
 
Fig 1. Overview of the proposed identity and posture recognition: 1) wearable devices (Galaxy Gear or Google Glass) capture accelerometer and 
gyroscope measurements, 2) signals are then processed to extract ballistocardiographic (BCG) information, 3) shape-based features are extracted from the 
average BCG waveform, and 4) person and posture classification are performed. 
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Abstract— During recent years a large variety of wearable 
devices have become commercially available. As these devices are 
in close contact with the body, they have the potential to capture 
sensitive and unexpected personal data even when the wearer is 
not moving. This work demonstrates that wearable motion 
sensors such as accelerometers and gyroscopes embedded in 
head-mounted and wrist-worn wearable devices can be used to 
identify the wearer (among 12 participants) and his/her body 
posture (among 3 positions) from only 10 seconds of “still” 
motion data. Instead of focusing on large and apparent motions 
such as steps or gait, the proposed methods amplify and analyze 
very subtle body motions associated with the beating of the heart. 
Our findings have the potential to increase the value of pervasive 
wearable motion sensors but also raise important privacy 
concerns that need to be considered.  

Keywords— accelerometer; gyroscope; smartwatch; wrist; 
head; ballistocardiography; person identification; posture 
recognition; Support Vector Machines. 

I.  INTRODUCTION 
Continuous developments of technology such as electronic 

miniaturization and increased battery life have enabled the 
creation and adoption of a wide range of wearable devices. 
These devices come in many different forms such as head-
worn (e.g., Google Glass, Oculus Rift) or wrist-worn 
(e.g., Galaxy Gear, Apple Watch) devices, and include a large 
variety of sensors (e.g., microphone, camera). Among all the 
different sensors, accelerometers are probably the most 
pervasive ones due to their low cost and large number of 

applications. For instance, commercially available activity 
trackers (e.g., Basis Peak, Fitbit Charge) mainly rely on 
accelerometers to count the number of steps, and physiological 
monitoring devices (e.g., Empatica E4, Zephyr BioHarness) 
include motion sensors to capture not only activity but also 
sources of signal artifacts. While most applications of 
accelerometers focus on the analysis of large motions 
associated with daily activity (e.g., steps, change of body 
posture), the work we present here focuses on very subtle 
body motions that are mainly detectable when remaining 
relatively “still.” Recently published work [7] has 
demonstrated that motion sensors embedded in a head-
mounted wearable device can capture the subtle motions 
associated with the beating of the heart and respiration, even 
when the sensors are located far from the torso. In this work 
we explore how analyzing these cardiac motions can provide 
additional information about the person. In particular, we 
explore whether and how accurately accelerometers and 
gyroscopes from two types of wearable devices (head-worn 
and wrist-worn) can be used to identify a user (among 12 
participants) and his/her body posture (among 3 positions). 
Furthermore, we discuss how our findings may solve some of 
the current challenges of wearables as well as how they pose 
new potential challenges to privacy. 

This work is organized as follows. First, we provide an 
overview of relevant literature on recognition of cardiac 
motions and person identity/body position. Then, we describe 
the experimental setting, and follow with a description of the 
novel methods and evaluation. Finally, we discuss the results 
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and implications of this new work as well as highlight 
potential directions for future research. 

II. BACKGROUND RESEARCH 
Every time our heart beats, the movement of the blood 

shifts the center of our body mass, eliciting subtle and 
repetitive body motions. This signal, also known as 
ballistocardiography (BCG), was popularized by Starr et 
al. [12] who used a suspended supporting structure to magnify 
and study the BCG motions of people while lying down. With 
the continuous improvements of technology, researchers have 
studied less constrained settings and successfully measured 
BCG from daily objects we are frequently in physical contact 
with (e.g., modified chair [6], bed mattress [9]) and, more 
recently, from wearable devices (e.g., smartphones on the 
chest [3] and a head-mounted wearable device [7]). BCG 
signals as well as other physiological signatures have been 
shown to be influenced by several factors such as posture and 
gender [1] and, therefore, offer the opportunity to indirectly 
provide access to personal information. This work extends 
these previous findings by showing how this information can 
be used to identify the wearer and recognize 3 of his/her body 
postures. 

In the context of person identification, two separate 
studies [6][13] have explored using a pressure-sensor on a 
chair and an accelerometer attached to the chest, respectively, 
to identify people while sitting down. In the context of body 
posture recognition, only one study [9] explored using a 
custom-made mattress that measured BCG from the chest and 
the leg of people to discriminate several positions while lying 
down (supine, left, prone and right). While these studies 
demonstrated the possibility of performing person and posture 
recognition from motion signals, their methodologies present 
some important limitations that can be improved upon. For 
instance, two of the works [6][13] only considered one body 
posture, limiting the well-known variance that is associated 
with different positions [1]. Furthermore, their approaches also 
required the simultaneous measurement of 
electrocardiography (ECG) for the purpose of beat 
segmentation. In another case [9], researchers used data of the 
same person for training and testing, limiting the possibility of 
using their methods with different people.  

Our work makes several new contributions.  First, we 
consider three different body postures before and after 
exercise, which provides important real-world variation to the 
BCG data. Second, the body posture recognition analysis in 
this work tests with data of only new people (no one in the 
training set was also in the test set). This test offers a more 
realistic and challenging scenario. Third, we evaluate for the 
first time the use of gyroscopes to perform person and posture 
recognition from motion data. Finally, our work depends on 
wearable motion sensors alone, without requiring additional 
sticky electrodes or ECG measurements.  Our sensors are 
worn on comfortable peripheral locations (head and wrist) 
instead of traditional locations (torso) where heart beat 
motions are more prominent and clean. Being able to access 
such information from peripheral wearables offers the 
opportunity to provide more frequent and comfortable 
measurements during daily life. 

III. DATA COLLECTION 
Two sets of 12 participants (balanced gender) with ages 

ranging from 22 to 34, and no known cardiac or respiratory 
abnormalities, were asked to wear either a Google Glass or a 
Samsung Galaxy Gear during a 25 minute experiment in 
exchange for a $5 Amazon gift card. After signing a written 
consent form, participants were requested to hold three 
different body postures (sitting down, standing up and lying 
down), as show in Fig. 2, during two one-minute periods: one 
before and another after performing physical exercise. This 
allowed us to collect data for a number of body postures and 
physiological ranges, which are known to change the shapes 
of the signals. For the exercise activity the participants 
pedaled for one-minute on a stationary bike. This experimental 
protocol was approved by the Institutional Review Board of 
the Massachusetts Institute of Technology.  

In order to collect the data, we developed a custom 
Android software application, which enabled us to 
simultaneously record the 3-axis accelerometer and the 3-axis 
gyroscope readings from both devices. While the 
accelerometer captures linear accelerations (meters/second2), 
the gyroscope captures the rate of rotation (radians/second) of 
the device. Both types of motions have been shown to be 
complementary when capturing cardiac information from 
motion [7]. The average sampling rates were 50 Hz and 
100 Hz for the Glass and Gear, which were the maximum 
stable values that could be achieved by the devices at the time 
of the data collection. However, the streams of data were 
interpolated to a constant sampling rate of 256 Hz as 
performed in [7]. 

IV. METHODS 
The experiment resulted in six separate one-minute 

recordings per individual. In order to create several sample 
readings for each of the conditions, we split the data into non-
overlapping segments of 10 seconds each (similar to [6]) 
yielding 432 segments equally balanced in terms of person and 
body posture. For each of these segments we applied several 
processing steps to amplify BCG motions and to extract 
representative features that could be used for the analysis. 
Each sensor modality (accelerometer and gyroscope) was 
processed separately. 

                          
Fig. 2. Participants held three different positions (sit down, stand up, lie 
down) before and after exercise, while wearing Google Glass or Samsung 
Galaxy Gear.   
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Fig. 3. Overview of average heart beat responses obtained from a wrist-
worn gyroscope sensor for each participant (rows) and body posture 
(columns). Each combination overlays n=12 signals. The right-most column 
includes the responses during all the postures for each participant (n=36) 
and the bottom row includes all the participants’ responses for each posture 
(n=144). The duration of each segment is 800 milliseconds. 
 

A. Recovering the BCG Waveform 
In order to isolate the subtle motions associated with the 

heartbeats, we performed the following steps. First, each of 
the 10-second sensor components (e.g., each of the 3 axis of 
the accelerometer) was normalized to have zero mean and unit 
variance. Next, we subtracted an averaging filter (window of 
35 samples) to detrend the data and to remove relatively slow 
motions such as respiration and stabilizing body motions. 
Finally, a Butterworth band-pass filter (cut-off frequencies of 
4-11 Hz) was used to recover the BCG waveform from each 
component. As not all the components carry relevant cardiac 
information, we automatically selected the most periodic 
component of each sensor modality (accelerometer and 
gyroscope) by choosing the signal with highest amplitude 
response in the frequency domain. All the steps and 
parameters were motivated by previous work [7] in which 
BCG changes were effectively isolated to estimate heart rate 
from motion. 

B. Feature Extraction 
Once the waveform is obtained, we need to extract 

meaningful features that can be used to characterize each of 
the measurements. To do so, we automatically segmented the 
parts of the signal associated with different heartbeats, 
computed the average beat response, and extracted several 
representative features from it. This section provides more 
details about the different parts. 

Segmentation and Aggregation. As each heartbeat is 
characterized by a larger motion peak surrounded by smaller 
ones (e.g., see Fig. 1), we located potential heart beat 
responses with the findpeaks MATLAB function (with 
MIN_PEAK_DISTANCE equal to the length of a heartbeat 
when the heart rate is 150). We then segmented the signals by 
taking 300 milliseconds before and 500 milliseconds after 
each of the previous peaks. The different segments were then 
averaged resulting in a specific BCG beat response. Fig. 3 
shows the average responses for all the 10-second segments 
when using the wrist-worn gyroscope. As can be seen, there 
are shape differences across participants and body postures, 
and they are very aligned within each condition (which 
includes signals before and after exercising). Since previous 
studies have mostly relied on accelerometer or pressure 
sensors to monitor BCG changes, we believe this is the first 
time an overview of gyroscope responses is provided. 

 Features. In order to perform the analysis, we extracted 
the following types of features from the previous responses: 
1) raw amplitude values, 2) histogram capturing the 
distribution of values (200 bins), and 3) shape features. For the 
shape features, we extracted the angles and distances between 
five descriptive points (see Fig. 1 step 3) that have been shown 
to vary due to different factors [1]. This approach is mainly 
motivated by previous research in facial expression analysis 
(e.g., [8]) in which angles and distances are commonly 
extracted between descriptive points (e.g., corners of the lips 
and the nose) to characterize certain facial expressions 
(e.g., smiling). The descriptive points were automatically 
detected by iteratively splitting the signal into halves and 
using the findpeaks function to obtain the maximum and 
minimum values of each subsegment.  



C. Classification 
In order to assess the possibility of inferring users’ identity 

and posture, we followed a classification approach where a 
subset of the data was used for training and a different subset 
was used for testing. For classification we used a linear 
Support Vector Machine with probability estimates, which 
allow for multiple class labels. In particular, we used the 
libSVM library which offers an efficient MATLAB 
implementation [2]. The misclassification cost was optimized 
with a 10 fold-cross validation approach on the training set. In 
other words, the training data were divided into 10 groups. 
Then, we trained on nine and tested on the tenth and repeated 
the process for each of the groups to find which value yielded 
the highest average classification accuracy. The considered 
values for misclassification cost were: log2 C, for C = {-10, -9, 
-8, ... 10}. In order to give the same relevance to each feature 
type, all the features were standardized to have zero mean and 
unit variance before training. Moreover, the dimensionality of 
the feature vector was reduced with Principal Component 
Analysis (preserving 95% of the energy), resulting into fewer 
than 100 components per condition.  

The validation protocol was slightly different for the two 
problems. To perform person identification, we randomly 
selected 80% of the segments for training and the remaining 
20% for testing. The process was then repeated 100 times to 
obtain average accuracy. Since each of the datasets contained 
12 participants, the accuracy of a random classifier would be 
8.3% (1/12). In order to perform body posture recognition, we 
followed a leave-one-person-out protocol, which iteratively 
predicts the body positions of each participant based on the 
data from the remaining participants. For this condition, a 
random classifier chance would have an accuracy of 33%.  

V. RESULTS 

Table I shows the results obtained for person identification 
when using the accelerometer, the gyroscope and the 
combination of both sensors, for both Glass (left) and 
Gear (right). Furthermore, it also shows the results when only 

considering segments of the same body posture (which is 
equivalent to previous work [6][13] for the sitting position) 
and when considering all of the postures (a more realistic 
scenario). The results during the lying down position yielded 
high recognition accuracy (94.3% and 93.3% when using the 
Glass and Gear, respectively). This finding is partly to be 
expected as lying down is the most constrained position and 
provides cleaner signals. In contrast, standing and sitting were 
the most challenging postures with 71.63% and 85.92% 
accuracy for Glass and Gear, respectively. This decrease in 
performance is mostly due to the impact that certain postures 
have on the propagation of BCG signals. For instance, during 
the standing position, BCG motions of the head have lower 
amplitude and are more influenced by involuntary body 
movements (see bottom graphs of Fig. 4 as an example). 
There was also a decrease in performance when considering 
all the body postures but the performance of our new approach 
was still far above a random classifier. Note that combining all 
the postures has the additional benefit of not having prior 
knowledge about the body position. When comparing 
performance across devices, the wrist located device 
outperformed the head mounted device. This difference may 
be due to a combination of different factors such as the 
difference in sampling rates of the devices, the appearance of 
more involuntary head motions during the standing positions, 
or the different manifestations of BCG signals on different 
parts of the body. A future systematic comparison examining 
the same type of sensors on different body locations could 
help identify the main factors.  

Table II shows the results obtained when performing body 
posture recognition. In this case, both Gear and Glass could 
estimate the posture of participants 80-83% of the time. The 
two devices achieved comparable results but, interestingly, 
different sensors performed differently for each device. While 
the gyroscope worked better for the Glass, the accelerometer 
worked better for the Gear. We believe this is partly due to 
location of the sensors and the type of motions they capture. 
For instance, sensors on the Glass are located above the right 
eye where BCG movements are more rotational than linear. 
For all the experiments, the combination of accelerometer and 
gyroscope outperformed each of them when used alone, 
providing support that the two types of motion sensors capture 
complementary information.  

VI. DISCUSSION

These results demonstrate that wearable motion sensors 
located on peripheral locations such as the head and the wrist 
can capture relevant information to perform person identity 

TABLE I.       PERSON IDENTIFICATION (AVERAGE ACCURACY ACROSS 100 TESTS)  

Sensors 
Google Glass Galaxy Gear 

Sit Down Lie Down Stand Up All* Sit Down Lie Down Stand Up All* 

Accelerometer 56.08 64.71 49.04 43.32 44.21 74.71 78.33 42.93 

Gyroscope 75.79 83.21 53.29 43.38 72.21 81.50 79.04 56.54 

Accelerometer + Gyroscope 82.00 94.25 71.63 63.96 85.92 93.33 93.79 73.42 

  The accuracy of a random classifier is 8.3%. Number of samples: 144 for all experiments except for * which was 432. 

TABLE II.  BODY POSTURE RECOGNITION  

Sensors Google Glass Galaxy Gear 

Accelerometer 61.11 80.09 

Gyroscope 74.31 61.57 

Accelerometer + Gyroscope 80.56 83.33 

  The accuracy of a random classifier is 33.3%. Number of samples: 432. 
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Fig. 4. Examples of raw head-worn accelerometer and gyroscope sensor data (10 seconds) during different body postures of the same participant. The average 
accelerometer values of the sit down and stand up postures are very similar as the orientation of the device is the same. However, subtle cardiac motions such as 
those observed on the gyroscope readings can be used to discriminate between the different body postures. High frequency motions shown in the bottom graphs 
correspond to different heartbeats. 

and posture recognition, using motion data from moments 
when the person is relatively “still” and no large motions are 
observable.  

 The proposed approach offers several benefits that could 
help address some of the existing challenges of wearable 
devices. For instance, many wearables on the market have 
limited input capabilities (one single button, small or no 
display) to enter user ids or passwords. However, the proposed 
method represents an effortless way to automatically switch 
user identity, just by holding still for a few seconds after you 
put it on. Previous research efforts have tried to address this 
problem; for instance, Gafurov et al. [4] explored analyzing a 
person’s gait with motion sensors to uniquely identify them. 
However, this approach and other research efforts mainly rely 
on the person moving to be able to collect enough identifying 
data. In practice, we see both approaches as complementary 
methods, as BCG signatures are more readily accessible when 
the person is not moving. Our approach could thus be useful to 
provide comfortable repeated verifications that ensure the 
same person is still using the system. For instance, many low-
cost clinical trials that rely on pencil and paper have had their 
integrity questioned because of suspicions that the purported 
patient data was not collected from unique participants. Our 
new approach could validate the BCG waveform as belonging 
to the enrolled patient during moments of “still” data. 

In the context of body posture recognition, traditional 
approaches usually rely on attaching one or more motion 
sensors to the body (e.g., [5]) where the orientation of the 
devices can uniquely correlate with different body postures. 
For instance, the average values of the different accelerometer 
axes of Google Glass can easily differentiate between lying 
down and standing up as the device orientations are 
orthogonal and the readings are affected by Earth gravity (see 
top-left and top-right graphs of Fig. 4). On the other hand, the 
average accelerometer readings when sitting down and 
standing up are very similar because the device orientation 
does not change. This problem occurs very frequently with 
wearable devices as they tend to be located on peripheral 
locations that can move independently of the body posture. 
Moreover, gyroscope sensors have been barely explored in 

this context as they are not affected by the orientation of the 
device. However, since our methods focus on monitoring 
subtle cardiac motions that are affected by body posture, they 
can effectively discriminate between these cases irrespective 
of the orientation of the device and the sensor modality. Our 
new approach offers the opportunity to more accurately track 
sedentary behaviors (e.g., sitting, lying, standing) with only 
one wristband or eyeglass form factor. Moreover, this 
information could then be used to enhance the landscape of 
contextually triggered applications in wearable devices such as 
activation of the step counter when standing up or enabling 
energy saving mode when lying down.  

While these findings open the possibility of enhancing the 
potential applications of wearable devices in several domains 
(e.g., security, health tracking, personalized advertisements), 
they also raise serious privacy concerns. Most consumers are 
still not aware that wearable motion sensors can capture more 
personal information besides obvious motion such as steps. 
Also, third party applications that can be deployed on 
wearable platforms such as AndroidWear do not need to 
request users’ permissions to start logging motion data. Recent 
research efforts have also shown that motion sensors of 
smartphones can capture sensitive audio signals such as the 
numbers of a credit card [10]. Some solutions to potentially 
address this problem could involve limiting the sampling rates 
of the sensors, encrypting sensor data, and requiring user’s 
permission before installing applications. The work presented 
here demonstrates that currently commercially wearable 
devices can also capture personal information. Due to 
increased adoption of these sensors, it is critical to research 
and highlight the unexpected uses of wearable devices. These 
efforts will ensure users can be appropriately informed and 
privacy policies can be updated accordingly. Otherwise, 
malicious applications that track sensitive information without 
users’ awareness could hinder the potential benefits. 

VII. LIMITATIONS AND FUTURE  WORK

Our work considered data collected in a controlled 
laboratory setting involving two wearable devices, 12 
participants, and three body postures pre-/post- exercise. 



While this experiment alters the data in meaningful ways that 
were not considered in previous work. There are still several 
research challenges that need to be addressed before deploying 
the proposed methods in the wild.  

Our study considered a limited set of classes (12 people 
and three body postures, respectively). Real-life scenarios are 
much more complex and include a larger number of classes 
which will require significant efforts in terms of data 
collection and annotation. While our approach is still limited 
in that regard, we believe there may be some cases where 
recognizing a pre-defined small number of classes may still be 
useful, especially in the context of wearables. For instance, 
devices such as Google Glass are still quite expensive and, in 
many cases, approved groups of people are sharing them 
(e.g., doctors, researchers). In this case, person identification 
would be a useful tool for only displaying the information of 
the active user, and thus helping preserve the privacy of other 
inactive users. Note that even though most of the devices need 
to be connected to another device such as the phone, most of 
the sensitive data (e.g., photos, notifications, e-mails) remain 
on the device even when disconnected. In the case of posture 
recognition, Li et al [9] provided a very compelling use case 
scenario in which a limited set of postures can be used to 
better track the sleep quality. 

We tackled two different problems: personal identity and 
body posture recognition from wearable motion data. 
However, there is extensive literature on how other factors can 
also influence the BCG shapes. In our study, the range of ages 
was too small to account for significant changes in the BCG 
signals due to aging. Preliminary tests predicting gender using 
a leave-one-person-out validation yielded recognition rates of 
up to 80% while lying down and 71.67% when considering all 
the postures. Nevertheless, gender was strongly correlated 
with height (0.86) and weight (0.80), which have been shown 
to also affect BCG shapes. While Vural et al. [13] showed that 
heart beat responses were repeatable over a period of time of 1 
to 2 weeks, it is still relevant to thoroughly study when and 
how often it is necessary to collect more data to update the 
classification models. In this case, online learning paradigms 
could potentially be very effective.  

Finally, our methods rely on the person being still for 10 
seconds in order to obtain a clean BCG signature. While the 
user could deliberately hold a position for 10 seconds to 
provide the information during daily life, there are already 
many moments in time when different parts of the body 
remain “still” for a certain amount of time (e.g., watching TV, 
reading, sleeping). For instance, in Rienzo et al. [11] 
researchers found that there were more than 100 5-second 
“still” segments per hour during the day and significantly 
more during the night. While their sensor location was slightly 
different, their findings suggest that sporadic assessments 
during the day without disrupting the user are feasible. Note 
that the proposed methods could be used in combination with 
existing methods (e.g., gait analysis for person identification) 
in order to increase the amount of potential assessments during 
the day. 

VIII. CONCLUSIONS 
Our results show a new way to extract personal 

information from motion-based sensors worn on the wrist or 
head during stationary body postures. In particular, we have 
shown that both the accelerometers and gyroscopes on a head-
mounted and a wristband device can be used to identify the 
person and recognize his/her body posture in a controlled 
laboratory experiment. Among some of the main findings, we 
found that analyzing a combination of accelerometer and 
gyroscope outperformed each of the sensors alone, and that 
wrist-worn measurements provided an additional improvement 
in terms of accuracy. This research opens the possibility of 
many interesting applications such as hands-free biometric 
user identification and body-posture recognition irrespective 
of device orientation. We are looking towards a future when 
such applications can be used to benefit the users while 
keeping them informed and protecting their privacy. 
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