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Abstract Let Yn denote the Gromov-Hausdorff limit Mn
i

dGH−→ Yn of
v-noncollapsed Riemannian manifolds with RicMn

i
≥ −(n − 1). The singu-

lar set S ⊂ Y has a stratification S 0 ⊂ S 1 ⊂ · · · ⊂ S , where y ∈ S k if no
tangent cone at y splits off a factor R

k+1 isometrically. Here, we define
for all η > 0, 0 < r ≤ 1, the k-th effective singular stratum S k

η,r satisfy-
ing

⋃
η

⋂
r S k

η,r = S k . Sharpening the known Hausdorff dimension bound

dim S k ≤ k, we prove that for all y, the volume of the r-tubular neighborhood
of S k

η,r satisfies Vol(Tr(S k
η,r ) ∩ B 1

2
(y)) ≤ c(n,v, η)rn−k−η. The proof in-

volves a quantitative differentiation argument. This result has applications to
Einstein manifolds. Let Br denote the set of points at which the C2-harmonic
radius is ≤ r . If also the Mn

i are Kähler-Einstein with L2 curvature bound,
‖Rm‖L2 ≤ C, then Vol(Br ∩ B 1

2
(y)) ≤ c(n,v,C)r4 for all y. In the Kähler-

Einstein case, without assuming any integral curvature bound on the Mn
i , we

obtain a slightly weaker volume bound on Br which yields an a priori Lp

curvature bound for all p < 2. The methodology developed in this paper is
new and is applicable in many other contexts. These include harmonic maps,
minimal hypersurfaces, mean curvature flow and critical sets of solutions to
elliptic equations.
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1 Volume bounds for quantitative singular sets

Let (Mn,g) denote a Riemannian manifold whose Ricci curvature satisfies

RicMn ≥ −(n − 1)g. (1.1)

Let Vol−1(r) denote the volume of a ball of radius r in n-dimensional hyper-
bolic space of curvature ≡ −1. We will assume Mn is v-noncollapsed i.e. for
all x ∈ Mn,

Vol(B1(x))

Vol−1(1)
≥ v > 0. (1.2)

Let

Mn
i

dGH−→ Yn, (1.3)

denote the Gromov-Hausdorff limit (possibly in the pointed sense) of a
sequence of manifolds Mn

i satisfying (1.1), (1.2). In this case, the mea-
sured Gromov-Hausdorff limit of the Riemannian measures on the Mn

i is
n-dimensional Hausdorff measure on Yn. We will simply denote it by Vol( · ).

Relations (1.1)–(1.3) will be in force throughout the paper.
For y ∈ Yn, every tangent cone Yy is a metric cone C(Z) with cross-section

Z and vertex z∗. A point y is called regular if one (equivalently, every)
tangent cone is isometric to Rn. Otherwise y is called singular. The set of
singular points is denoted by S . The stratum S k ⊂ S is defined as the set of
points for which no tangent cone splits off isometrically a factor Rk+1. In fact,
S n−1 \ S n−2 = ∅. Thus,

S 0 ⊂ S 1 ⊂ · · · ⊂ S n−2 = S. (1.4)

Moreover, in the sense of Hausdorff dimension, we have

dim S k ≤ k. (1.5)

For the all of the above, see [3].
Given η > 0, 0 < r < 1, we will define a quantitative version S k

η,r of
the singular stratum S k . The criterion for membership of y ∈ Yn in S k

η,r in-
volves the behavior of Bs(y) for all r ≤ s ≤ 1. We will show that Vol(S k

η,r ) ≤
c(n,v, η)rn−k−η; see Theorem 1.3.

Remark 1.1 In the special case, Yn = Mn, with Mn smooth, the sets S k are
empty for all k. However, the sets S k

η,r need not be empty. In fact, in the
proofs of all of the estimates stated in this section, we can (and will) restrict
attention to the case of smooth manifolds. Since the measure on Yn is the limit
of the Riemannian measures on the Mn

i , once proved for smooth manifolds,
the estimates pass immediately to Gromov-Hausdorff limit spaces.
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Denote by (0, z∗), a vertex of the metric cone with isometric splitting
Rk+1 × C(Z).

Definition 1.2 For η > 0 and 0 < r < 1, define the kth effective singular
stratum S k

η,r ⊆ Yn by

S k
η,r := {

y | dGH
(
Bs(y),Bs

((
0, z∗))) ≥ ηs, for all R

k+1 × C(Z)

and all r ≤ s ≤ 1
}
.

It follows directly from the definition that

S k
η,r ⊂ S k′

η′,r ′
(
if k′ ≤ k, η′ ≤ η, r ≤ r ′). (1.6)

Also, if y ∈ S k , then clearly, y ∈ ⋂
r S k

η,r , for some η > 0, so

S k =
⋃

η

⋂

r

S k
η,r . (1.7)

Our first main result is a volume bound for S k
η,r . The proof will proceed

by appropriately bounding the number of balls of radius r needed to cover
S k

η,r ∩B1(x). Since by volume comparison, we have Vol(Br(x)) ≤ c(n)rn, so
this will suffice.

Theorem 1.3 There exists c(n,v, η) > 0 such that if Mn
i

dGH−→ Yn, and the
(Mn

i , gi) satisfy the lower Ricci curvature bound (1.1), and v-noncollapsing
condition (1.2), then for all y ∈ Yn and η > 0,

Vol
(

S k
η,r ∩ B 1

2
(y)

) ≤ c(n,v, η)rn−k−η. (1.8)

Remark 1.4 It is an easy consequence of the definition of S k
η,r , that the bound

in (1.8) actually implies (for a slightly different constant c(n,v, η))

Vol
(
Tr

(
S k

η,r

) ∩ B 1
2
(y)

) ≤ c(n,v, η)rn−k−η, (1.9)

where Tr(S k
η,r ) denotes the r-tubular neighborhood.

Remark 1.5 There is a possibility that on the right-hand side of (1.8), the fac-
tor rn−k−η can be replaced by one of the form rn−k(log r)c(n,v,η). However,
it seems unlikely that in general, the appearance of η on the right-hand side
of (1.8) can be entirely removed. In the application to Kähler-Einstein man-
ifolds given in Theorem 1.14, this is of no consequence since the bound in
(1.8) controls a lower order term; compare (1.18).

Remark 1.6 As will be indicated in Sects. 2 and 3, the proof of Theorem 1.3
employs an instance of quantitative differentiation in the sense of Sect. 14
of [8].
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Definition 1.7 If y ∈ Yn and the metric is not C2 in some neighborhood of y,
then rhar(y) = 0. Otherwise, rhar(x) is the supremum of those r such that the
ball Br(y) is contained in the domain of a harmonic coordinate system such
that gij (0) = δij and

|gij |C1 ≤ r−1, |gij |C2 ≤ r−2.

Recall that by elliptic regularity, there exist constants, c(n, k) such that if
Mn is Einstein, then for gij as above, we have

|gij |Ck ≤ c(n, k)r−k
har .

Also, the curvature tensor Rm satisfies

sup
Brhar (y)(y)

|Rm| ≤ c(n)r−2
har . (1.10)

Put

Br = {
y | rhar(y) ≤ r

}
. (1.11)

Remark 1.8 Let B̃r ⊂ Yn denote the set of points such that either r0(y) = 0
or |Rm(y)| ≥ c(n)r−2. In particular, B̃r ⊂ Br . Since rhar is 1-Lipschitz, it
follows that

Tr(B̃r ) ⊆ Tr(Br ) ⊆ B2r . (1.12)

Hence estimates on Vol(Br ) imply estimates on Vol(Tr(B̃r )). Equivalently, in
view of the noncollapsing assumption (1.2), estimates on Vol(Br ) imply on
the covering number of B̃r .

Under the additional assumption that the Mn
i are Einstein and (for some of

our results) satisfy an integral curvature bound, we will apply Theorem 1.3 in
combination with ε-regularity theorems to control the volume of the set Br .
In this case, we replace (1.1) by the 2-sided bound

|RicMn
i
| ≤ n − 1. (1.13)

Our first result of this type follows by combining Theorem 1.3 with the ε-
regularity theorems, Theorem 6.2 of [3] and Theorem 5.2 of [7];1 the detailed
argument is given in Sect. 5.

Theorem 1.9 There exists η0 = η0(n,v) > 0 such that if Mn
i

dGH−→ Yn, and
the Mn

i are Einstein manifolds satisfying the v-noncollapsing condition (1.2),
and the Ricci curvature bound (1.13), then for every 0 < r < 1:

1The latter is due independently to G. Tian.
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1. If η < η0, then we have Br ⊂ S n−2
η,r . In particular, for all y ∈ Yn,

Vol
(

Br ∩ B 1
2
(y)

) ≤ c(n,v, η)r2−η. (1.14)

2. If in addition, the Mn
i are Kähler, then we have Br ⊂ S n−4

η,r . In particular,
for all y ∈ Yn,

Vol
(

Br ∩ B 1
2
(y)

) ≤ c(n,v, η)r4−η. (1.15)

Remark 1.10 Conjecturally, in item 2. above, the Kähler assumption can be
dropped.

Corollary 1.11 Let Yn be as in Theorem 1.9. Then:

1. In case 1. of Theorem 1.9, for every 0 < p < 1,

−
∫

B 1
2
(y)

|Rm|p ≤ c(n) · −
∫

B 1
2
(y)

(rhar)
−2p < c(n,v,p) (for all p < 1).

2. In case 2. of Theorem 1.9, for every 0 < p < 2,

−
∫

B 1
2
(y)

|Rm|p ≤ c(n) · −
∫

B 1
2
(y)

(rhar)
−2p < c(n,v,p) (for all p < 2).

Remark 1.12 Theorem 1.9 and Corollary 1.11 remain true assuming the
Ricci curvature bound (1.13) and a bound on |∇Rici

Mn |. Alternatively, If the
C2-harmonic radius is replaced by the C1,α-harmonic radius, then The-
orem 1.9 and Corollary 1.11 hold with only the Ricci curvature bound,
|RicMn

i
| ≤ n − 1.

Remark 1.13 Even if Br were replaced by the smaller set B̃r , the assertions
of Corollary 1.11 would be new.

In our next result (whose proof will be given in Sect. 6) we assume in
addition, the Lp curvature bound

−
∫

B1(x)

|Rm|p ≤ C. (1.16)

Recall in this connection, that for Kähler-Einstein manifolds, we have the
topological L2 curvature bound
∫

Mn

|Rm|2 ≤ c(n) · (∣∣(c2
1 ∪ [ω](n/2)−2)(Mn

)∣
∣ + ∣

∣
(
c2 ∪ [ω](n/2)−2)(Mn

)∣
∣
)
,

(1.17)
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where c1, c2 denote the first and second Chern classes and [ω] denotes the
Kähler class; see e.g. [4] and compare also the Lp bound (p < 2) in item 2.
of Corollary 1.11, which holds without assuming a bound on the right-hand
side of (1.17).

Theorem 1.14 2 Let the assumptions be as in Theorem 1.9 and assume in
addition that the Mn

i are Kähler-Einstein and satisfy the Lp curvature bound
(1.16), for some integer p, with 2 ≤ p ≤ n

2 . Then for every 0 < r < 1,

Vol
(

Br ∩ B 1
2
(y)

) ≤ c(n,v,C)r2p. (1.18)

In particular, if the right-hand side of (1.17) is bounded by C, then

Vol
(

Br ∩ B 1
2
(y)

) ≤ c(n,v,C)r4. (1.19)

It is of key importance that η does not appear on the right-hand side of
(1.18), (1.19); compare (1.5), (1.8), (1.14), (1.15). Let us indicate how this
comes about.

Note that the estimates in (1.18), (1.19), strengthen the known bounds
on the Hausdorff measure Hn−2p(S n−2p) which in particular is finite; see
[4, 7]. Those bounds are obtained by combining standard maximal func-
tion estimates for the Lp norm of the curvature with the certain ε-regularity
theorems to estimate Hn−2p(S n−2p \ S n−2p−1), and then using (1.5),
dim S n−2p−1 ≤ n − 2p − 1, which implies Hn−2p(S n−2p−1) = 0.

In fact, a slight modification of the first part of the argument gives the
leading term on the right-hand side of (1.19), whereas the terms controlled
by Theorem 1.3, which are lower order, can be (and are) suppressed. The
bound on these terms (which requires the hypothesis of Theorem 1.14) can
be viewed as strengthened version of the estimate Hn−2p(S n−2p−1) = 0.

More specifically, Theorem 1.3 is only used to control the volumes of cer-
tain subsets of S n−2p−1

η0,γ
−i , where r ≤ γ −i ≤ 1, 1 > η0 = η0(n) > 0 is suffi-

ciently small and γ = γ (η0). (The precise meaning of “sufficiently small” is

2The results of the present paper arose in the course of our ongoing investigations concerning
the structure of Gromov-Hausdorff limit spaces with Ricci curvature bounded below and in
particular, on the structure of the singular set for limits of Einstein manifolds. On the other
hand, it has come to our attention that Theorem 1.14 and Remark 1.17 below are stated
as conjectures (Hypothesis V and Supplements) in an informal document “Discussion of
the Kähler-Einstein problem” written by S. Donaldson in the summer of 2009, available at
http://www2.imperial.ac.uk/~skdona/KENOTES.PDF. It was announced there that the com-
plex dimension 3 case of Theorem 1.14 would be treated in a forthcoming paper of Donaldson
and X. Chen; see [6]. The general case is treated in [5]. Their work, like ours, makes use of [2–
4]. Unlike ours, it utilizes essentially a rigidity result for almost complex structures; see [10].

http://www2.imperial.ac.uk/~skdona/KENOTES.PDF
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dictated by the constant in the ε-regularity theorem of Sect. 5 of [7].) For in-
stance, in the extreme case in which γ −(i+1) ≤ r , we have Vol(S n−2p−1

η0,r ) ≤
c(n,v, η0)r

2p+1−η0 and the sum of the remaining terms satisfies a bound of
the same form. Since 2p + 1 − η0 > 2p, the volume bound on these terms
can be suppressed.

Remark 1.15 In the proof of Theorem 1.9 by contrast, Theorem 1.3 is used
to control the highest order term.

Remark 1.16 It is possible that Theorem 1.14 holds for Einstein manifolds
which are not necessarily Kähler. In any case, if p is an even integer, then
apart from some exceptional cases, the ε-regularity theorems of Sect. 8 can
be used to show that (1.18) holds. For p an integer, using Sect. 4 of [7], one
gets (with no exceptional cases and all η > 0) the less sharp estimate

Vol
(

Br ∩ B 1
2
(y)

) ≤ c(n,v, η,C)r2p−η.

Remark 1.17 Among the connected components of B 1
2
(y) \ Br , there is a

component Âr , such that

Vol
(
B 1

2
(y) \ Âr

) ≤ c(n,v,C)r
(2p−1)n

n−1 . (1.20)

To see this note that as previously mentioned, B 1
2
(y) \ Br ⊂ Cr , for some

subset Cr which is the union of at most c(n,v,C)r−2p balls of radius r .
Moreover, for r = r0(n,v, η) sufficiently small, there exists Br0(y

′) ⊂
(B 1

2
(y) \ Cr0). For r ≤ r0, let Ar ⊂ (B 1

2
(y) \ Cr ) denote the component

containing Br0(y
′). Clearly, Voln−1(∂Cr ) ≤ c(n,v,C)r2p−1 and in particu-

lar, Voln−1(∂Ar) ≤ c(n,v,C)r2p−1. Since Vol(Ar) ≥ Vol(Br0(y
′)) (a defi-

nite lower bound) the isoperimetric inequality for manifolds satisfying (1.1),

(1.2), gives Vol(B 1
2
(y) \ Ar) ≤ c(n,v,C)r

(2p−1)n
n−1 . This implies (1.20).

Remark 1.18 As briefly indicated in the discussion following the statement
of Theorem 1.14, in proving that theorem, the ε-regularity theorem must be
applied on all scales between 1 and r . Here, the fact that the hypothesis of the
relevant ε-regularity requires that two distinct conditions must be satisfied
simultaneously raises an issue that does not arise in the proof of Theorem 1.9;
for details, see Sect. 6.

2 Outline of the proof of Theorem 1.3

As mentioned in abstract, the methodology developed in this paper is new and
is applicable in many other contexts. These include harmonic maps and min-
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imal hypersurfaces ([9]), mean curvature flow and critical sets of solutions to
elliptic equations. In the present section, we will give an informal explanation
of the main ideas.

To prove Theorem 1.3, we exhibit S k
η,r as a generalized Cantor set. In par-

ticular, we show that at most locations and scales ≥ r , there exists 	 ≤ k,
such that S k

η,r lies very close to a k-dimensional subset of the form R	 ×{z∗},
where R	 is a factor of an approximate local isometric splitting. Once this
has been done, the volume computation is an essentially standard induction
argument based on iterated ball coverings.

The following toy example illustrates our approach in highly simplified sit-
uation corresponding to the case S 0. Notably, a significant issue which must
be addressed in the actual situation is not present in the toy example; see the
subsection below entitled “Implementation of cone-splitting”.

Start with the interval [0,1] (so in effect, we are pretending that n = 1,
although this plays no essential role). Remove a subinterval from the center,
then remove central subintervals from each of the two remaining subintervals,
etc. Fix η > 0. We chose the lengths of the 2i distinct subintervals which
remain at the i-th stage to be ri = t1 · · · ti , where we assume that for some
i(η) < ∞, we have t

η
i ≤ 1

2 for all j > i(η). Denote the generalized Cantor set
which is intersection of this sequence of subsets by C. The following volume
estimate strengthens the Hausdorff dimension estimate dim C ≤ η.

Set maxi≤i(η) 2ir
η
i = c(η). Then 2j r

η
j ≤ c(η) for any j ≥ i(η). For all j ,

we have

Vol
(
Trj (C)

) ≤ 2j · rj
≤ (

2j · rη
j

) · r1−η
j

≤ c(η)r
1−η
j ,

which easily implies the same estimate with rj replaced by any r ≤ 1 and
c(η) replaced by 2 · c(η).

The inequality dim S k ≤ k.

Next we recall from [3], the proof of the inequality dim S k ≤ k. The proof
relies on an iterated blow up argument. The following geometric facts are
used. (i) For limit spaces satisfying (1.1), (1.3), every tangent cone Yy is a
metric cone. (ii) The splitting theorem holds for such tangent cones.

Consider first the case k = 0. By a density argument, if dim S 0 = 0 were
to fail, it would already fail for some tangent cone Yy for which the vertex
y∗∞, is a density point of S 0(Yy). Thus, there would exist y′∞ ∈ S 0(Yy), a
density point of S 0(Yy), with y′∞ �= y∗∞. Moreover, by the same reasoning,
the assertion would fail in the same way for some tangent cone (Yy)y′∞ at
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y′∞. But since y′∞ �= y∗∞, by (i), y′∞ is an interior point of a ray emanating
from y∗∞. After blow up at y′∞, we obtain a line in (Yy)y′∞ and a density
point (y′∞)∞ of S0 lying on this line. By (ii), this line splits off isometrically,
which contradicts (y′∞)∞ ∈ S0. Similarly, by employing additional blow ups,
one gets dim S k ≤ k for all k; for further details, see [3].

An issue involving multiple scales.

Proving Theorem 1.3 requires either finding a quantitative version of the
preceding (noneffective) blow up argument, or finding a different argument
which can in fact be made quantitative. It is natural to investigate the follow-
ing idea for quantifying the blow up argument: Rather than doing multiple
blow ups to split off additional lines as isometric factors, do an “appropriate”
sequence of rescalings which stop short of going to the blow up the limit.
The difficulty is that this leads to a sequence balls whose radii decrease very
rapidly and the resulting issue of having to work simultaneously on a se-
quence of different scales. In fact, it is not clear to us how to resolve the
quantitative issues which arise from this approach.

Instead of blow up we use a different principle, the “cone-splitting prin-
ciple”. When its hypotheses are satisfied, the cone-splitting gives rise to an
“additional splitting” of a single cone on a fixed scale. We show that in our
context, the hypotheses are indeed satisfied at most locations and scales. In
particular, this gives a new proof that dim S k ≤ k (though of course, the quan-
titative version that we actually prove is much stronger).

Cone-splitting, a replacement for blow up.

In its nonquantitative form, the cone-splitting principle gives a criterion which
guarantees that a metric cone R	 × C(Z), which splits off a Euclidean factor
R	, actually splits off a factor of R	+1. (Here and in the next paragraph, all
splittings are isometric and C(Z) denotes a metric cone with vertex z∗.)

Cone-splitting Suppose that for some C(Z) with vertex z∗, there is an isom-
etry I : R	 × C(Z) → C(Z) such that z∗ �∈ I (R	 × {z∗}). Then for some W ,
R	 × C(Z) is isometric to R	+1 × C(W).3

To see the relevance, note that in the proof of dim S 0 = 0 which was re-
called above, if we knew that y′∞ �= y was the vertex of some other cone
structure on Yy , then Yy ≡ R×Y ′

y . Thus, we would obtain the required “addi-
tional splitting” without the necessity of passing to a blow up. In actuality, we

3For our purposes, we only need the cone-splitting principle for tangent cones, which case
it follows from the splitting theorem of [2]. In fact, by an elementary argument (which we
omit) the cone-splitting principle holds for arbitrary metric cones. We do not know an explicit
reference for this fact.
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need the following quantitative version, which is stated somewhat informally;
for the precise statement, see Lemma 4.1.

Quantitative version of the cone-splitting principle Consider a metric ball
Br(p) and for δ = δ(η) sufficiently small, a δr-Gromov-Hausdorff equiv-
alence Jδ : Br(p) → Br((0, z∗) ⊂ R	 × C(Z). Also assume for some q ∈
Br(p), that Jδ(q) does not lie too close to Jδ(R	 ×{z∗}), Finally, assume that
there is a δr-Gromov-Hausdorff equivalence J ′

δ : Br(q) → Br(z
∗) ⊂ C(Z).

Then Br(p) is ηr-Gromov-Hausdorff close to a ball Br((0,w∗)) ⊂ R	+1 ×
C(W), for some cone R	+1 × C(W).

Implementation of cone-splitting.

As noted above, if we knew that y′∞ was the vertex of some (other) cone struc-
ture on Yy , then we would obtain the required “additional splitting” without
the necessity of passing to a blow up. Roughly speaking, to implement the
quantitative version of cone-splitting, we need to know that this holds ap-
proximately at most locations and scales.

In fact, given a suitable notion of scale, γ < 1, then for each x, the balls
Bγ i (x) (i = 0,1, . . .) look as conical as we like (with x playing the role of
the vertex) on all but a definite number of scales γ i . This statement, which is
close to being implicit in [3], is a quantitative version of the fact that tangent
cones are metric cones. It constitutes a “quantitative differentiation” theorem
in the sense of Sect. 14 of [8].

Were it not for the fact that the collection of excluded scales (those scales
γ i for which Bγ i (x) is not sufficiently close to looking conical) might depend
on the point x, we could use the cone-splitting principle to show that S k

η,γ j

“looks as k-dimensional as we like” on all but a definite number of scales.
Since there is a bound on the number of excluded scales this easily suffices to
complete the Cantor type volume computation. This amounts to inductively
bounding the number of balls of radius γ j needed to cover S k

η,γ j . The general

volume bound for S k
η,r , 0 < r ≤ 1, follows directly from the case r = γ j .

In order to deal with the above mentioned difficulty, we decompose the
space into subsets, each of which consists of those points with precisely the
same collection of excluded scales. The bound on the number of excluded
scales has the additional consequence that there are “not too many” of these
subsets. To each such set, we can apply the argument based on cone-splitting.
Since there “not too many” such sets, we can simply add the resulting esti-
mates. This finishes the proof. (Without bringing in this decomposition, we
do not know how to complete the argument.)
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3 Reduction to the covering lemma

As noted at the beginning of Sect. 1, in proving Theorem 1.3, we can (and
will) restrict attention to the case of smooth manifolds. Suppose for some
convenient choice γ = γ (η) < 1, we can prove (1.8) with some constant
c̃(n,v, η) and all r of the form γ j . Given r arbitrary, by choosing j such
that γ j+1 < r ≤ γ j , we obtain (1.8) for this r with constant c(n,v, η) =
c̃(n,v, η)(γ (η))−(n−k−η). Thus, in proving (1.8), we can (and will) consider
only r of the form γ j .

An appropriate choice of γ is given in (3.1). Lemma 3.1 below (the cov-
ering lemma) asserts that the set S k

η,γ j can be covered by a collection of sets,

{Ck
η,γ j }, each of which consists of a not too large collection of balls of radius

γ j . The cardinality of the collection {Ck
η,γ j } goes to infinity Ck

η,γ j as j → ∞.

However, by Lemma 3.1, the growth rate is ≤ jK(η,v,n), which is slow enough
to be negligible for our purposes. This estimate follows from a quantitative
differentiation argument.

The criterion for membership in each particular set Ck
η,γ j represents one

of the possible behaviors on the scales 1, γ, γ 2, . . . , γ j , which could cause a
point to lie in S k

η,γ j , for i ≤ j . A priori, the number of such different behaviors

is 2j . However, as explained above, for any fixed Mn, k, η, only a small
fraction ≤ jK(η,v,n) · 2−j of these can actually occur.

Proof of Theorem 1.3 Let x ∈ Mn and consider S k
η,r ∩ B 1

2
(x) for some fixed

η > 0 as in (1.8). For c0 = c0(n) > 1 to be specified below, put

γ = γ (η) = c
− 2

η

0 . (3.1)

Lemma 3.1 There exists c1 = c1(n) ≥ c0, K = K(n,v, γ ), Q = Q(n,v, γ ) =
K + n, such that for every j ∈ Z+:

1. The set S k
η,γ j ∩ B1(x) is contained in the union of at most jK nonempty

sets Ck
η,γ j .

2. Each set Ck
η,γ j is the union of at most (c1γ

−n)Q · (c0γ
−k)j−Q balls of

radius γ j .

Let us provisionally assume Lemma 3.1. Then by volume comparison, we
have Vol(Bγ j (x)) ≤ c2(n)γ jn, which together with

c
j

0 = (
γ j

)− η
2 ,

jK ≤ c(n,v, γ )
(
γ j

)− η
2 ,
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gives

Vol
(

S k
η,γ j ∩ B1(x)

) ≤ jK · [(c1γ
−n

)Q · (c0γ
−k

)j−Q] · c2 · (γ j
)n

≤ c(n,v, γ ) · jK · cj

0 · (γ j
)n−k

≤ c(n,v, γ ) · (γ j
)n−k−η

, (3.2)

where c(n,v, γ ) = (c1(n)/c0(n))Q · c2(n) ·γ −(n−k)Q. From the above, for all
r ≤ 1, we get (1.8) i.e.

Vol
(

S k
η,r ∩ B1(x)

) ≤ γ −1 · c(n,v, γ ) · rn−k−η

≤ c(n,v, η)rn−k−η.

Therefore, modulo the proof of Lemma 3.1, we get Theorem 1.3. �

Proof of Lemma 3.1 The sets Ck
η,γ j will be indexed as follows. Consider the

set of j -tuples T j whose each of whose entries is either 0, 1. Denote the
number of entries equal to 1 by |T j |. We are going to show the existence of
K = K(n,v, γ ) ∈ Z+ (as above) such that every Ck

η,γ j corresponds to some

unique T j with |T j | ≤ K . We denote this set by Ck
η,γ j (T

j ). Since the number

of T j with |T j | ≤ K is at most
(

j

K

)

≤ jK, (3.3)

the cardinality of {Ck
η,γ j (T

j )} is at most jK .

In order to specify the correspondence T j → Ck
η,j (T

j ), we need a quantity
we call the t-metric nonconicality Nt (Br(x)) ≥ 0 of a ball Br(x). As in
Sect. 1, let C(Z) denote the metric cone on Z with vertex z∗. Let t ≥ 1, then
we say Nt (Br(x)) ≤ ε if there exists C(Z) such that

dGH(Btr(x),Btr(z
∗)) ≤ εr. (3.4)

We put

Ht,r,ε = {
x ∈ B1(x) | Nt

(
Br(x)

) ≥ ε
}
,

Lt,r,ε = {
x ∈ B1(x) | Nt

(
Br(x)

)
< ε

}
.

(3.5)

Eventually, we will fix ε = ε(n, γ ), the value in Lemma 3.2 below.
To each x we associate a j -tuple T j (x). For all i ≤ j , by definition, the

i-th entry of T j (x) is 1 if x ∈ Hγ −n,γ i ,ε and 0 if x ∈ Lγ −n,γ i ,ε . Then for each
j -tuple T j define

ET j = {
x ∈ B1(x) | T j (x) = T j

}
.

Below we will show that if ET j is nonempty then
∣
∣T j

∣
∣ < K(n,v, ε) (if ET j �= ∅). (3.6)
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Because the sets Ck
η,γ j−1(T

j−1) are indexed by such tuples, (3.6), together
with (3.3), finishes item 1. of Lemma 3.1.

Let T j−1 be obtained from T j by dropping the last entry. Assume that the
nonempty subset Ck

η,γ j−1(T
j−1) (which is a union of balls of radius γ j−1)

has been defined and satisfies item 2. of the Claim and Ck
η,γ j−1(T

j−1) ⊃
S k

η,γ j ∩ ET j . For each ball Bγ j−1(x) of Ck
η,γ j−1(T

j−1), take a minimal cov-

ering of Bγ j−1(x) ∩ S k
η,γ j ∩ ET j by balls of radius γ j with centers in

Bγ j−1(x) ∩ S k
η,γ j ∩ ET j . Define the union of all balls so obtained to be

Ck
η,γ j (T

j ), provided it is nonempty.

Since γ j/γ j−1 = γ , from the lower Ricci curvature bound (1.1) and rela-
tive volume comparison, it is clear that for each Bγ j−1(x) as above, the asso-
ciated minimal covering has at most c1(n)γ −n balls. (This is the c1 = c1(n)

appearing in (3.2).) However, when j > n and the j -entry of T j is 0 we use
instead the following lemma, whose proof will be given in Sect. 4.

Lemma 3.2 (Covering lemma) There exists ε = ε(n, γ ), such that if
Nγ −n(Bγ j−1(x)) ≤ ε and Bγ j−1(x) is a ball of Ck

η,γ j−1(T
j−1), then the num-

ber of balls in the minimal covering of Bγ j−1(x) ∩ S k
η,γ j ∩ Lγ −n,γ j ,ε is

≤ c0γ
−k .

Remark 3.3 In order to apply Lemma 3.2, we need j > n. This explains the
appearance of the quantity, Q = K + n in the statement of Lemma 3.1.

Remark 3.4 Lemma 3.2 can be viewed as the quantitative analog of the den-
sity argument in the proof that dim S k ≤ k. Its proof is a direct consequence
of Corollary 4.2 of Lemma 4.1 (the cone-splitting lemma). Corollary 4.2 pro-
vides the quantitative analog of the application of the splitting theorem in the
proof that dim S k ≤ k; see Sect. 4.

Assuming Lemma 3.2, an obvious induction argument yields the bound
on the number of balls of Ck

η,γ j appearing in item 2. of Lemma 3.1. The
factor with exponent Q in item 2. arises from the (at most Q) scales on which
the hypothesis of Lemma 3.2 is not satisfied and we are forced to use the
standard covering by at most c1γ

−n balls. The factor with exponent j − Q

arises from the remaining scales on which we can cover by at most c0γ
k balls

as guaranteed by Lemma 3.2.
We close this section by verifying (3.6) which, as previously noted, suffices

to verify item 1. of Lemma 3.1.
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Let the notation be as in (1.2). For r > 0, we consider the volume ratio

Vr (x) = Vol(Br(x))

Vol−1(r)
↓ . (3.7)

The fact that Vr (x) is a nonincreasing function of r is just the Bishop-Gromov
inequality.

For t > s, define the (t, s)-volume energy Wt,s(x) by

Wt,s(x) = log
Vs(x)

Vt (x)
≥ 0.

Note that if s1 ≥ t2, then

Wt1,s2(x) ≥ Wt1,s1(x) + Wt2,s2(x), (3.8)

with equality if t2 = s1. Let (si, ti) denote a possibly infinite sequence of
intervals with si ≥ ti+1 and t1 = 1.

Since limr→0 log Vr (x) = 0 and the v-noncollapsing assumption (1.2)
holds, by using (3.8) together with induction and passing to the limit, we
get

log
1

v
≥ log

1

V1(x)
≥ Wt1,s1 + Wt2,s2 + · · · , (3.9)

where the terms on the right-hand side are all nonnegative.
Fix δ > 0 and let N denote the number of i such that

Wγ i−n,γ i > δ.

Then

N ≤ (n + 1) · δ−1 · log
1

v
. (3.10)

Otherwise, there would be at least δ−1 · log 1
v disjoint closed intervals of the

form [γ i, γ i−n] with Wγ i−n,γ i > δ, contradicting (3.9).
Let ε = ε(n, γ ) be as in Lemma 3.2. The “almost volume cone implies

almost metric cone” theorem of [2] implies the existence of δ = δ(ε) such
that if Wγ i−n,γ i ≤ δ then Nγ −n(Bγ i (x)) ≤ εγ i , i.e. x ∈ Lγ −n,γ i ,ε . This gives
(3.6), which completes the proof of Lemma 3.2, modulo that of Lemma 3.1. �

Remark 3.5 Clearly, (3.6) is the quantitative version of the fact that for non-
collapsed limit spaces tangent cones are metric cones; compare the proof of
the inequality, dim S k , which was recalled at the beginning of this section.
As previously indicated, relation (3.6) and its proof provide an instance of
quantitative differentiation in the sense of Sect. 14 of [8].
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4 Proof of the covering lemma via the cone-splitting lemma

Assume that the cone R
	 × C(Z) is a Gromov-Hausdorff limit space with

the lower bound on Ricci curvature tending to zero. Suppose in addition that
there exists y′ �∈ R

	 × {z∗}, a cone C(Ẑ) and an isometry I : R
	 × C(Z) →

C(Ẑ) with I (y′) = ẑ∗. Then R
	 × C(Z) is isometric to a cone R

	+1 × C(Z̃).
This follows because if both z∗ and y′ are vertices of cone structures then it
is virtually immediate that there must be a line which passes through these
points. Therefore, the result follows from the splitting theorem; compare the
discussion of cone-splitting in Sect. 2.

We continue to denote by Ts( · ) the s-tubular neighborhood. Recall that
Lt,r,ε is defined in (3.5). The above, together with an obvious compactness
argument (and rescaling) yields the following.

Lemma 4.1 (Cone-splitting lemma) For all γ, τ,ψ > 0 there exists 0 <

ε = ε(n, γ, τ,ψ) < ψ , 0 < θ = θ(n, γ, τ,ψ), such that the following
holds. Let r ≤ θ and assume that for some cone R

	 × C(Z) there is
εr-Gromov-Hausdorff equivalence

F : Bγ −1r

((
0, z∗)) → Bγ −1r (x).

If there exists

x′ ∈ Br(x) ∩ Lγ −1,r,ε,

with

x′ �∈ Tτr

(
F

(
R

	 × {
z∗})) ∩ Br(x),

then for some cone R
	+1 × C(Z̃),

dGH
(
Br(x),Br

((
0, z̃∗))) < ψr.

Corollary 4.2 For all γ, τ,ψ > 0 there exists 0 < δ(n, γ, τ,ψ) and 0 <

θ(n, γ, τ,ψ) such that the following holds. Let r ≤ θ and x ∈ Lγ −n,δ,r . Then

there exists a cone R
	 × C(Z̃) with a ψr-Gromov-Hausdorff equivalence

F : Br

((
0, z̃∗)) → Br(x),

such that

Lγ −n,δ,r ∩ Br(x) ⊆ Tτr

(
F

(
R

	 × {
z̃∗})).

Proof For ε(n, γ, τ,ψ) as in Lemma 4.1, inductively define ε[n−i] = ε ◦ ε ◦
· · · ◦ ε(n, γ −n, τ,ψ) (i factors in the composition). Then ε[0] < ε[1] < · · · <

ε. Put δ = ε[0]. Since by assumption, x ∈ Lγ −n,δ,r , there exists a largest 	 such
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that for some cone R
	 × C(Z̃), there is an ε[n−	]r-Gromov-Hausdorff equiv-

alence F : Bγ −(n−	)r ((0, z∗) → Bγ −(n−	)r (x). To see that the conclusion holds

for this value of 	, apply Lemma 4.1 with the replacements: r → γ −(n−	−1)r ,
τ = γ −(n−	−1)τ , ε → ε[	], ψ → ε[	+1]. �

Proof of Lemma 3.2 Let Bγ j−1(x) be as in Lemma 3.2. Since by assumption,
x ∈ S k

η,γ i ∩ Lγ −n,γ j ,ε no cone as in (3.4) with t = γ −n · γ j−1 can split off a

factor Rk+1 isometrically. By applying Corollary 4.2 with r = γ j−1, ψ = 1
10γ

it follows that for some 	 ≤ k and F as in the corollary, we have

Bγ j−1(x) ∩ S k
η,γ i ∩ Lγ −n,γ j ,ε ⊂ F

(
T 1

10 γ j

(
R

	 × {
z̃∗})) ∩ Bγ j−1(x).

Clearly, this suffices to complete the proof. �

5 Curvature estimates absent a priori integral bounds

In this short section we prove Theorem 1.9. Recall that the assumptions are
that (Mn,g) is an Einstein manifold which satisfies the v-noncollapsing con-
dition (1.2) and the bound (1.13) on the Einstein constant. item 1. pertains to
the real case and item 2. to the Kähler case. The curvature estimates of Theo-
rem 1.9 follow by combining the geometric ε-regularity theorems of [3] and
[7] with Theorem 1.3. The proofs of these theorems rely on an ε-regularity
theorem of Anderson; see [1]. We now recall the statements.

Let (0, z∗) denote the vertex of the cone R
	 × C(Z). Assume that (Mn,g)

is an Einstein manifold which satisfies the v-noncollapsing condition (1.2)
and the bound (1.13) on the Einstein constant. In our language, the ε-
regularity theorem of [3], which does not assume the Kähler condition, asserts
that there exists ε0(n,v) > 0 such that if

dGH
(
Br(x),Br

((
0, z∗))) ≤ ε0r (	 > n − 2),

then on B 1
2 r

(x) there exists a harmonic coordinate system in which the gij

and gij have definite Ck bounds, for all k. In particular, the C2-harmonic
radius satisfies rhar(x) ≥ c(n)r ; see Definition 1.7.

By [7], in the Kähler-Einstein case, the same conclusion holds if 	 > n−4.
(Conjecturally, the Kähler condition can be dropped.)

Proof of Theorem 1.9 Since the arguments are mutadis mutandis the same for
items 1. and 2. of Theorem 1.9, we will just prove item 1. In this case, by the
ε-regularity theorem, for all η ≤ ε0,

Br ∩ B 1
2
(x) ⊆ Tr

(
S n−2

η,Cr

) ∩ B 1
2
(x).
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Thus, by Theorem 1.3, we have

Vol
(

Br ∩ B 1
2
(x)

) ≤ Vol
(
TCr

(
S n−2

η,Cr

) ∩ B 1
2
(x)

)

≤ C(n,v, η)r2−η,

which completes the proof. �

6 Curvature estimates given a priori integral bounds

In this section we prove Theorem 1.14.
The proof uses the following corollary of Theorem 1.3. For r1 < r2, put

S k
η,r1,r2

:= {
x | dGH

(
Bs(x),Bs

((
0, z∗))) ≥ ηs, for all R

k+1 × C(Z)

and all r1 ≤ s ≤ r2
}
. (6.1)

Corollary 6.1

Vol
(

S k
η,r1,r2

∩ Br1(x)
) ≤ c(n,v, η)

(
r−1

2 r1
)−(k+η) · rn

1 (6.2)

= c(n,v, η)r
n−k−η
1 · r(k+η)

2 . (6.3)

Proof Let B̂r2(x) denote the ball of radius 1
2 obtained by rescaling the metric

on Br2(x) by a factor 1
2 · r−1

2 and let Ŝ k
η,r denote S k

η,r for the rescaled metric.
Then

S k
η,r1,r2

∩ Br2(x) = Ŝ k

η, 1
2 r−1

2 r1
∩ B̂ 1

2 r−1
2 r1

(x).

If we apply Theorem 1.3 in the rescaled situation and interpret the conclusion
for the original metric, we get (6.2). �

Recall that in addition to (1.2), (1.13), and the assumption that (Mn,g) is
Einstein, we assume the Lp curvature bound (1.16).

The proof of Theorem 1.9 also uses the ε-regularity theorems of [4] (p =
2), [7] (p ≥ 2) and Theorem 1.3 for the case k = n − 2p − 1. We now recall
the statement from [7].

As usual, (0, z∗) denotes the vertex of the cone R
	 × C(Z). Assume that

(Mn,g) is a Kähler-Einstein manifold which satisfies the v-noncollapsing
condition (1.2) and the bound (1.13) on the Einstein constant. Then there
exists ε0(n,v,p) > 0, η0(n,v,p) > 0 such that if

dGH
(
Br(x),Br

((
0, z∗))) < η0r (	 ≥ n − 2p), (6.4)

r2p −
∫

Br(x)

|Rm|p ≤ ε0, (6.5)
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then on B 1
2 r

(x) there exists a harmonic coordinate system in which the gij

and gij have definite Ck bounds, for all k. In particular, rhar(x) ≥ c(n)r .

Proof of Theorem 1.14 Note that since the ε-regularity theorem requires that
two independent conditions hold simultaneously, we must control the collec-
tion of balls on which either one of them fails to hold.

Fix ε0 as above and let Dε0,r denote the union of the balls Br(x) with
x ∈ B 1

2
(x), for which (6.5) fails to hold. By a standard covering argument it

follows from the Lp curvature bound (1.16) that Dε0,r ∩B 1
2
(x) can be covered

by a collection of balls {Br(xi)} such that we have

Vol
(

Dε0,r ∩ B 1
2
(x)

) ≤
∑

i

Vol
(
Br(xi)

) ≤ c(n)Cε−1
0 · r2p. (6.6)

In particular, for γ as in Sect. 3, η = η0 < 1 and k = n − 2p − 1, by ap-
plying Corollary 6.1 to each the balls Br(xi) whose union covers Dε0,γ

i and
summing the resulting estimates we get for all 1 ≤ i < j ,

Vol
(

S n−2p−1
η,γ j ,γ i ∩ Dε0,γ

i−1

) ≤ c(n,v, η0,C)
(
γ j

)2p+1−η0 · (γ i
)1+η0 . (6.7)

Summing (6.7) over 1 ≤ i ≤ j and bounding the right-hand side in terms of
the geometric series with ratio γ 1+η0 gives

∑

1≤i≤j

Vol
(

S n−2p−1
η0,γ

j ,γ i ∩ Dε0,γ
i−1

) ≤ c(n,v, η0,C,p)
(
γ j

)2p+1−η0 . (6.8)

We claim that

Bγ j ∩ B 1
2
(x) ⊂ (

S n−2p−1
η0,γ

j ∩ B 1
2
(x)

)

∪
( ⋃

1≤i≤j

S n−2p−1
η0,γ

j ,γ i ∩ Dε0,γ
i−1

)

∪ Dε0,γ
j . (6.9)

This will suffice to complete the proof of Theorem 1.14 for the case r =
γ j , since by (6.8), together with (6.6) for r = γ j and Theorem 1.3 for
r = γ j , it follows that the volume of the set on the right-hand side is
≤ c(n, tv, η0, ε0,p,C)(γ j )2p . As in the proof of Theorem 1.3 the general
case follows directly from the case r = γ j .

Let A′ denote the complement of A. To establish the claim, we note that
the complement of the set on right-hand side of (6.9) is equal to

((
S n−2p−1

η0,γ
j

)′ ∪ B 1
2
(x)′

) ∩
( ⋂

0≤i≤j

(
S n−2p−1

η0,γ
j ,γ i

)′ ∪ (Dε0,γ
i−1)

′
)

∩ (Dε0,γ
j )

′.

By expanding out and dropping the terms which start with B 1
2
(x)′, we obtain

an expression that is a union of terms, each of which is of the form
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(
S n−2p−1

η0,γ
j

)′ ∩ · · · ∩ (
S n−2p−1

η0,γ
j ,γ i

)′ ∩ (Dε0,γ
i )

′ ∩
( ⋂

i<	≤j

(Dε0,γ
	)

′
)

∩ (Dε0,γ
j )

′

⊂ (
S n−2p−1

η0,γ
j ,γ i

)′ ∩ (Dε0,γ
i )

′ ∩ (Dε0,γ
i+1)

′ ∩ · · · ∩ (Dε0,γ
j )

′ (6.10)

for some i with 1 ≤ i ≤ j . (The terms represented by the dots can be either
S ’s or D’s.) By (6.4), (6.5), the set on the second line of (6.10) satisfies the
hypothesis of the ε-regularity theorem of [7], so this completes the proof. �
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