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Selective ion separation is a major challenge with far-ranging impact from water desalination to 
product separation in catalysis. Recently introduced ferrocenium(Fc+)/ferrocene(Fc) polymer 
electrode materials have been demonstrated experimentally and theoretically to selectively bind 
carboxylates over perchlorate through weak C-H…O hydrogen bond (HB) interactions that favor 
carboxylates, despite the comparable size and charge of the two species. However, practical 
application of this technology in aqueous environments requires further selectivity enhancement. 
Using a first-principles discovery approach, we investigate the effect of Fc/Fc+ functional groups 
(FGs) on the selectivity and reversibility of formate-Fc+ adsorption with respect to perchlorate in 
aqueous solution. Our wide design space of 44 FGs enables identification of FGs with higher 
selectivity and rationalization of trends through electronic energy decomposition analysis or 
geometric hydrogen bonding analysis. Overall, we observe weaker, longer HBs for perchlorate 
as compared to formate with Fc+. We further identify Fc+ functionalizations that simultaneously 
increase selectivity for formate in aqueous environments but permit rapid release from neutral 
Fc. We introduce the materiaphore, a 3D abstraction of these design rules, to help guide next-
generation material optimization for selective ion sorption. This approach is expected to have 
broad relevance in computational discovery for molecular recognition, sensing, separations, and 
catalysis. 
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1. Introduction 

The removal of ions from solution is a crucial challenge with applications ranging from 

water desalination1, wastewater treatment2, and capture of valuable metals from seawater3 to 

product separation in homogeneous catalytic processes4. At present, the commonly used methods 

of distillation5, sorption3, and filtration1 are energy-inefficient, slow, or expensive. Formate is a 

major product of photochemical6, biological7 and electrochemical8 CO2 reduction, and its in-situ 

capture could potentially play a role in integrated liquid-based CO2 capture and hydrogen storage 

technologies9-10. Hence, the development of low-cost and energy-efficient methods for separating 

ions such as formate would not only significantly reduce carbon emissions and energy costs but 

also provide new routes to useful chemicals11. However, selective recovery of ions from solution 

is particularly challenging due to high similarity in shape and charge between ions in solution12.  

Electrochemical separations of charged species from neutral species via Coulombic 

attraction have demonstrated promise due to their switchability, speed, and energy-efficiency13-16. 

The reversible one-electron oxidation of ferrocene (Fc) to ferrocenium (Fc+) renders it suitable 

for a wide range of electrochemical applications17-19 and recently a Fc/Fc+-based redox system 

consisting of polyvinyl(ferrocene) polymer adsorbed on a carbon nanotube electrode was shown 

to reversibly and selectively bind carboxylates (e.g. formate) over perchlorate in organic solvent 

3000-fold and aqueous solution 140-fold16. Although the aqueous solution separation ratio in 

water is impressive considering the strong electrostatic screening due to water's large dielectric 

constant (ca. ε=80 at room temperature), practical aqueous separation in typical applications 

mandates further improvement in selectivity. The different affinities of Fc+ for the two anions 

despite comparable size and charge suggests more complex interactions than pure Coulombic 

attraction20-23, and density functional theory (DFT) calculations preliminarily attributed16 the 
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selectivity to differences in hydrogen bond (HB) strengths of anions to Fc+. 

Strong, directional hydrogen bonding is a key paradigm in selective anion recognition12, 

24-27, catalysis28-32, drug design33-36 and materials design37-39. In anion recognition in particular, HB 

donors distributed uniformly around a cavity of desired size12, 24, 40-41 have been shown to be 

suitable for size-selective sensing of symmetric anions, whereas shape-selective sensing is 

achieved via orienting the same strong HB donors to match locations of HB acceptors in the 

target anion12, 24, 26-27, 42. Typical strong HB donors employed include amides/amines12, 24-27 and 

triazoles27. Many of these designs have incorporated the Fc moiety due to the ease of 

functionalization24, 26, 43 of its rigid sandwich structure, albeit binding at the HB donor, not 

proximal to the Fc core. The structure and properties of unsubstituted44 and substituted45-46 Fc and 

Fc+ have also been investigated with computational DFT studies. Redox-selective sensors24, 26, 47-48 

have also been created based on the reversible one-electron oxidation of Fc typically 

accompanied by irreversible binding, although reversible adsorption is required for separations16.  

The central importance of HBs in materials design and fundamental chemistry has 

motivated development of classical electrostatic models27, 49-50 and empirical correlations50-52, and 

first-principles computational modeling is crucial to the continued development of understanding 

hydrogen bonding53-55. In response to recent experimental and theoretical advances, the 

International Union of Pure and Applied Chemistry recently broadened the HB56 definition to be 

“an X-H…Y interaction where X is more electronegative than H and there is sufficient evidence 

of H…Y bond formation”. Of particular interest to the selective sorption of anions at Fc+ is the 

weak hydrogen bond, a class of HBs where the HB donor and/or acceptor is of moderate to low 

electronegativity57-59. C-H…O HBs, better known in structural biology59-60, were recently 

implicated16 through combined computational and experimental study to be key for selective 
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carboxylate adsorption with Fc+. Although initially thought to be indistinguishable from van der 

Waals forces61-62, extensive crystallographic57-59, 63 and computational64-65 evidence of C-H…O 

strength and directionality has reclassified C-H…O interactions as weakly directional HBs59. We 

thus hypothesize that the Fc+ core can be functionalized to further improve selectivity for anion 

separation in aqueous solutions while maintaining weak reversible adsorption by tuning strength 

and numbers of C-H…O interactions.  

DFT-based computational screening has become an increasingly valuable tool for the 

design and discovery of new materials66-71 thanks both to recent improvements in computational 

efficiency and accuracy (e.g., in descriptions of intermolecular forces through direct treatment of 

dispersion72-73). In this work, we carry out the first computational screen to identify design 

strategies for Fc+ core functionalization to maximize formate selectivity and reversibility in the 

Fc/Fc+ redox system. The rest of the manuscript is outlined as follows. In Section 2, we 

summarize the Computational Details of our simulations. In the Results and Discussion (Section 

3), we rationalize the electronic structure factors driving selective, reversible formate adsorption 

across our design space and summarize ideal materials properties. In Section 4, we provide our 

Conclusions.  

2. Computational Details 

First-principles calculations. Initial electronic structure calculations, including single point 

energies and geometry optimizations, were carried out using the TERACHEM74-75 graphical 

processing unit (GPU)-accelerated quantum chemistry package with the B3LYP76-78 hybrid 

exchange-correlation functional. The default definition of B3LYP in TERACHEM employs the 

VWN1-RPA form for the LDA VWN79 component of LYP76 correlation. Iron, bromine and 

iodine were treated with the LANL2DZ effective core potential80, and the 6-31G* basis was used 
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for the remaining atoms. Results were found to be generally insensitive to basis set size (see 

Supporting Information Table S1 and Figure S1). Fc+ cores were simulated with a +1 charge and 

doublet spin multiplicity, and all Fc+-anion complexes were simulated with a neutral total charge 

and doublet spin multiplicity. Reduced Fc structures and complexes were assigned an additional 

-1 electron charge and simulated as unrestricted singlets. Both Fc+ and Fc calculations were spin-

unrestricted with virtual and open-shell orbitals level-shifted81 by 1.0 eV and 0.1 eV, 

respectively, to aid self-consistent field (SCF) convergence to an unrestricted solution. 

Dispersion interactions were modeled by augmenting B3LYP with the empirical DFT-D3 

correction72. Selected comparisons using the long-range corrected hybrid exchange-correlation 

functional ωPBEh82 were also carried out (Supporting Information Table S2). The aqueous 

solvent environment was modeled using an implicit polarizable continuum model (PCM) with 

the conductor-like solvation model (COSMO83-84) and ε=78.39. The solute cavity was built using 

Bondi’s van der Waals radii85 scaled by a factor of 1.2 for available elements and 2.05 Å for iron. 

The process of adsorption between formate or perchlorate and the FG-Fc+ requires partial 

desolvation of either the formate or perchlorate ion and the associated FG-Fc+. We address this 

desolvation contribution through our use of a polarizable continuum implicit solvent model. 

Near-chemical accuracy is achieved between our model of formate-perchlorate relative 

adsorption of 4 kcal/mol (2 kcal/mol with entropic contributions) with unfunctionalized Fc+ and 

experimental value of 3 kcal/mol16. This agreement suggests beneficial cancellation of errors in 

the computed relative adsorption energies, which should be even stronger when comparing 

selectivity trends upon FG tuning (see Supporting Information Figure S2).  

Structures. Geometry optimizations in the gas phase on molSimplify-generated86 structures were 

carried out using the L-BFGS algorithm in Cartesian coordinates as implemented in DL-FIND87. 
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For unfunctionalized Fc+-anion adsorption studies, we employed the molSimplify additional 

molecule placement feature, which randomizes distance and orientation of the anion around the 

core Fc+. The initial Fc+-anion distance was constrained to be between 1 and 10 Å larger than the 

optimal distance between the two based on zero overlap between van der Waals radii. These 

unfunctionalized Fc+ calculations were carried out with gas-phase optimization followed by a 

COSMO single point energy. For functionalized structures (FG-Fc+) with an attached functional 

group (FG), COSMO optimizations were carried out on gas-phase-pre-optimized structures.  

For FG-Fc+-anion adsorption studies, molSimplify was used to replace a hydrogen atom 

adjacent to the anion on the unfunctionalized, pre-optimized Fc+-anion "custom core" in the 

lowest energy adsorption mode (see Sec 3.a) with a new FG through the replace feature. The 

code aligns the new FG along the bond vector of the previously removed FG, assigns the new 

FG-core bond distance according to the sum of covalent radii, and performs pre-defined rotation 

routines to reduce steric repulsion. The custom core coordinates are provided in the Supporting 

Information (Table S3). This approach ensures maximum coincidence for the initial position of 

the ion across FGs and ensures evaluation of direct anion-FG interactions. Effects in the weaker, 

indirect adsorption configurations were also explored (Supporting Information Figure S3). 

Analysis. Anion adsorption energies were calculated by subtracting the total electronic energies 

of optimized isolated Fc+, E(Fc+ ) , and anion, E(anion) , from the energy of the optimized 

anion/Fc+ complex,E(anion / Fc+ ) : 

 ΔEads = E(anion / Fc
+ )−E(Fc+ )−E(anion)  . (1) 

Basis set superposition error, as calculated with the counterpoise scheme88, was neglected after it 

was determined to be small and independent of the different FGs being compared. Similarly, 

zero point vibrational energy and entropic contributions to relative binding, as obtained from 



7 

 

frequency calculations on gas-phase optimized geometries were neglected due to small 

differences and negligible effect on any computed trends (Supporting Information Table S4 and 

Figure S4). 

Natural bond orbital (NBO) partial charges were obtained from NBO analysis as 

implemented in the NBO v6.0 package89 interfaced with TERACHEM. Gas-phase absolutely 

localized molecular orbital-energy decomposition analysis (ALMO-EDA)90 was performed in 

QChem 4.291 on TERACHEM solvent-optimized geometries for all FG-Fc+/anion pairs. ALMO-

EDA decomposes the binding interaction into frozen density (FRZ), polarization (POL) and 

delocalization (DEL) terms and gives the charge transfer (CT) from the anion to Fc+ in milli-

electrons. The gas phase ALMO-EDA analysis with B3LYP overestimated the extent of charge 

transfer in some cases, as noted in the Results and Discussion, and these points were excluded 

from some analysis (see Supporting Information Table S2). The quantum theory of atoms in 

molecules (QTAIM) bond critical points (BCPs)92 of all solvent-optimized anion-Fc+ complexes 

were identified with the Multiwfn package93. As defined in Ref. 94, HB energies were estimated 

from the potential energy density (V) of the closest BCP to a putative HB: 

 EHB =V (rBCP ) / 2  . (2) 

3. Results and Discussion 

3a. Anion Adsorption Modes 

In order to identify the most stable adsorption mode between formate and Fc+, we generated and 

geometry-optimized 100 formate-Fc+ complex random initial configurations. The optimized 

structures may be grouped into six adsorption modes distinguished by i) the distance of the 

formate center of mass (COM) to the Fc+ iron and ii) formate orientation (Figure 1). Four 

adsorption modes, similar to those that have been previously observed95, have a lateral formate 
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with: i) open Fc+ (centered at 2.5 Å, lat-open), closed Fc+ with ii) both oxygen atoms (3.5 Å, lat-

2O), iii) one oxygen (3.8 Å, lat-angle), or iv) the hydrogen (3.7 Å, lat-H) atom oriented towards 

Fc+. The closed Fc+ adsorption modes have HBs between formate oxygen atoms and 

cyclopentadienyl (Cp-) ring hydrogen atoms, whereas in the lat-open adsorption mode formate 

oxygen atoms directly coordinate the Fe center. Two vertical adsorption modes in which a 

formate binds to one of the Cp- rings correspond to: v) both formate oxygen atoms oriented 

toward Fc+ (4.5 Å, vertical1) or vi) one oxygen atom oriented away from Fc+ (4.8 Å, vertical2). 

 

Figure 1. Adsorption energies (ΔEads , in kcal/mol) versus iron-anion center of mass distance 
(d(Fe-ACOM), in Å) for 100 formate-Fc+ complexes. The data is clustered into 6 adsorption 
modes of formate on Fc+: i) an open lateral mode (lat-open, green circles), ii-iv) three closed 
lateral modes (lat-2O, red circles; lat-angle, gray circles; lat-H, yellow circles), and v-vi) two 
vertical modes (vertical1, blue circles and vertical2, brown circles).  

 

 These six adsorption modes produce a wide range of solvent-screened ΔEads  from -4 

kcal/mol for the weakest (iv, lat-H) adsorption mode up to -14 kcal/mol for the strongest (ii, lat-

2O). The relative ΔEads  of the local minima depend only weakly on the formate-Fc+ distance and 

are more sensitive to bonding variations: non-covalent interactions present in lat-angle, lat-H and 

lat-2O; C-O covalent bonding confirmed through NBO analysis for vertical1 or vertical2; and a 

1.9 Å metal-ligand Fe-O bond for lat-open. The two lowest adsorption modes ca. -11 to -13 

kcal/mol are i) lat-open and ii) lat-2O, and we expect the latter to be the dominant adsorption 

mode because opening the Fc+ sandwich structure (Figure 1, bottom left) to produce lat-open is a 

strongly activated process involving breaking of multiple Fe-C π bonds. The vertical adsorption 

modes are significantly weaker due to disruption of Cp- aromaticity, whereas the lat-angle and 

lat-H modes are less amenable for forming hydrogen-bonding interactions. We also geometry 
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optimized 100 random initial configurations of perchlorate with Fc+ and observed a single lateral 

adsorption mode with a narrow ΔEads  distribution (-7 ± 0.5 kcal/mol). This single mode is 

consistent with perchlorate's symmetry, which prevents the formation of optimal, directional 

HBs, and its larger size that makes open binding unfavorable. 

3b. Tuning Relative Formate-Perchlorate Selectivity 

We hypothesize that formate and perchlorate ΔEads  will be modulated differently through Fc+ 

core functionalizations due to differences in the geometric and electronic properties of the anions 

(structures shown in Figure 2). A total of 44 different commonly-employed FGs (Figure 3) of 

varied size, polarity and electron donating or withdrawing ability were included along with 

several FGs that have been experimentally synthesized for catalysis96 (FGs 43 and 44). The 

reduced 44 FG set was obtained after exclusion of 6 cases that did not converge to the most 

favorable lat-2O adsorption mode (Supporting Information Table S5). Acidic FGs were excluded 

from the set due to potential reaction with formate and the basicities in water of all FG-Fc+ with 

known basic moieties were calculated and found to be negligible (Supporting Information Table 

S6). We then grouped the FGs by the largest difference in Pauling electronegativity (χ) between 

bonded atoms i and j: 

 Δχ =max χ i − χ j  . (3) 

Using this relative polarity metric, the 44 FGs may be divided into three roughly equally sized 

groups as: i) nonpolar: < 0.4 (red, 14 FGs), ii) slightly polar: 0.5 to 0.8 (green, 14 FGs), and iii) 

polar: > 0.8 (blue, 16 FGs) (all electronegativity values are provided in Supporting Information 

Table S7). For planar or highly asymmetric FGs (e.g., –CHO, FG 14 in Figure 3), we generated 

an additional structure with the anion on the opposite side and kept the lower energy complex 

after geometry optimization.  
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Figure 2. Anion complexation with unfunctionalized Fc+. The attachment point for an FG is 
indicated by a white sphere. The magenta and green dashed lines represent short (< 2.3 Å) and 
long (> 2.3 Å) HBs, respectively. 
 
Figure 3. FGs in the computational screening data set. The connection to the Fc+ core is denoted 
by a gray bond, and the colors of FG indices represent polar (blue), slightly polar (green) and 
nonpolar (red) character, as defined in the main text. 
 

 In the majority of cases, FGs strengthen both formate and perchlorate adsorption with 

respect to the pristine Fc+, but formate has a wider range of ΔEads  to FG-Fc+s (-9 to -22 kcal/mol) 

than perchlorate (-7 to -13 kcal/mol), suggesting that it should be possible to enhance selectivity 

for formate over the pristine case (Figure 4). Indirect adsorption modes that would be preferred 

for anion/FG-Fc+ complexes with ΔEads  less than unfunctionalized Fc+ were also considered but 

found to be less amenable to HB design compared to direct adsorption (see Supporting 

Information Figure S3). In order to identify FGs that tune Fc+ selectivity for formate, we 

computed relative formate (f)/perchlorate (p) adsorption energies (ΔEads
f-p ): 

 ΔEads
f-p = ΔEads

f −ΔEads
p  , (4) 

where values less than 0 denote stronger formate adsorption. Our screen produced 14 new FG-

Fc+ structures with increased formate selectivity over unfunctionalized Fc+ (ΔEads
f-p = -4 kcal/mol) 

and a wide range (-11 to -1 kcal/mol) of relative selectivities. We identified that ΔEads
f-p  is well-

correlated to ΔEads
f

 with a linear best-fit (R2=0.9): 

 ΔEads
f-p = 0.66ΔEads

f + 4.76 kcal/mol  , (5) 

suggesting that formate selectivity can be increased by enhancing formate adsorption (Figure 5). 

Strongly polar FGs such as 43 (alkanolamine, ΔEads
f-p  = -11 kcal/mol), 44 (methyl amide), 16 

(amide) and 1 (amine) (Figure 3) exhibit the strongest formate adsorption and, thus, formate 

selectivity, whereas bulky, nonpolar FGs such as diisopropylamine (3, ΔEads
f-p  = -1 kcal/mol) are 
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the weakest. In order to interpret subtler adsorption trends, we consider in detail the electronic 

and geometric properties of interactions in anion/FG-Fc+ complexes.  

Figure 4. Histogram of ΔEads  (in kcal/mol) for formate (red) and perchlorate (green) to FG-Fc+ 
complexes. The dashed lines (red for formate, green for perchlorate) denote ΔEads  for the 
unfunctionalized Fc+. Formate shows a wider range of adsorption energies with FG-Fc+ versus a 
narrower range for perchlorate. 
 

Figure 5.  Relative formate-perchlorate adsorption energies (ΔEads
f-p , in kcal/mol) versus 

corresponding formate adsorption energy (ΔEads
f , in kcal/mol) to FG-Fc+. The black dashed line 

indicates a linear best-fit (R2=0.9). FGs are grouped by polarity: nonpolar (red squares), slightly 
polar (green triangles), and polar (blue circles), as described in the main text. Annotated 
structures are indicated by larger, filled symbols. 
 

3c. Intermolecular Interaction Analysis 

Although anion-Fc+ adsorption energies are due to both electrostatics and hydrogen bonding16, 

we hypothesize that FGs tune HB strength more than they alter electrostatics. In order to reveal 

HB strength, we begin by analyzing nonbonded distances between HB donors and acceptors in 

anion-Fc+ complexes.  We have selected a 3.0 Å H…O HB distance cutoff consistent with i) the 

longest HBs for which QTAIM bond critical points (BCPs)94 were detected in this work 

(Supporting Information Table S8) and ii) the longest and weakest CH…O bonds observed 

experimentally57. Unfunctionalized Fc+ forms two shorter CH…O bonds ca. 2.2 Å and two longer 

bonds ca. 2.4 Å with formate (Figure 2). The 3.5 Å height of Fc+, as defined by the eclipsed H-

to-H distance on the two Cp- rings is too large to accommodate four short HBs to formate. To 

obtain four shorter, and presumably stronger, 2.2 Å HB distances, a less obtuse C-H…O angle of 

127°, which is only observed experimentally for long, weak HBs57, would be required. In 

comparison to formate, perchlorate forms weaker but more numerous (6 in perchlorate vs. 4 for 

formate) C-H…O bonds with unfunctionalized Fc+. Despite a greater number of HBs, only one 
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shorter 2.3 Å HB is observed, with the remaining 5 ranging from 2.4 to 2.6 Å. 

 Strong HB donors that form short HB distances are indeed a good indicator of FG-Fc+ 

structures with high ΔEads
f . The strongest-binding FG, alkanolamine (43), forms an O-H…O HB 

with a 1.6 Å H…O distance between the alcohol H and the formate O (Figure 6), which is shorter 

than typical 1.7 to 2.0 Å97 H…O distances due to the negative charge on formate. In this complex, 

formate prefers an angled orientation to minimize distance to the HB donor on the FG rather than 

a lateral orientation preferred in pristine Fc+.  Beyond HB donor strength alone, more proximal 

HB donor placement is observed to strengthen formate adsorption and selectivity by introducing 

a third short, 135° HB without interrupting the short HBs to one Fc+ Cp- ring. Two notable 

examples of this effect are the methyl FG (36) and the isopropyl sulfide FG (28), in which 

formate ΔEads  is increased by 1 and 3 kcal/mol, respectively, despite sp3 HBs (i.e., the FGs) 

generally being much weaker than sp2 HBs50 (i.e., the Cp- ring). Isopropyl sulfide (28) also 

strengthens ΔEads
f  by altering formate orientation from lat-2O to a nearly perpendicular lat-angle 

adsorption mode in which a short 1.9 Å, nearly linear HB is formed between formate and the FG.  

Alternatively, formate ΔEads  can be lowered if the FG disrupts the strongly favorable 

formate-Cp- interactions. The isopropyl hydrogen atom HB donors of the weakest binding and 

least selective FG, diisopropylamine (3) are too far away from the Fc+ core (Figure 6). These FG 

HB donors pull formate away from the Fc+ core (Fe to anion distance of 4.1 Å versus 3.5 Å in 

the unfunctionalized case), which simultaneously weakens HBs with Cp- ring and reduces the 

distance-dependent electrostatic contribution to adsorption. 

Figure 6. Hydrogen bonding interactions between (43) alkanolamine-functionalized Fc+ and 
formate (top left) or perchlorate (top right) compared to (3) diisopropylamine-functionalized Fc+  
and formate (bottom left) or perchlorate (bottom right). The magenta and green dashed lines 
represent short (< 2.3 Å) and long (> 2.3 Å) HBs, respectively. 
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Consistent with the correlation between formate adsorption and selectivity (Figure 5), the 

specific FGs that strengthened formate adsorption do not strengthen perchlorate adsorption. For 

the strongest formate-binding FG (alkanolamine, 43), there is no direct FG-perchlorate 

interaction, and the FG instead forms a 2.0 Å intramolecular O-H…N bond with itself. Most of 

the 7 longer C-H…O HBs (2.3-2.7 Å) are instead between perchlorate and the FG ethyl chain. For 

the weak-formate binding FG (diisopropylamine, 3), perchlorate's larger size enables interaction 

with the isopropyl hydrogen atoms through an additional 2.3 Å, 160° C-H…O bond while 

maintaining HBs with Cp-, strengthening the overall ΔEads . These extreme cases suggest i) ΔEads
f-p

 

is correlated to ΔEads
f  because perchlorate forms weaker HBs with HB donors, and ii) perchlorate 

selectivity is enhanced when its larger size forms HBs that formate cannot.  

In order to generalize differences between formate and perchlorate adsorption to FG-Fc+ 

structures, we examined the distributions of distances and angles in all HB interactions between 

the anions and Fc+ structures (Figure 7). No HB angles below 100° were found for either anion, 

and the inverse correlation of long distances and small angles is consistent with the observation 

that dipole-monopole and dipole-dipole contributions to bond energies approach zero as the bond 

angle approaches 90°57. For formate, the HBs form a continuous band whereas for perchlorate, 

we instead observe distinct clusters. If one perchlorate oxygen atom occupies an optimal HB 

position (the middle cluster in Fig. 7c), the other two coordinating oxygen atoms that form an 

equilateral triangle (side length 2.45 Å) with the first oxygen must then form weak, low-angle 

HBs, corresponding to the top left cluster. The third cluster arises from FG-Fc+/perchlorate 

complex conformations in which one of the C-H…O bonds becomes almost linear. Individual HB 

distances are also shorter for formate than for perchlorate by ca. 0.1 Å even for the same angle.  

One-dimensional histograms of only HB angles (Figure 7a and 7b) reveal directionality for 
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formate C-H…O bonds absent from perchlorate/Fc+ complexes, consistent with weaker individual 

C-H…O interactions58 for perchlorate. The greater numbers of HBs for perchlorate than formate 

appear substantially weaker by geometric analysis, suggesting further analysis of the relationship 

between HB distance and relative formate/perchlorate ΔEads . 

Figure 7. Hydrogen-bonding geometric properties: histogram of angles for a) formate and b) 
perchlorate as well as c) scatterplot of angles (o) versus O…H distances (Å) for HBs in 
functionalized Fc+-formate (red circles) and Fc+-perchlorate (blue squares) complexes.  

 

We thus correlated QTAIM94-derived HB energies with HB distance and angle and found 

a strong inverse-power correlation (R2=0.99) with distance but only limited correlation with 

angle arising from the previously described angle-distance relationship (see Figure 7 and 

Supporting Information Table S8), consistent with previous HB characterization studies56, 98-101. 

We use the inverse-power relationship between QTAIM HB energies and HB distance ( dO!H ) to 

introduce an HB score (HBS): 

  HBS = 24.76(dO!H )
−5  . (5) 

The HBS normalization constant was chosen by assigning a score of 1 to the strongest C-H…O 

bond in the data set ( dO!H = 1.9 Å). An overall anion/(FG)-Fc+ complex HB score (CHBS) for 

each FG and anion is the sum of all HBS values over i HBs: 

 CHBS = HBSi
i
∑ . (5) 

The CHBS excludes non-covalent intermolecular interactions other than HBs, but we will show 

shortly that neglecting such interactions does not affect overall trends since this contribution to 

adsorption is similar for all FGs except for a few in our data set.  

We first validate the correlation of the CHBS with overall ΔEads  on minimal models 

(MMs) representative of the Fc+ FGs (e.g., an NH3 molecule model for the amine (1) FG) that 
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also span a wide HB-donating ability range and compare to correlations of the CHBS with the 

anion/FG-Fc+ complex (Figure 8 and Supporting Information Table S9). For formate (Figure 8a), 

the MMs correlate extremely well (R2=0.99) to the CHBS with the exception of the excluded 

phosphine outlier that forms no HBs due to the low electronegativity of phosphorus. 

Formate/FG-Fc+ complex ΔEads  are well correlated with the CHBS (R2=0.89), after excluding 

three outliers. Overall, the increased scatter in the full complex compared to the minimal models 

is primarily due to the variable penalty for distortion in the full complex. For the formate/FG-Fc+ 

complex outliers (–PPh2 (6), –NCS (41), and –CCl3 (34)), strong non-HB dipole-dipole 

interactions that are not captured in the CHBS (e.g., a C…O interaction between –NCS and 

formate) likely increase ΔEadswithout increasing the CHBS, though the P…O interaction in FG 6 

appears to be sensitive to basis set size (Supporting Information Table S1 and Figure S1). We 

note that in all cases the CHBS improves substantially over averaging HB distances alone 

(Supporting Information Figure S5).  

Figure 8. a) Formate (red) and b) perchlorate (blue) ΔEads (kcal/mol) versus HB score for i) 
minimal models (squares) and ii) FG-Fc+ structures (circles). The PPh2 (6), NCS (41) and CCl3 
(34) outliers, indicated as gray-filled circles, are excluded from the black dashed linear best fits. 
Selected symbols are color-coded (orange, green, blue, and purple) to aid comparison of the 
minimal models to the FG-Fc+ structures. 

 

We selected individual minimal models (CH4 in orange, NH3 in green, amide in light 

blue, CH3OH in purple) that are analogous to FG-Fc+ structures (methyl (36), amine (1), amide 

(44), alkanolamine (43), same fill) and span the ΔEads  range. Ranking and placement is 

consistent for these four groups when comparing ΔEads
f to MMs or complexes. Trends in formate 

adsorption to MMs and full FG-Fc+ complexes are aligned with close slopes of -8.6 kcal/mol 

(MMs) and -6.3 kcal/mol (complexes) and a slight upward shift for the full FG-Fc+ complexes, 
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indicating the additivity approximation works well. We attribute the shift and shallower slope of 

FG-Fc+ to distortion energy required to accommodate HBs absent from the MMs.   

For perchlorate, the relationship between the CHBS and ΔEads  for MMs is quite good 

(R2=0.96), but the correlation for the full FG-Fc+ complexes (R2=0.54) is substantially lower 

(Figure 8b) than was observed for formate (Figure 8a). The weaker complex correlation is 

attributable to the smaller CHBS range and spanned by perchlorate without any decrease in the 

contribution of distortion energy variations to the residuals. The root-mean squared error of 

prediction is similar at 0.9 kcal/mol for formate and 0.7 kcal/mol for perchlorate. The slopes of -

7.0 kcal/mol for the MMs and -3.4 kcal/mol for the complexes are both lower than was observed 

for formate and more distinct. The difference between the MMs and complexes with perchlorate 

can be attributed to the geometric constraints described earlier and wider confidence intervals in 

the complexes. The reasonable fits across MMs and complexes confirm that the anion-Fc+ 

intermolecular interactions are largely comprised of additive HB donor-acceptor interactions for 

both perchlorate and formate, with weaker overall HBs for perchlorate. Weaker HBs in 

perchlorate complexes are confirmed by two other observations: i) ordering and placement of 

MMs and corresponding FG-Fc+ complexes no longer agree for perchlorate, suggesting each HB 

contributes individually less to overall which we would expect if the HBs individually contribute 

less to the overall ΔEads ; ii) both water and methanol have weaker ΔEads
p  than ΔEads

f  despite the 

larger dispersion contribution for perchlorate.  

 We performed energy decomposition analysis (EDA) on the solvent-optimized 

geometries to further investigate the charge transfer (DEL, in EDA nomenclature), electrostatic 

(FRZ), and polarization (POL) contributions to overall adsorption energies (see Supporting 

Information Table S10). In particular, charge transfer from HB acceptor to HB donor, which can 



17 

 

be readily probed with EDA, is generally accepted as a key characteristic of the HB56, 99, even 

though the exact quantum mechanical nature of the HB is still under debate55-56, 102-104. In order to 

identify whether variations in dispersion energy played a significant role in FG selectivity, we 

compared the dispersion contribution to binding but found minimal variation and correlation 

between FGs, suggesting directional hydrogen bonding interactions dominate over any 

dispersion contribution to selectivity (Supporting Information Tables S11 and S12 and Figure 

S6).  Solvent ΔEads  correlates well with the calculated with rigid-binding-approximation EDA 

adsorption energy (ΔEEDA ) in the gas phase (R2=0.9 for formate, 0.6 for perchlorate shown in 

Figure 9c), suggesting the transferability of EDA trends across a range of dielectric 

environments. In select cases, charge transfer was overestimated in the gas phase, leading to 

inaccurate EDA and those were omitted (Supporting Information Table S2). Weaker correlations 

are again observed for perchlorate due to a narrower energy range without a decrease in the 

residuals. 

Figure 9. EDA correlations for formate and perchlorate. From left to right: a) CHBS vs. EDA 
DEL energy, b) solvated ΔEads  vs. EDA ΔEDEL , and c) solvated ΔEadsvs. EDA gas phase rigid 
adsorption energy, ΔEEDA . The black dashed lines indicate linear best-fits, and the NCS (41) 
CHBS outlier, indicated as a filled square in a) is excluded. 
 

 The DEL contribution (ΔEDEL ) to ΔEEDA , which measures stabilization due to charge 

transfer, correlates well with both the CHBS (eqns. 6-7) and solvent ΔEads  for both anions 

(Figure 9a and 9b), excluding only one previously discussed –NCS (41) outlier. This correlation 

is significantly stronger than for the electrostatic or polarization components (FRZ and POL 

correlations are plotted in Supporting Information Figure S7). Notably, the ΔEDEL contribution is 

significantly lower for perchlorate than formate across all FGs, confirming the general weakness 

of perchlorate HBs compared to formate HBs through lower charge transfer.  
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 We then considered other factors that might affect relative perchlorate/formate ΔEads  

with FG-Fc+ complexes including through-space electrostatic interactions and variations in the 

electronic structure of the Fc+ core. Through-space electrostatic interactions were approximated 

by the inverse Fe to anion center of mass (ACOM) distance, and individual FG-Fc+ electronic 

properties were represented by the Fe NBO partial charge and Fe delocalization index to 

neighboring atoms. Despite demonstrated utility105-106 of these quantities as descriptors for 

binding energies, none of the three descriptors demonstrated improved correlation to ΔEads

compared to the CHBS or EDA DEL energy for either anion (Supporting Information Table 

S13). Although through-space electrostatic interactions are likely significant over larger ranges 

of Fe-ACOM distances106, individual directional HBs quantified in the CHBS mediate 

electrostatic attraction at close distances. The partial charge and delocalization index of Fe 

provides an indirect measure of the FG electron donating/withdrawing ability, but this effect is 

outweighed by direct HBs formed between the anion and FG when they are placed in close 

proximity. Moderate correlations with core electronic properties are only observed for weaker, 

indirect adsorption cases (Supporting Information Figure S3).  Instead, we attribute Fc+ and FG-

Fc+ selectivity for formate to partially covalent C-H…O bonds99 in anion/FG-Fc+ complexes, as 

evidenced by QTAIM BCPs and the DEL correlation to CHBS, that are stronger, shorter, and 

more directional for formate than perchlorate. 

3d. Adsorption on Reduced Ferrocene 

In order to maximize selectivity, we have initially identified strong HB-donating groups (e.g., 

amides) that maximize formate adsorption and selectivity, consistent with experimental studies 

on selective anion recognition by amide-substituted Fc+ moieties24, 42. In contrast to those earlier 

studies, rapid and selective electrochemical separation requires that FG-Fc+ selectivity for 
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formate is increased while rapid desorption at the reduced Fc polymer electrode is maintained. 

Thus, we computed formate ΔEads  with neutral Fc for all FGs and found them to correlate well 

(R2=0.9) with oxidized formate-Fc+ ΔEads  (Figure 10). The 1.1 (kcal/mol ΔEads
Fc-f )/(kcal/mol 

ΔEads
Fc+ -f ) slope across the ΔEads  range suggests that FG-derived increase in formate adsorption 

and selectivity at Fc+ will also increase adsorption to reduced Fc, discouraging the use of the 

strongest HB-donating groups favored in supramolecular chemistry. Indeed, we can divide the 

relationship between neutral and oxidized Fc+ adsorption ( ΔEads
Fc-f

ΔEads
Fc+−f

=1.1, Figure 10) by formate-

perchlorate selectivity at Fc+ ( ΔEads
f-p

ΔEads
Fc+−f

 =0.66, eqn. 5 and Figure 5) to determine that a 1.0 

kcal/mol enhancement of ΔEads
f-p  simultaneously increases formate-Fc adsorption by 1.7 kcal/mol, 

suggesting a delicate balance is required in tuning selectivity. 

Figure 10. Formate-Fc+ complex adsorption energy versus formate-Fc adsorption energy with 
black dashed best-fit line (R2=0.9). The shaded quadrant and black dotted lines indicate the 
constrained design space. The unfunctionalized case is shown as a filled triangle and selected 
functionalizations that fall within the design space are labeled with text in the same color as the 
filled squares. 
 

Alternative mechanisms for promoting formate desorption in strongly bonded complexes 

could be increasing the temperature or decreasing the pH. The former strategy may be 

challenging to implement because electrostatic interactions are concomitantly strengthened by 

the decrease in dielectric constant with temperature for most solvents. In the latter case, pH 

adjustments would be somewhat limited by the extent of FG-Fc hydrogen bonding with formic 

acid that is still quite strong (Supporting Information Table S14). Thus, for reversible adsorption 

at Fc+ with unchanged solution conditions upon reduction, our design space is constrained 

(shaded region in Figure 10) both by i) increasing ΔEads
f-p  over Fc+ (ΔEads

Fc+−f  = -12 kcal/mol from 
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Figure 5 correlation, vertical dotted line in Figure 10) and ii) a minimum formate desorption rate. 

We define the minimum desorption rate as 0.1% of that for Fc at 298 K, which is a 4 kcal/mol 

increase in ΔEads
Fc−f  over Fc (horizontal dotted line in Figure 10).   

Within the constrained design space quadrant, phosphine (–PH2 (5), orange symbol in 

Figure 10), isothiocyanate (–NCS (41), blue symbol), and trifluoromethyl (–CF3 (35), green 

symbol), are promising for their unusually weak ΔEads
Fc-f . The disproportionately weak ΔEads

Fc-f  may 

be explained by non-HB interactions that are much weaker with reduced Fc compared to HBs.  

However, these groups are also less ideal from an experimental perspective due to potential 

reactivity: –PH2 is easily oxidized and –NCS and –CF3 are hydrolyzed107. Our constrained design 

space also include the stable aldehyde (–CHO (14), purple in Figure 10), methyl ketone (-

COCH3 (18), gray symbol), and isopropyl sulfide (28) FGs. Although most of these FGs would 

be suitable candidates for experimental electrochemical separations, the aldehyde (14) and 

isopropyl sulfide (28) FGs display the largest ΔEads
f-p  selectivities.  

3e. Identifying and Abstracting Ideal HB Interactions 

In particular, the aldehyde (14) FG binds less strongly to Fc, is readily available and 

widely used, typically as a synthetic intermediate to other substituted ferrocenes108. The atom-

efficient aldehyde functionalization (14) illustrates the design principles determined in this study, 

and its planarity and size minimize variability from conformational isomerism. Geometrically, 

the placement of the hydrogen atom in (14) away from the Cp- rings alleviates unfunctionalized 

Fc+-formate geometric constraints through formation of an additional short HB with angle close 

to 140°. Electronically, the aldehyde hydrogen is an intermediate HB donor due the polarity of 

the C=O bond, also evident from the low C-H…O distance of 2.17 Å and the associated HBS. 

Selectivity is enhanced because the perchlorate HB strength increases less and perchlorate is 
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unable to form greater numbers of HBs. Additionally, anion adsorption on the O-containing side 

of the aldehyde FG is 4 kcal/mol weaker due to the repulsive carbonyl oxygen atom and absence 

of an HB donor, which could be used in the future for spatial control of formate adsorption.   

Using these suggested FGs, we introduce the concept of a materiaphore, which is an 

extension of the pharmacophore concept widely employed in therapeutic drug discovery109, for 

iterative computational materials discovery. The materiaphore is an abstraction of the key design 

principles unearthed thus far that enables identifying new materials with the desired features for 

selective, reversible carboxylate adsorption in electrochemical separations. Through this 

abstraction, we i) identify a series of geometric and electronic descriptors for rapid screening of 

atomic and geometric properties often without the full computational cost of DFT calculations 

and ii) no longer restrict the material to a Fc+/Fc polymer electrode. A materiaphore 

encapsulating the design principles needed for selective, electrochemical adsorption of formate is 

illustrated in Figure 11. In our materiaphore, we leverage the pharmacophore concepts of the HB 

donor representation (dotted magenta spheres) with annotated distances. We also emphasize a 

targeted moderate polarity for any HB donors and introduce the mandate of a proximal redox 

active center through the red sphere representation. Guided by the materiaphore representation, 

we then screened two FG combinations and identified that adding a vinyl group (37) to the 

bottom Cp- ring alongside the previously identified aldehyde (14) produced an increase of ΔEads
f-p  

to -6.6 kcal/mol or over 2 kcal/mol above the single (14) FG. Importantly, this added FG 

preserved a suitable formate-FG-Fc+/FG-Fc adsorption energy, and the geometry closely 

resembled the materiaphore target geometry (see Supporting Information coordinates). 
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Figure 11. Illustration of the ideal materiaphore for selective, electrochemical carboxylate 
adsorption. Hydrogen bond donors are indicated as magenta dotted spheres, a redox-active center 
by a red sphere, and suggested relative polarity and distances are annotated.    

 

4. Conclusions 

Using a first-principles computational screening approach, we have investigated and rationalized 

the effect of Fc/Fc+ FGs on the selectivity and reversibility of formate-Fc+ adsorption with 

respect to perchlorate. The wide design space of 44 FGs enabled us to find i) a clear positive 

correlation between formate adsorption strength and formate-perchlorate selectivity and ii) 14 

FG-Fc+s with higher selectivity than standard Fc+. Across this design space, we developed the 

CHBS and analyzed stabilization due to charge transfer with EDA to identify that formate 

selectivity at Fc+ in aqueous conditions could be strengthened either i) electronically via 

introduction of HB donors stronger than the Cp- hydrogen, or ii) geometrically via placement of 

additional HB donors of any strength closer to formate than the original Cp- hydrogen. Both 

approaches increase formate selectivity because perchlorate forms individually weaker HBs with 

HB donors than formate, indicated both by geometric effects (distance and angle of HBs) and 

electronic effects with lower charge transfer contribution to adsorption, suggesting more covalent 

character in formate C-H…O bonds. Formate adsorption was weakened when the FG disrupted 

already favorable formate-Cp- interactions, increasing perchlorate preference because its larger 

size and number of HB acceptors support favorable adsorption with more varied FGs.  

For reversible applications, the Fc+ electrode material should release the selectively 

bound ions when reduced to Fc. We identified that strong HB donor FGs that strengthened Fc+-

formate adsorption simultaneously strengthened interactions of the anions with neutral Fc even 

more so. Thus, widely used motifs in supramolecular chemistry were found to bind too strongly 

in the reduced state for reasonable desorption rates. Narrowing our design space accordingly, we 
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suggested instead intermediate HB aldehyde and isopropylsulfide donors that are experimentally 

stable and improve formate selectivity at Fc+ with only a modest increase in adsorption to Fc.  

Finally, we introduced the materiaphore abstraction via screening of doubly-

functionalized Fc+s and identified that (14),(37)-Fc+ not only maintained but increased formate 

selectivity over the single FG cases. We expect the approach presented here to design hydrogen 

bonds for selective interactions in realistic, aqueous conditions has broad applicability to 

molecular recognition, sensing, separations, and catalysis beyond the Fc/Fc+ system alone. More 

immediate application of our findings will be to optimize selectivity of FG-Fc+ for other 

desirable anions such as sulfonates and to identify strategies for enhancing the recently 

demonstrated110 electrocatalytic activity of the Fc/Fc+ electrode. Further work is under way in our 

group to automate and broadly apply this chemical discovery approach.  
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