and an IEC system. Rather than the sensible loads, these results suggest

that vapor condensation dominates the energy consumption. This result, which is further

confirmed by assuming free condensation to realize an approximately twofold performance

improvement, is attributed to the membrane’s isothermal operation.

Unlike the DCS, the sensible cooling loads post-dehumidification in MCS are minimal,

particularly under moderate climates. For this reason, the second law efficiency does not

drop at higher temperatures (as encountered in DCS), implying that MCS is not bound by

the same set of constraints as DCS: a finite heat exchanger effectiveness and considerable

sensible loads. Under the assumption that the condensation energy will contribute to the

energy cost of running the system, it appears that a primary way for membrane systems

to become more competitive is to rid themselves of condensation. Unlike the VCS and the
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DCS, membranes are the only technology that offers this capability, as demonstrated by our

next designs.

Given its ability to recuperate latent loads, the performance of the MX-DCS hybrid,

shown in Fig. 10b, indicates only a slight decrease in efficiency and COP with higher hu-

midities. Unlike the DCS system, the improved recuperation also allows the efficiency and

COP to increase monotonically for the MX-DCS hybrid with rising temperatures. While the

membrane exchanger operates passively in this design, the absence of a compressor lowers

the driving force across the exchanger and could place limitations on its performance under

a finite membrane area.

Modeling results for the integrated membrane-recuperation system are reported in Fig.

11b, showing significant improvement relative to the other systems investigated. This notable

improvement is another manifestation of the limitations condensation imposes and the effect

of latent loads on overall performance. For most conditions studied, system performance

improves with increasing temperature, and is not a strong function of outdoor humidity.

Increased humidity does not directly contribute to energy consumption as the limitations

of a finite membrane area were neglected in the study. These trends break down discon-

tinuously at higher humidities once the on-demand heat pump is operated as shown by the

discontinuous lines for efficiency in Fig. 11b.

Another advantage of this design is that it implements energy recuperation in two forms.

First, a heat exchanger recovers energy in the form of sensible heat. Second, the exhaust air

stream is intentionally passed through the bottom module (rather than running the bottom

module on outside air) since it is expected to have a lower humidity ratio. A lower humidity

ratio increases the flux across the bottom module, allowing the same amount of water vapor

to be rejected at lower energy costs. More importantly, however, the performance of this MCS

system, while it appears favorable, was found to be very sensitive to the compression ratio

employed, underscoring the need for research on developing selective membranes to achieve

the necessary dehumidification given a finite membrane area under lower compression ratios.

34



6 Comparisons and discussion

The previous sections focused on specific technologies. We now adopt a more holistic ap-

proach, collectively considering the systems proposed while investigating how the different

technologies fare with respect to one another. The psychrometric chart is used as a vehicle

for qualitative assessment of the different technologies and a more quantitative analysis fol-

lows. The section concludes with a case study investigating the potential of next-generation

HVAC systems in different cities worldwide relative to the VCS, showing that the optimal

design would ultimately be a function of climate conditions and resource availability.

6.1 Component-level comparison

As shown in Fig. 12, states 1 and 6 refer to the initial outdoor and supply air conditions.

Different technologies follow different paths (depicted by arrows) from state 1 to 6. The

fact that these states represent actual thermodynamic states implies that the net enthalpy

change (per unit dry air of the processed air) remains equal across all technologies as the

air is processed from state 1 to 6. More complicated paths associated with greater enthalpy

changes, nonetheless, introduce larger energy transfers and pose an increased potential for

inefficiencies. This becomes even more evident from our results, showing the energy penalty

associated with technologies employing such paths to be greater.

The VCS follows the path 1–2–3–6, consuming considerable energy to cool the air, reach

the dew point temperature, and sustain condensation. The processed stream is later condi-

tioned again to reach the desired state. It is this over-cooling to the dew point that makes

the VCS suffer from a relatively lower efficiency. The DCS follows the path 1–4–6, employ-

ing no work input for air-vapor separation, while still needing to cool the hot dehumidified

air from a relatively higher temperature level. Not apparent from the psychrometric chart

is the additional work necessary for regeneration, however. The MCS follows the shorter

path 1–5–6, invoking the highly efficient isothermal separation process, albeit suffering from
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considerable compressor work to support this process. As with the DCS, the psychrometric

chart does not reveal whether the harvested vapor is condensed.

A quantitative comparison of the different technologies in Fig. 13 shows that the stand-

alone DCS is more efficient than MCS at low temperatures, whereas MCS tends to be more

efficient at high temperatures and more evidently with rising humidities. While DCS suffers

from the energy penalty associated with adsorption heat, this penalty is outweighed by the

cost of condensation in MCS at low temperatures, making the DCS more efficient. With

rising humidity and temperature, however, the trend is reversed as adsorption heat and the

additional regeneration work necessary limit DCS performance relative to MCS. Interestingly,

comparing both stand-alone technologies to the conventional VCS in Fig. 13 reveals that both

fail to outperform the VCS under most climate conditions, with a few exceptions in cooler

and drier climates. These results remind us again of the significance of system design and

integration in making next-generation HVAC technologies more competitive.
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Figure 13: Comparisons of the work input among different stand-alone technologies.

6.2 System-level comparison

With the greater design flexibility offered by system integration and energy recuperation,

quantitatively comparing the energy costs associated with each design, as shown in Fig. 14,

becomes necessary to ascertain the optimal design for a given set of climate conditions. Of

the proposed designs with the three technologies studied, the VCS consumes the most work

(nearly 5–10 times that of the theoretical minimum work) due to its coupling of sensible and

latent heat removal.

Both DCS designs achieve significant energy savings compared to stand-alone units. The

regeneration work input is largely reduced with the heat recovery from the hot dehumidified

air. DCS with a cooling coil or IEC system consistently outperformed VCS by decoupling

the sensible and latent loads under most climate conditions. With more extreme climates,

the increasing adsorption heat and its associated rise in sensible cooling, however, makes

VCS more favorable. The DCS with IEC outperforms the other DCS design featuring a

conventional cooling coil, although a steady intake of cool liquid water could pose a challenge

in locations experiencing water scarcity. Coupling a membrane total heat recovery to the

DCS with IEC provided a further design improvement, producing even greater recuperation

and efficiencies approaching 30% as shown in Fig. 10c.

Likewise, all MCS designs improve energy efficiency with respect to the initial stand-

alone units, and bring their own advantages in practical use. As apparent from our analysis,
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Figure 14: Comparisons of the work input among different system designs.

the integrated MCS with a condenser pump (Fig. 9a) can boost its efficiency by recuperating

separated water for use in the IEC system, which will be preferable in regions with water

shortage. The integrated membrane-recuperation system (Fig. 11a) stands out for its notable

cost-effectiveness under lower compression ratios. In order to achieve a stable performance,

the selectivity of the membrane to water needs to be relatively high, such that operation

under low compression ratios is feasible (assuming a finite membrane area) and back-flow

from the exhaust air does not occur. Of all proposed designs, the first MCS design is

evidently the least efficient due to vapor condensation as shown in Fig. 14b. Achieving free

condensation as discussed previously could potentially improve this technology’s prospects

and make it more competitive.

As our results indicate, employing a membrane total heat recovery with DCS can miti-

gate this pitfall, making VCS less favorable, while boosting performance under such climate
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conditions. The more uniform profile for the MX-DCS hybrid in Fig. 14b is attributed to

the membrane exchanger, which mitigates much of the variance in cooling loads that would

alternatively result from the varying climate conditions. This result underscores the poten-

tial of membrane total heat recovery to boost HVAC performance, while allowing for a more

robust performance with varying climates.

The slight drop in performance experienced under moderate climates sheds light on the

competition between the membrane exchanger and heat exchanger in the MX-DCS hybrid.

While the membrane exchanger alleviates the cooling loads handled by the DCS, the rising

temperature of the exhaust stream given by State 7 limits the performance of the heat

exchanger. Under moderate climates, the benefit from decreasing the cooling loads using

a membrane exchanger is outweighed by lost potential of heat recovery following the DW,

causing an increase in the cooling and regeneration work necessary to run the system.

6.3 Case study

As can be observed from the parametric studies presented, the work input and energy effi-

ciency of the different technologies and designs vary considerably with outdoor conditions.

We end this section with a case study assessing the performance of the presented technolo-

gies. Table 1 lists four cities in different climates, characterized by outdoor temperature

and relative humidity averaged over summer days, and summarizes system performance as

a guide to choosing energy-efficient and practical technologies for a given climate.

Table 1: Performance of different system designs in different geographical locations.

City T ( ◦C) RH (%) wdcs(wdcs,iec)/wvcs wmcs,cond/wvcs wmx−dcs(wmx−dcs,iec)/wvcs

Dubai 45 55 0.800 (0.609) 1.59 0.718 (0.527)
Las Vegas 40 40 0.701 (0.535) 1.32 0.808 (0.543)
New York 24 65 0.320 (0.259) 0.798 0.426 (0.383)
Singapore 31 85 0.617 (0.477) 1.47 0.665 (0.534)

For all cities considered, the VCS was outperformed by the alternatives presented, except
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for the MCS with condenser design, which only outperforms VCS under moderate climates.

The reader should note, however, the optimal choice of technologies and designs for dehu-

midification and cooling will ultimately depend on both the local climate and availability of

resources (both water and energy).

In Dubai (tropical desert climate), for example, DCS saves 20% of the energy consump-

tion, whereas MX-DCS saves 30% relative to VCS. Introducing an IEC system in place of

the cooling coil significantly boosts system performance with the MX-DCS reducing the en-

ergy consumption to about half of the VCS system. Of all cities considered, Dubai featured

the hottest average temperature, which combined with the absorption heat, placed greater

pressure on the cooling system employed. For this reason, the payoff from employing an IEC

was largest in Dubai when ignoring the cost of water consumed. The scarcity of freshwater in

Dubai places serious economic constraints on IEC adoption. Future developments in HVAC

design focused on renewable energy, such as solar-powered regeneration, could bring about

even more energy savings, catalyzing technology adoption in similar climates.

For Las Vegas (subtropical arid climate), where humidity is relatively lower, DCS proves

to be the most efficient option as the MX-DCS performance deteriorates when the competi-

tion between the membrane exchanger and heat exchanger encountered previously in Section

6.2 becomes more prominent. Incorporating an IEC system in place of the cooling coil also

lowers the energy consumption by 50% relative to VCS. Taking CAPEX considerations into

account might justify adopting DCS over MX-DCS under similar climates.

In New York (subtropical humid climate), all designs considered outperformed VCS. Of

these three designs, DCS stands out with about 70% reduction in overall energy consumption

relative to VCS. Employing IEC could potentially boost performance even further. MX-DCS

is challenged again under these climate conditions, underperforming DCS.

Singapore (tropical oceanic climate), on the other hand, features a similar performance

for both DCS and MX-DCS (with both outperforming VCS), although CAPEX considera-

tions potentially make DCS more attractive. While employing IEC is expected to benefit

40



system performance, the scarcity of water resources in Singapore places considerable limita-

tions on IEC adoption. Similar to Dubai, future developments in solar-powered designs are

expected to further technology adoption in this part of the world.

7 Conclusions

A framework based on fundamental thermodynamic principles was developed to enable sys-

tematic comparisons of three dehumidification and cooling technologies: the conventional

VCS, the DCS, and the MCS. This work has extended our understanding of current and

next-generation HVAC technologies, assessed their merits and limitations based on a com-

mon framework, and uncovered the situations in which a given design might outperform

others. While previous work has primarily been focused on one technology, our work was

aimed at offering a parallel treatment of current and next-generation technologies under

varying climates to help guide technology selection.

The key findings of this work include:

1. The least work of dehumidification and cooling increased with temperature and more

notably with humidity as the sensible and latent loads increased. The least work

considering a condensed waste stream always exceeded that considering a saturated

air/vapor waste stream. The difference, which became less significant with rising out-

door humidity, was consistently below 25%.

2. The second-law efficiency of the VCS increased with rising temperature and falling

humidity, indicating its inefficient dehumidification performance (relative to cooling).

While VCS performed best under hot and dry climates, our results indicate this is also

where it is challenged the most by competitors. The second-law efficiency, which did

not exceed 20%, suggests a great potential for improvement in the field.

3. Despite the inherent inefficiency of VCS, current DCS and MCS technologies can only
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compete with VCS when proper system integration and energy recuperation are im-

plemented.

4. At the component level, the second-law efficiency and COP of the DCS decreased

with rising temperatures and humidities as the latent loads before and sensible loads

after dehumidification continued to increase. Under fixed humidity, a tradeoff between

the regeneration work and cooling work was observed, with the latter playing a more

prominent role at higher temperatures. The lack of an energy recuperation mechanism

imposed two penalties on the system: (1) desiccant regeneration and (2) significant

cooling loads post-dehumidification.

5. While performance trends did not change considerably, integrating a heat exchanger

boosted DCS performance, particularly at hotter/more humid climates. The increase in

cooling loads post-dehumidification attributed to the adsorption heat was still notable,

however, causing performance to deteriorate with humidity. Employing an IEC system

raised efficiency by 15% at the expense of freshwater consumption.

6. For the MCS stand-alone design with vacuum pump, the high compression ratios as-

sociated with the design were found to be impractical. Instead, employing a two-stage

pumping design with condenser notably improved performance. Neglecting the cost

of condensation dramatically boosted performance, but the assumption’s validity was

not generalizable across all climates.

7. For the integrated MCS design with condenser, performance improved as condensed

water was employed in cooling. Harvesting vapor in excess of the HVAC design require-

ment for use in direct evaporative cooling was counterproductive, making IEC with

minimal vapor harvesting the best option. The small improvement noted indicated

vapor condensation dominates energy consumption in this design. Of all integrated

designs proposed, this design was the least efficient.
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8. Avoiding condensation through an integrated-membrane design boosted performance

considerably by employing two forms of recuperation. Ignoring the limitations of finite

area made performance appear less sensitive to humidity. This trend changed at higher

humidities, however, as operating a heater became necessary to avoid condensation.

9. Technologies with more complicated paths on the psychrometric chart were associated

with greater enthalpy changes and energy transfers, leaving a greater potential for

inefficiencies to jeopardize performance.

10. At low temperatures, stand-alone DCS outperformed stand-alone MCS, which suffered

from the high cost of condensation. Higher temperatures and humidities placed greater

limitations in the form of sensible cooling and regeneration energy on the stand-alone

DCS, however, making stand-alone MCS more favorable.

11. Combining membrane total heat recovery with DCS raised efficiencies up to 30%.

The membrane exchanger reduced cooling load variation and led to a more robust

performance. The hybrid was less effective under moderate climates as a result of the

competition between the heat and membrane exchangers. Limits on finite membrane

area could pose further challenges to this design.

12. For all cities considered in the case study, VCS was consistently outperformed by

competitors to varying extents. The optimal choice of technologies and designs was

shown to be dictated by climate and natural resources.
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Appendix: Details of desiccant model

In order to evaluate the maximum capacity of the desiccant dehumidifier, an equilibrium

adsorption constant ws is introduced to account for the maximum amount of water vapor

adsorbed per unit mass of desiccant. Both Mandegari et al.37 and De Antonellis et al.50

discover that the equilibrium adsorption constant changes with inlet relative humidity φ by

a power law as follows:

ws = 0.24φ2/3 (27)

A desiccant wheel can be approximated as a cylinder; once the size and specific weight of

the wheel is determined, the mass of the desiccant can be evaluated as follows:

mdec = ερdw

(
1

2

3

4
πR2L

)
(28)

Here ε is the mass fraction of desiccant in the dehumidifier and R and L are radius and

length of the desiccant wheel, respectively. Note that not all of the desiccant is working

at the same time, as part of it is in the regeneration zone. A typical desiccant wheel has

one fourth of the area for regeneration, and the rest under working conditions.10,51 It is also

assumed that at steady state, saturation lines are even distributed on the wheel, with the

rotation starting at 0% and ending at 100% saturated. Therefore, only half of the working

zone, on average, has the potential for adsorption.

Based on the two equations shown above, we can then determine the amount of water

vapor separated from the stream. After multiplying the rotational speed Ndw, we can then

calculate the outlet humidity ratio ω2 as follows:

∆mw = mw2 −mw1 = ws ·mdec =
ṁa(ω2 − ω1)

2πNdw

(29)

Zhang et al.33,49 give a typical parametric setup for the silica gel desiccant wheel, where

the size and operational condition of the wheel and properties of the desiccant are summa-
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rized in Table 2.

Table 2: Parametric values of a typical setup for silica gel desiccant wheel.

Parameter and Property Symbol Value Unit

Radius of the Wheel R 20 cm
Length of the Wheel L 20 cm
Density of the Wheel ρdw 750 kg/m3

Regeneration Temperature Treg 60 ◦C
Mass fraction of the Desiccant ε 0.7 ––
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