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Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the
Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct
analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have
symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy
physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in
metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi
level protected by point group symmetries. We find two topologically different types of triple point
fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of
existing materials that host triple point fermions of both types and discuss a variety of physical phenomena
associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport
anomalies, and topological Lifshitz transitions.
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I. INTRODUCTION

Materials with nontrivial band structure topology, apart
from possible technological applications, provide a test
ground for the concepts of fundamental physics theories in
relatively cheap condensed matter experiments. For exam-
ple, the recent discovery of Weyl semimetals in the TaAs
materials class [1–5] provided materials, where two bands
cross linearly at isolated points in momentum space, called
Weyl points (WPs) [6]. These WPs occur close to the Fermi
level, and hence, the low-energy excitations in these metals
are described by the Weyl equation of the relativistic
quantum field theory, thus allowing for experimental
studies of Weyl fermions, examples of which in high-
energy physics are still lacking.
Another example of a topological material hosting a

quasiparticle analogue of an elementary particle is that of
Dirac semimetals [7–10]. These are centrosymmetric non-
magnetic materials that host Dirac points (DPs)—points of
linear crossing of two doubly degenerate bands in momen-
tum space. When DPs are located close to the Fermi level,
the low-energy excitations of the hosting metal are

described by the Dirac equation, and thus become direct
analogues of Dirac electrons in high-energy theories.
More recently, it was shown that a variety of possible

symmetries realized in solids also allow for the existence of
topological quasiparticle excitations, which do not have
direct analogues in the standard model [11–17], rendering
novel physical behavior to the hosting compounds.
Classification and description of possible topologically
protected quasiparticles in solids, along with the identi-
fication of material candidates, becomes of major impor-
tance for the progress in materials science and technology,
as well as in general condensed matter theory.
Several of the newly predicted topological fermionic

quasiparticles appear in crystal structures that belong to
nonsymmorphic space groups, containing symmetries
combined of a point group symmetry operation followed
by translation by a fraction of the primitive unit cell vector
[12,14–16,18]. However, topological quasiparticles hosted
by symmorphic space groups that contain point group
symmetry operations only are also not fully classified to date.
Here, we report on a triple point (TP) fermionic

quasiparticle that is realized in metallic band structures
as a topologically protected crossing point of three bands,
two of which are degenerate along a high-symmetry
direction in momentum space. Being topologically distinct
from the previously discussed three-band crossings occur-
ring in nonsymmorphic crystal structures [16], this TP
fermion appears in symmorphic structures, the list of which
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is provided below. We also find several nonsymmorphic
space groups allowing for TP fermions, where the sym-
metry conditions for the appearance of TPs coincide with
those of symmorphic space groups. TP fermions come in
two topologically different variants accompanied by either
one (type A) or four (type B) nodal lines, along which the
valence and conduction bands of a metal are degenerate, as
illustrated in Fig. 1 [19].
Both types of TP fermions produce topologically pro-

tected Fermi arcs on the surfaces of the hosting TP
topological metals (TPTMs) and have gapless Landau
level spectrum when subject to symmetry-preserving mag-
netic fields, suggesting the possible observation of trans-
port anomalies in these materials. Moreover, we predict
series of doping-driven topological Lifshitz transitions in
TPTMs, and their transition to a Weyl semimetal phase
under certain lattice distortions.

We predict a type-A TPTM phase to be realized in the
ZrTe family of compounds, where, in some cases, TPs
come to interplay with other topological features of the
band structure, allowing for an experimental study of
coexisting topological quasiparticles. Type-B TP is realized
in CuPt-ordered InAs0.5Sb0.5 [20], as well as in HgTe,
strained along the (111) direction [21]. We also provide a
list of space groups that can host candidate materials better
suited for the experimental verification of the type-B
TPTM phase.
This paper is organized as follows. In Sec. II, we describe

the conditions for the appearance of the two types of TPs,
describe the topological difference between them, provide a
list of hosting space groups, and describe the transition to
the Weyl semimetal phase. Section III provides micro-
scopic model Hamiltonians for a generic TP, which is used
to describe the topological Lifshitz transitions in TPTMs.
In Sec. IV, we introduce a family of experimentally known
materials that host the type-A TPTM phase and provide a
detailed description of their band structures. We also use
the example of the predicted family of compounds to
discuss the topological surface states arising in TPTMs and
the response of these materials to external magnetic fields.

II. CLASSIFICATION OF SYMMORPHIC
TRIPLE POINTS

The realization of a symmorphic TP at a momentum k in
the Brillouin zone (BZ) of a crystal structure requires the
little group of k to contain both one- and two-dimensional
double group representations. Thus, TPs appear on high-
symmetry lines in the BZ, where the little group of k is C3v,
whose elements are threefold rotation C3 and 3 mirrors σv,
containing the C3 axis, rotated by 120 deg relative to each
other [22–24]. (We also find one notable exception from
this rule given by space group 174 (C1

3h), where the
interplay of time-reversal (TR) and mirror symmetry on
the C3-symmetric line allows for both one- and two-
dimensional double group representations.) This criterion
allows us to identify all the space groups that can host TP
fermions on a line.
The results are summarized in Table I. Note that the little

group on the high-symmetry axis of the type-B TPTMs is
exactly C3v, while for type-ATPTMs it is supplemented by
an additional antiunitary symmetry. This symmetry is the
product of the mirror plane σh, orthogonal to the C3 axis
and time reversal. Its presence preserves the existence of
doubly and singly degenerate representations, and, hence,
allows for the existence of TPs. In our consideration, we
also include nonsymmorphic space groups, such that the
TP crossing includes the same irreducible representations
as found in the symmorphic space groups.
The topological classification of TPs into type A and

type B stems from the different numbers of accompanying
nodal lines, and also from the fact that the nodal lines

FIG. 1. Two types of triple point quasiparticles. (a) Type-A
triple points are connected by a single nodal line, where
conduction and valence bands are degenerate (shown in black).
(b) Type-B triple points are accompanied by four such nodal
lines, shown in black, green, blue, and red. The latter three occur
in the mirror-symmetric planes in momentum space. The gray
circles in (a) and (b) indicate paths for the Berry phase
calculation. (c) [(d)] Band structure around a type-A [type-B]
triple point along the C3 axis. Here, Λ6 represents the double
degenerate band (double representation of C3v), while Λ4;5

correspond to two one-dimensional representations. The black
lines in (c) and (d) mark the region of the band structure that
produces the nodal lines shown in black in (a) and (b). (e) [(f)]
Band structure around a type-A [type-B] triple point in a mirror-
symmetric plane orthogonal to kz. The dashed green lines in (c)
and (d) mark the momentum kz used in (e) and (f). Red (blue) in
(c)–(f) corresponds to occupied (unoccupied) bands.
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accompanying the two types of TPs are topologically
distinct. Because of the three vertical mirror planes, the
Berry phase φB accumulated by valence bands on any
mirror-symmetric path [shown in gray in Figs. 1(a) and
1(b)] enclosing the corresponding nodal line is quantized to
be either 0 or π [25,26]. The nodal line of type-A TP
topological metals has φB ¼ 0, while all the lines of type-B
TPs have φB ¼ π.
These values are consistent with the band structure plots,

shown in Figs. 1(c)–1(f). In type-ATPTMs the crossing of
conduction and valence (occupied and unoccupied) bands
occurs on a high-symmetry line and is quadratic, while for
the type-B phase this quadratic touching point splits into
two points, where the bands cross linearly. The presence of
nodal lines with nontrivial Berry phase, as is the case for
type B, is generally associated with the appearance of
surface states [26,27]. The merging and subsequent anni-
hilation of nodal lines is similar to the nexus point
discussed in the context of 3He-A and Bernal-stacked
graphite with neglected spin-orbit coupling (SOC) [28–
31]. We stress, however, that the scenarios discussed in the
present work take full account of SOC.
Analogous to WPs [6], the minimal number of TPs in the

BZ is four for materials preserving TR symmetry. A pair of
TPs located on a C3v-symmetric line can be split into four
WPs by lowering the C3v symmetry to C3 (breaking σv),
which can be done by a small Zeeman field parallel to the
C3 axis or by an atomic distortion. Conversely, imposing
inversion symmetry onto the atomic structure makes the
two TPs merge into a single DP. Hence, the TPTMs can be
viewed as an intermediate phase separating Dirac and Weyl
semimetals in materials with a C3v-symmetric line in
the BZ.

III. MICROSCOPIC MODELS
AND LIFSHITZ TRANSITIONS

To analyze the physical properties of TP fermions, we
now introduce k · p models for TPTMs. An example of
such a model for a type-B TP was provided in Ref. [20] for
the CuPt-ordered InAs0.5Sb0.5 (space group 160 C5

3v). Here,
we concentrate on the type-A TP, which can, for example,
be realized in D3h and C3h according to Table I.
This space groups has all the symmetries of C3v

supplemented by a mirror σh that is orthogonal to the
threefold axis. Combined with TR θ, this symmetry
changes the little group of C3v by adding the following
antiunitary symmetry θ∘σh: ðkx; ky; kzÞ → ð−kx;−ky; kzÞ,
where kz is aligned with the C3v axis. Note that θ∘σh acts
similarly to a twofold axis (although with an antiunitary
representation) and thus makes the four nodal lines scenario
of type-B TPs incompatible with the D3h point group in
nonmagnetic materials. As a result, the k · p model for the
type-A TP is different from that of type B, and can be
written as (see Appendix B for the model derivation)

HTPA
k·p ¼

0
BBBBBB@

E0 þA1kz 0 −iωCkx iωCky
0 −E0 þA2kz −ωDky −ωDkx

iω�Ckx −ω�Dky Bkz 0

−iω�Cky −ω�Dkx 0 Bkz

1
CCCCCA;

ð1Þ

where ω ¼ −1þ ffiffiffi
2

p − i. In the following, we use
E0 ¼ 30 meV, A1 ¼ A2 ¼ 1.4 eVÅ, B ¼ −1.0 eVÅ,
and C ¼ D ¼ 1.0 eVÅ. We use the above k · p model
for the illustrations of the type-A TPTM and the model of
Ref. [20] for the type-B illustrations in Figs. 1 and 2.
Further details of k · p modeling of TPTMs, including the
model for the type-B TP, are found in Appendix B.
Using the models of Eq. (1) and the one of Ref. [20], we

analyze the Lifshitz transitions in the TPTMs. The nodal
lines of Figs. 1(a) and 1(b) guarantee that several Fermi
surfaces touch within a finite energy window in between
two TPs. Figure 2(a) illustrates the fixed ky ¼ 0 cuts of the
Fermi surface for the Fermi level EF placed above, below,
and in between the two TPs, representing three topologi-
cally distinct Fermi surfaces. At each of the two TPs a
topological Lifshitz transition takes place: one of the Fermi
pockets shrinks to a point reopening either inside or outside
another Fermi pocket. When the EF is placed in between
the two TPs there appears a topologically protected
touching point between electron and hole pockets, similar
to the type-II WP scenario [11]. In Appendix E we
provide a real material illustration of the Lifshitz transitions
in type-A TPTM.

TABLE I. Space groups allowing for TPs of different types with
TR symmetry. The points can appear on high-symmetry lines in
the Brillouin zone: Γ-A line [Δ ¼ ð0; 0; αÞ] and K-H line
[P ¼ ð−1=3; 2=3; αÞ]. Commonly used notations change for
the space groups 160 and 161, for which the lines (points) are
Γ-P2 [Λ ¼ ðα; α; αÞ] and, in case the lattice constants fulfillffiffiffi
3

p
a >

ffiffiffi
2

p
c, also P0-T [P ¼ ð1=2 − α; 1=2 − α;−1=2 − αÞ].

Note that the space groups 158, 159, 161, 184–186, 188, and
190 are nonsymmorphic, but the TPs exist on lines where the
nonsymmorphicity does not change the irreducible representa-
tions; thus, they are identical to the TPs found in symmorphic
space groups. We note that, in addition, the groups 162–167 and
191–194 admit type-B TPs provided time-reversal symmetry is
broken in a way preserving C3v representations on a line in the
Brillouin zone. Some of the cubic space groups also allow triple
band crossings, but due to the cubic symmetry, a special situation
arises, which is discussed in more detail in Appendix A.

TP typeΓ-A (Δ) or Γ-P2 (Λ) K-H (P) or P0-T (P)

Type A 174, 187–190
Type B 156–161 157, 159–161, 183–186, 189–190
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The Lifshitz transitions occurring in type-B TPTMs are
illustrated in Fig. 2(b). The difference from the type-A
transitions is that a single touching point between the Fermi
pockets (the point of quadratic band touching) now splits
into four points (or two linear band touchings on each
mirror plane) due to the breaking of σh [see insets of
Fig. 2(b)]. Interesting spin textures with changing winding
numbers were predicted for a (111)-strained HgTe in
Ref. [21], which, according to our classification, is a
type-B TPTM. We verify that similar nontrivial windings
in the spin texture are found for type-A TPTMs.
Since the distinct Fermi pockets touch in TPTMs for a

range of energies, the topological charge of individual
pockets is undefined. However, as mentioned above, this
degeneracy is lifted by breaking σv by, for example,
applying a small Zeeman field in the z direction. In this
case each of the TPs splits into two WPs with opposite
Chern numbers, as illustrated in Fig. 2(c). The touching
Fermi pockets now separate, and well-defined Chern
numbers can be assigned to each of them. The Chern
number of a pocket is equal to the total Chern number of
WPs enclosed within it. Appendix G also contains an
additional topological characterization of TPs in terms of
Wilson loops [32] and Wannier charge centers [33,34].

IV. MATERIAL CANDIDATES FOR TYPE-A
TRIPLE POINT TOPOLOGICAL METAL

Having established the physical phenomena inherent to
TPSMs, we proceed to real material examples. We use

these examples to illustrate the topological surface states
present in TPTMs and the nontrivial structure of Landau
levels. While the material example of type-B TPSMs was
predicted to exist in CuPt-ordered InAs0.5Sb0.5 [20] and
(without referring to nontrivial band structure topology and
topological surface states) strained HgTe [21], here we
provide a list of material candidates for type-ATPTMs that
have not been discussed to date.
We find the type-A TPTM phase in a family of

two-element metals AB (A ¼ fZr;Nb;Mo;Ta;Wg,
B ¼ fC;N; P; S;Teg) listed in Table II. These materials
have a WC-type structure that belongs to space group
P6̄m2 (D1

3h ¼ 187). The primitive unit cell, shown in
Fig. 3(a), consists of two atoms A and B at Wyckoff
positions 1a (0,0,0) and 1d ð1

3
; 2
3
; 1
2
Þ, respectively. The

corresponding bulk BZ is shown in Fig. 3(b) along with
the (001) and (010) surface BZs.

A. Band structures with and without SOC

We perform ab initio simulations (see Appendix C for
numerical details) of all the materials listed in Table II. For
brevity, in Fig. 4 we illustrate only the band structures of
ZrTe, WC, and TaN, which we use as representative
materials.

FIG. 2. (a) [(b)] Fermi surfaces for type-A [type-B] triple point
topological metals at three different energy cuts: below, between,
and above the two triple points. The three small insets in (b) show
that for the type-B scenario there are several distinct touching
points between the Fermi pockets. (c) Band structure around the
triple points for a small Zeeman field parallel to the C3 axis.
(d) Fermi surface of type-A triple point topological metal with a
small Zeeman field. In (c) and (d) the Chern numbers of WPs and
Fermi surfaces are marked in red (þ1) and blue (−1).
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FIG. 3. (a) Primitive unit cell of WC-type structure. (b) The
bulk BZ and (001) and (010) surface BZs.

TABLE II. A list of type-A triple point topological metal
candidates. Mirror Chern numbers Cm¼�i in the kz ¼ 0 and kz ¼
π planes are listed along with the energies of TPs relative to the
Fermi level. We defineG1 andG2 to be a pair of TPs closest to the
Fermi level. References to experimental works reporting lattice
parameters for the compounds are also listed.

Material C�iðkz¼0Þ C�iðkz¼πÞ EðG1Þ [eV] EðG2Þ [eV]
MoC [35] Nodal line ∓ 1 0.5119 −0.5723
WC [36] Nodal line ∓ 1 0.3571 −0.3286
WN [37] Nodal line ∓ 1 −1.2801 1.0544
ZrTe [38] ∓ 1 ∓ 1 0.0885 0.0438
MoP [39] ∓ 1 ∓ 1 −0.2400 −0.3707
MoN [40,41] 0 ∓ 1 −1.3724 0.5984
TaN [37] 0 ∓ 1 0.0632 0.2404
NbN [37] 0 ∓ 1 0.1825 0.1513
NbS [42] ∓ 1 ∓ 1 −1.0090 0.2601
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In the absence of SOC there is a band inversion at K and
K0 points in ZrTe and WC [Figs. 4(a) and 4(c)], resulting in
a nodal ring in the kz ¼ 0 plane protected by σh, while this
band inversion is absent in TaN. The common feature of all
materials is that along the C3v symmetric Γ-A line there is a
band crossing of a singly and doubly degenerate bands due
to the inversion of the singly (Λ1) and the doubly
degenerate (Λ3) states at A. This crossing produces a single
no-SOC TP, and it is this feature that generates four TPs
upon introducing SOC.
All the considered materials have sizable SOC, which

cannot be neglected. Because of the lack of inversion
symmetry, the bands are spin split at generic momenta, as
shown in Figs. 4(b), 4(d), and 4(f). We find a band inversion
along the H-A-L line such that the A point acquires an
inverted gap for all materials. Consequently, the kz ¼ π
plane becomes an analogue of a 2D quantum spin Hall
insulator in all of the compounds [43]. Topological con-
firmation of the presence of band inversion is given by the
nontrivial values of the mirror Chern numbers [44] on the
σh plane listed in Table II (see Appendix F for more
details).
In ZrTe the nodal ring around K and K0 points acquires a

small gap [see also the inset in Fig. 4(b)]. Interestingly, WC
(together with MoC and WN) remains a nodal line metal
[see inset Fig. 4(d)]. There exist two nodal rings (one inside
another) formed by two touching bands protected by the

horizontal mirror σh. For WN there is only a single such
nodal ring around eachK andK0. The nodal rings are found
to be quite far from the Fermi level. We find the inner
(outer) nodal rings of WC 0.72 eV (0.64 eV), the inner
(outer) nodal ring of MoC at 0.39 eV (0.35 eV) above the
EF, while the single nodal ring of WN is 1.69 eV below EF.
We specifically check the stability of nodal lines in WC
with tensile strain in the z direction, and furthermore find
that the inner nodal ring can be removed by applying a
compressive strain of at least −0.2% (see Appendix C 3),
leaving a single nodal ring. We further calculate the band
structure using the HSE06 hybrid functional [45] to check
for a possible underestimation of the band gap and find that
the topological features of the materials discussed above are
preserved (see Appendix C 2 for details).
In Fig. 4(g), we show a zoom-in of the Γ-A line in ZrTe.

The Fermi level resides in between the Γ9 and Γ8 bands at
A. Upon turning on the SOC the no-SOCΛ3 state splits into
the singly degenerate Λ4 þ Λ5 states and the doubly
degenerate Λ6 state. Another Λ6 state comes from the
no-SOC Λ1. The two Λ6 states hybridize and each of them
crosses with the spin-split Λ4;5 states creating two pairs of
TPs: ðG1; G2Þ and ðG3; G4Þ. Each TP is protected by the
C3v symmetry of the Γ-A line. In Figs. 4(h) and 4(i), we
show the dispersion in the (100) direction for kz tuned to the
position of G1, G2, respectively. A linear band crossing
superimposed with a quadratic band resembles a WP,

FIG. 4. Band structure of ZrTe (a) [(b)], WC (c) [(d)], and TaN (e) [(f)] without [with] SOC. The Fermi energy is set to 0 eV. (g) Band
structure of ZrTe along the Γ-A line. Bands are labeled by their double group representations corresponding toD3h at Γ and A points and
C3v on the Γ-A line. (h) [(i)] Band structures in the (100) direction with kz tuned to the TPsG1 [G2]. (j) [(k)] Projected surface density of
states (SDOS) for the (010) surface of ZrTe with Zr [Te] termination. (l) [(m)] The (010)-surface Fermi surface of ZrTe at E ¼ 0 eV for
Zr [Te] termination.
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degenerate with a quadratic band, similar to the findings of
Ref. [20] for type-B TPTMs. Again, band inversion is the
mechanism leading to the formation of TPs.

B. Topological surface states

The surface states of the above compounds are calculated
with the software package Wannier_tools [46], using the
symmetrized Wannier-based tight-binding (TB) model
detailed in Appendix D, and the iterative Green’s function
method [47,48]. In Figs. 4(j) and 4(k), we present the
surface states of ZrTe for the (010) surface. The surface
potential is found to depend strongly on the termination
choice: Zr [Te] termination is shown in Fig. 4(j) [Fig. 4(k)].
Since the kz ¼ π plane is a quantum spin Hall insulator
plane, a Kramers doublet of surface states should appear
along the Ā-R̄ line of the surface BZ. Indeed, we find a
surface Dirac cone SS1 located at Ā (R̄) for Zr (Te)
termination. The surface states forming the Dirac cone
emerge from the TPs G1 and G2. For kz values below the
location of G1 and G2, there exists another pair of surface
states SS1’ emerging from the TPs. SS10, however, is not
topologically protected, since there is no topological
invariant to guarantee its appearance.
The K0 point of the bulk BZ is projected onto the Γ̄-X̄

line in Figs. 4(j) and 4(k) [compare to Fig. 3(b)]. A small
gap due to SOC can be visible in the projected bulk
spectrum around the projection of K point (shown with an
arrow). For ZrTe, the kz ¼ 0 mirror plane hosts a quantum
spin Hall phase with the mirror Chern numbers �1; thus,
one can expect to see a Kramers pair of topological surface
state along the line X̄←Γ̄ → −X̄. This expectation can be
further supported by the Berry curvature calculation in the
kz ¼ 0 plane. It reveals the accumulation of Berry curvature
in an area around the K (K0) point that sums up to
approximately −1 (1) (see Appendix F). In accord with
this topological argument, we do find a quantum-Hall-like
surface state SS2 crossing the gap along Γ̄-X̄ (its Kramers
partner is not shown, being at TR-symmetric part of the
surface BZ). The choice of surface termination flips the
sign of velocity of SS2. This flip is related to the fact that
one of the terminations is obtained from the top surface,
while the other one is obtained from the bottom one, and,
hence, both pictures correspond to the same surface state
(the component of the k vector orthogonal to the surface is
reverted). We thus conclude that on a (010) surface there
exist two topologically protected surface states, potentially
observable in ARPES: SS1 and SS2.
Figures 4(l) and 4(m) show the (010) surface Fermi

surface revealing double Fermi arcs between the two hole
pockets containing the TPs, corresponding to SS1. The
state SS2 is not visible for this choice of the Fermi level.
For Te termination the Fermi arcs connect the two hole
pockets, while they do not touch them for the Zr termi-
nation. In both cases, however, the surface states are

protected by TR and mirror symmetry of the kz ¼ π plane,
so they can not be fully removed from the spectrum.
While the topological protection of the Fermi arcs of

Weyl semimetals, in general, do not rely on crystalline
symmetries [6], the Fermi arcs of Dirac semimetals are, in
general, not protected away from TR symmetric planes
kz ¼ 0, π and can be subject to hybridization [49]. Still, in
Dirac semimetals Cd3As2 and Na3Bi, closed surface Fermi
contours, connecting the two DPs, are found both numeri-
cally and experimentally [7,10,50]. For ZrTe, Fig. 4(l)
realizes an exposed closed Fermi contour scenario, show-
ing that the Fermi arcs of TPs generally do not need to
connect different nontrivial carrier pockets.
To further establish this point, we model the behavior of

the surface states using the k · p model of Appendix B
[Eq. (B4)] parametrized to have a single surface Dirac cone
located at A. The k · p model we use allows for tuning
between inversion symmetric and asymmetric band struc-
tures (see Appendix B). In Fig. 5, we compare the surface
states obtained from this model with and without inversion
symmetry. In the presence of inversion and TR symmetry,
the two TPs merge into a fourfold degenerate DP. Across all
energies in the gap the two hole pockets around Ā are
connected by two Fermi arcs, and the surface state on the kz
axis is twofold degenerate. Breaking of inversion symmetry
then splits the DP into two TPs. Each TP contributes a single
nondegenerate surface state. Since the two surface states are
split along the kz axis, the Fermi arcs are not required to
connect the two hole pockets. Instead, one finds a topo-
logical-insulator-like Dirac cone around Ā which is still
protected by TR and σh symmetries. The splitting of the DP
into twoTPs thus explains the opening of Fermi arcs in ZrTe.

C. Landau levels

The topologically nontrivial nature of Weyl semimetals
reveals itself in magnetotransport. Type-I WPs produce

FIG. 5. (010) surface of the k · p model given in Eq. (B3). (a)
[(b)] SDOS (the black lines show the bulk dispersion for ky ¼ 0)
and (c) [(d) the surface Fermi surface with [without] inversion
symmetry.
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gapless Landau level spectrum, realizing the chiral anomaly
of the quantum field theory [28,51–55]. Type-II WPs have
an anisotropic chiral anomaly [11], where the Landau level
spectrum is gapless only for certain directions of the
applied magnetic field.
We find that magnetotransport properties of TPs also

depend on the direction of an applied magnetic field. A C3

preserving magnetic field (along the C3 axis) does not gap
the Landau level spectrum of a TP, but instead each TP
contributes a single chiral Landau level. However, if the
field is applied in a C3-breaking direction, the Landau level
spectrum becomes gapped. Such a direction dependence
also occurs in Dirac semimetals [56], further supporting the
view of TPTMs as an intermediate state between Dirac and
Weyl semimetals.
To illustrate our claims, we obtain the Landau levels

by performing a Peierls substitution of kx and ky in
the k · p Hamiltonian by kx ¼ ½i=ð ffiffiffi

2
p

lBÞ�ða† − aÞ and
ky ¼ ½i=ð ffiffiffi

2
p

lBÞ�ða† þ aÞ, with lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏ=eBÞp
the mag-

netic length and a†, a the raising and lowering operators
a†jni ¼ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p jnþ 1i and ajni ¼ ffiffiffi

n
p jn − 1i. The result-

ant Landau level spectrum calculated with a k · p model of
ZrTe [see Eq. (B3) of Appendix B] is shown in Fig. 6 for a
magnetic field of 20 T applied in the (001) direction. With
the magnetic field, a pair of TPs G1 and G2 turns into two
chiral Landau levels with opposite chirality. The two chiral
Landau levels are required to cross, as illustrated by the
inset in Fig. 6, resulting in a gapless Landau level spectrum,
which suggests strong signatures of the TPTM phase to be
observable in magnetotransport.

V. CONCLUSIONS

In conclusion, we introduce the notion of a triple point
topological metal, illustrating the topology mediated
observable phenomena associated with this class of

materials. We identify two topologically distinct classes
of TPTMs and provide material examples for all of them.
Our work also specifies the space groups that host the
TPTM phase, allowing for future discovery of hosting
compounds. We believe that our work will allow for
further progress in understanding topological phenomena
in solids and identification of topological materials with
potential applications in technology. In particular, we
expect low-temperature applications to arise due to the
presence of direction-dependent magnetotransport in TP
materials.
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Note added.—Recently, Ref. [57] appeared, discussing
some of the topological properties of TaN—one of
the materials we propose for type-A triple points in
this work. Related works, Refs. [58,59], have also appeared
recently.

APPENDIX A: k · p TRIPLE POINTS IN
CUBIC SPACE GROUPS

In Table I we list space groups allowing for TPs of
different types with TR symmetry. In addition, the
cubic space groups 215–220 allow for type-B TPs along
the Λ high-symmetry line [Λ ¼ ðα; α; αÞ], and for space
groups 217 and 220 additionally along the F line
[F ¼ ð1=4þ α; 1=4 − 3α; 1=4þ αÞ]. The case of the non-
symmorphic space group 220 has also been treated in
Ref. [16]. Because of the lack of a horizontal mirror, these
TPs are all of type B. The situation is complicated by the
fact that the Λ4;5 and Λ6 states are degenerate at Γ (the same
is true for the H and P point connected by the F line in
space group 217) forming the four-dimensional Γ8 repre-
sentation. This is depicted in Fig. 7 and leads generically to
eight TPs near a Γ8 crossing along the eight equivalent Λ
directions. It has been pointed out in Ref. [21] that HgTe
realizes such a scenario. Since the Λ4;5 and Λ6 states are
also degenerate at Γ, there is no band inversion associated

FIG. 6. Landau levels for a magnetic field of 20 T applied
parallel to the C3 axis. The calculation is done with the k · p
model of Eq. (B3) describing ZrTe. The dashed red lines show the
bulk bands and the inset reveals the crossing of the two chiral
Landau levels.
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with these TPs, and they correspond to the trivial scenario
according to the topological classification given in
Appendix G. In principle, the Λ4;5 states could cross with
a different Λ6 state (e.g., from an electronlike Γ6 or Γ7 state
—going into a single Λ6 state—with lower energy than the
Γ8 state), thus generating also nontrivial TPs. We note
that, in addition, the cubic space groups 221–230 admit
type-B TPs provided TR symmetry is broken
in a way preserving C3v representations on a line in the
Brillouin zone.

APPENDIX B: k · p HAMILTONIANS

We derive several k · p models describing the bands in
the vicinity of the A, K, and TPs. The k · p models are used
to get a better understanding of the surface states, Fermi
surfaces, and Landau levels.

1. k · p models around the A and triple points

First, we construct a model around the A point that
captures the band inversion and describes the TPs. We
include the Γ9, Γ8, and Γ7 states [see Fig. 4(g) herein and
Table 65 of Ref. [22]] with energies close to the Fermi
level. The little group of A is D3h plus TR symmetry. For
the derivation of the k · p models we need to identify the
correct representations of the symmetry operations. The
Hamiltonian is then constructed such that it commutes with
all symmetries S,

HðSðkÞÞ ¼ RSHðkÞR†
S; ðB1Þ

with RS being the representation of S in the basis of H.
Since all representations are two dimensional, we write

the symmetry representation as the direct sum of two
dimensional representations RðΓ9Þ ⊕ RðΓ7Þ ⊕ RðΓ8Þ,

C3 ¼

0
B@

− 1
2

− ffiffi
3

p
2ffiffi

3
p
2

− 1
2

1

1
CA; RC3

¼ −I2×2 ⊕
 

1
2

− ffiffi
3

p
2ffiffi

3
p
2

1
2

!
⊕

 
1
2

− ffiffi
3

p
2ffiffi

3
p
2

1
2

!
;

σv ¼ diagf−1; 1; 1g; Rσv ¼ −iτz ⊕ iτz ⊕ iτz;

σh ¼ diagf1; 1;−1g; Rσh ¼ iτx ⊕ −iτy ⊕ iτy;

TR ¼ diagf−1;−1;−1g; RTR ¼
 

0 1−iffiffi
2

p

−1þiffiffi
2

p 0

!
⊕ −iτy ⊕ −iτy; ðB2Þ

with τx, τy and τz being the Pauli matrices and I2×2 the identity.
Considering the constraint Eq. (B1) for all symmetries above, one obtains the following Hamiltonian:

HA
k·p ¼

0
BBBBBBBBBB@

ϵ1ðkÞ þ Akz 0 ωEkx −ωEky −iωDkx iωDky
0 ϵ1ðkÞ − Akz iωEky iωEkx −ωDky −ωDkx

ω�Ekx −iω�Eky ϵ2ðkÞ 0 −Cky − iBkz Ckx
−ω�Eky −iω�Ekx 0 ϵ2ðkÞ Ckx Cky − iBkz
iω�Dkx −ω�Dky −Cky þ iBkz Ckx ϵ3ðkÞ 0

−iω�Dky −ω�Dkx Ckx Cky þ iBkz 0 ϵ3ðkÞ

1
CCCCCCCCCCA
; ðB3Þ

using the definitions ω ¼ −1þ ffiffiffi
2

p − i and ϵiðkÞ ¼ Ei þ Fiðk2x þ k2yÞ þ Gik2z and k relative to the A point. Via fitting to the
ZrTe band structure, we obtain the following parameters for Eq. (B3): E1 ¼ −0.0391, E2 ¼ 1.3709, E3 ¼ 0.0391,
F1 ¼ 2.2, F2 ¼ −12.64, F3 ¼ 1.5, G1 ¼ 3.75, G2 ¼ −0.5, G3 ¼ 4.25, A ¼ 0.17, B ¼ 0.24, C ¼ 2.9, D ¼ 0.05,
and E ¼ 2.55.

FIG. 7. Schematic band structure of unstrained HgTe near Γ.
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Now, a minimal model, which captures the inversion of
the Λ6 and the Λ4=5 states but leaves out the higher energy
Λ6 coming from the Γ9 representation, is constructed. By
removing the Γ9 states and their interactions from Eq. (B3),
a 4 × 4 model is obtained:

HA;4×4
k·p ¼

0
BBBBB@
ϵ1ðkÞþAkz 0 −iωDkx iωDky

0 ϵ1ðkÞ−Akz −ωDky −ωDkx
iω�Dkx −ω�Dky ϵ3ðkÞ 0

−iω�Dky −ω�Dkx 0 ϵ3ðkÞ

1
CCCCCA:

ðB4Þ

To simulate the interaction of the two Λ6 bands, we add a
fourth-order term to ϵ3ðkÞ ¼ E3 þ F3ðk2x þ k2yÞ þ G3k2zþ
H3k4z . We find the following parameters via fitting to the
band structure of ZrTe: E1 ¼ −0.0391, E3 ¼ 0.0391,
F1 ¼ 2.2, F3 ¼ 3.2, G1 ¼ 4.5, G3 ¼ −7.3, H1 ¼ 0,
H3 ¼ −7.3, A ¼ 0.17, and D ¼ 0.45. Note that the param-
eter A is the only one that breaks inversion symmetry in the
above model. Setting A ¼ 0, one obtains a k · p description
of a Dirac semimetal.
A four-band Hamiltonian describing the bands in the

vicinity of the two TPs can be obtained using the
representations used to obtain Eq. (B4). Instead of σh
and TR only their product θ∘σh needs to be taken into
account at a general k point on the C3v axis. The resultant
Hamiltonian is given in Eq. (1). This is a realization of the
type-A TPs introduced in the main text.

A uniform magnetic field can be added via a Zeeman
term, which is given in our basis as

HZeeman ¼ hz½τx ⊕ ð−τyÞ�; ðB5Þ

with τx and τy Pauli matrices, and we use hz ¼ 0.002 in
Figs. 3(c) and 3(d).
The k · p Hamiltonian given in Ref. [20] is different from

Eq. (1) due to the absence of σh (or θ∘σh) symmetry in the
corresponding point group. It realizes the type-B TP
scenario, and is given here for completeness:

HTPB
k·p ¼

0
BBBBB@
E0þAkz 0 Dky Dkx

0 −E0þAkz F�kx −F�ky
D�ky Fkx BkzþCkx Cky
D�kx −Fky Cky Bkz−Ckx

1
CCCCCA:

ðB6Þ

2. k · p model for the K point

A good k · p description of the topology and bands
around K (or K0) requires at least eight states. The little
group of the K points is C3h, and the Γ7, Γ12, Γ11, Γ9, Γ12,
Γ10, Γ8, and Γ7 states (see Table 57 of Ref. [22]) are
determined to be relevant for constructing a k · p descrip-
tion. We use the following symmetry representations:

C3 ¼

0
BB@

− 1
2

− ffiffi
3

p
2ffiffi

3
p
2

− 1
2

1

1
CCA; RC3

¼ diagfeiðπ=3Þ;−1;−1; eiðπ=3Þ;−1; e−iðπ=3Þ; e−iðπ=3Þ; eiðπ=3Þg;

σh ¼ diagf1; 1;−1g; Rσh ¼ diagfi;−i; i;−i;−i; i;−i; ig: ðB7Þ

Considering the symmetries given above, the lowest-order Hamiltonian around K is given by

HK
k·p ¼

0
BBBBBBBBBBBBBBB@

ϵ1ðkÞ 0 B1kþ A1kz 0 B3k− 0 0

0 ϵ2ðkÞ −A0
1kz B2k− 0 0 B4kþ 0

B�
1k

− −A0�
1 kz ϵ3ðkÞ 0 A2kz B9kþ 0 B5k−

A�
1kz B�

2k
þ 0 ϵ4ðkÞ −B0

9k
þ 0 B6k− A4kz

0 0 A�
2kz −B0�

9 k
− ϵ5ðkÞ 0 B7kþ 0

B�
3k

þ 0 B�
9k

þ 0 0 ϵ6ðkÞ A3kz B8kþ

0 B�
4k

− 0 B�
6k

þ B�
7k

− A�
3kz ϵ7ðkÞ 0

0 0 B�
5k

þ A�
4kz 0 B�

8k
− 0 ϵ8ðkÞ

1
CCCCCCCCCCCCCCCA

; ðB8Þ
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using ϵi defined as in Eq. (B3), k� ¼ kx � iky, and k
relative to K. Since K is not a TR invariant, momentum
bands do not form doubly degenerate Kramers pairs at this
point. For the k · pmodel around the K point, we obtain the
following parameters via fitting to the ZrTe band structure:
E1 ¼ −0.0979, E2 ¼ −0.0671, E3 ¼ 0.6538, E4 ¼
0.8393, E5 ¼ 1.0661, E6 ¼ 1.1351, E7¼1.2145, E8¼
1.2774, F1¼F2¼3.6, F3 ¼ F4 ¼ −2.0, F5 ¼ F6 ¼ 6.0,
F7 ¼ F8 ¼ 1.5, G1 ¼ G2 ¼ 3.6, G3 ¼ G4 ¼ −0.2,
G5 ¼ G6 ¼ 2.0, G7 ¼ G8 ¼ −3.0, A1 ¼ A0

1 ¼ 4.0,
A2 ¼ 0.2, A3 ¼ 0, A4 ¼ 0, B1 ¼ 0.2 − i0.1, B2 ¼
0.02 − i0.01, B3 ¼ 0.2, B4 ¼ −0.2, B5 ¼ −1.0þ i4.0,
B6 ¼ −4.0þ i1.0, B7 ¼ 3.0þ i0.5, B8 ¼ −0.5þ i3.0,
and B9 ¼ 1.5.
The Weyl points reported in Ref. [59] are also described

by this k · p model.

3. Surface states from k · p models

Here, we compare surface states obtained from the k · p
models to the first-principles results presented in Sec. IV.
The k · p surface state calculations are done by discretizing
the momentum ky, and thus generating a 1D TBmodel with
auxiliary parameters kx and kz [60]. The SDOS is then
calculated using the iterative Green function method
[47,48]. For the k · p models given in Eqs. (B3) and
(B4). we use 1 Å as the discretization length and 2 Å
for Eq. (B8).
The k · p models with the parameters given above fit the

band structure of ZrTe. The model around A given in
Eq. (B3) is then characterized by the mirror Chern numbers
Cm¼�i ¼∓ 1 in the kz ¼ π plane. Therefore, a topological-
insulator-like surface state is expected on a surface
orthogonal to the σh mirror plane. In Fig. 8(a), we show
the SDOS on a surface orthogonal to y, corresponding to
the (010) surface in the WC structure. On the kx axis the
upper topologically nontrivial surface state emerges from

the conduction bands and connects to the valence bands.
There is another trivial surface state with opposite mirror
eigenvalue below. If we compare this to the first-principles
surface states shown in Fig. 4(k), then these two surface
states will form a Dirac cone at R̄ for a Te-terminated
surface. In Fig. 8(b), the Fermi surface is plotted. The
topologically nontrivial hole pockets are connected by a
pair of Fermi arcs.
The k · p model around K is characterized by a total

Chern number of C ¼ 1; respectively, C ¼ −1 at K0.
Hence, around K and K0 a quantum-Hall-like surface state
is expected. This is confirmed in Figs. 8(c) and (d), where
we calculate the SDOS on a surface orthogonal to y. The
surface states give an excellent match to the first-principles
result presented in Figs. 4(j) and 4(k).

APPENDIX C: FIRST-PRINCIPLES
CALCULATIONS

The first-principles calculations were performed using
the Vienna ab initio simulation package (VASP) [61] with
the projector augmented wave method [62]. For the
exchange correlation energy, we consider both the gener-
alized gradient approximation (GGA) [63] within the
Perdew-Burke-Ernzerhof (PBE) functional and hybrid
functionals (HSE06) [45]. The energy cutoff is set to
560 eV, and a 11 × 11 × 11 Monkhorst-Pack mesh is used
for the Brillouin zone integration. For the convergence of
the electronic self-consistent calculations, the total energy
difference criterion is set to 10−8 eV. The lattice constants
are fully relaxed until the total energy is converged to
10−7 eV and the residual forces on atoms are below
10−3 eV=Å.

1. Lattice constants

In Table III, we give the relaxed lattice constants asim and
csim and compare them to experimental data a, c where
available [64]. The lattice constants are fully relaxed until
the total energy is converged to 10−7 eV and the residual
forces on atoms are below 10−3 eV=Å. In our work, we

TABLE III. Experimental and simulated lattice constants
a and c.

Materials aexpt [Å] cexpt [Å] asim [Å] csim [Å]

MoC [35] 2.898 2.809 2.922 2.824
WC [36] 2.928 2.835 2.906 2.837
WN [37] 2.890 2.830 2.873 2.922
ZrTe [38] 3.771 3.861 3.800 3.903
MoP [39] 3.220 3.190 3.256 3.195
MoN [40,41] 2.868 2.810 2.886 2.856
TaN [37] 2.930 2.880 2.816 2.791
NbN [37] 2.940 2.790 2.976 2.901
NbS [42] 3.350 3.200 3.267 3.322

FIG. 8. SDOS of the (010)-surface for the k · p models given in
Eq. (B3) and (B8). (a) and (b) show the SDOS and Fermi surface
around the Ā point. (c) ((d)) show the SDOS around the K̄ point
for the top (bottom) surface.
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adopt the relaxed lattice parameters asim and csim for all of
our simulations.

2. HSE06 band structures

In Fig. 9, we show the band structure of ZrTe calculated
using the implementation of the HSE06 hybrid functional
in VASP [45,65,66]. Compared to Figs. 4(a) and 4(b), we
find all important features of the GGA calculation, i.e.,
band inversion at A and K and the existence of four TPs.

3. Stability of nodal rings in WC

In Fig. 10(a), we show a zoom-in of the band structure in
the kz ¼ 0 plane around the K point. Bands are marked by
their horizontal mirror σv eigenvalue �i. Breaking the
horizontal mirror, by moving the C atom by 0.01 Å in the
z direction, gaps the nodal rings [Fig. 10(b)].
In Figs. 10(c)–10(f), we test the stability of the nodal

rings under (001) strain. We find that the double nodal ring
survives up to 2% tensile strain. A −0.2% compressive
strain leaves a single nodal ring that survives up to about
−3% compressive strain.

APPENDIX D: EFFECTIVE HAMILTONIAN
FROM WANNIER PROJECTION

The surface state calculation and topological classifica-
tions are usually illustrated with effective TB Hamiltonians
generated from the first-principles Wannier functions
[67,68]. For the materials we discuss in this work, we
project the first-principles wave functions on s, p, and d
orbitals located at site A and p orbitals at site B, without
performing the iterative spread minimization. For ZrTe we
choose the lower (upper) bound of the outer energy window
for the disentanglement as 0.0 eV (21.0 eV), and the bottom
(top) of the frozen energy window as 0.0 eV (12.3 eV). The
obtained atomiclike Wannier functions are used to then
construct a 24-band (including spin) TB Hamiltonian,
which reproduces the first-principles band structures with
sub-meV accuracy.
One major issue of Wannier-derived TB Hamiltonians is

that the Wannier functions do not exactly fulfill all crystal
symmetries. One consequence is that symmetry-protected
band crossings will therefore always appear as avoided
crossings with a sub-meV gap. Several works deal with this
problem during the Wannierization process [69–71], but we
find that a postprocessing approach gives very good results
in our case. We impose the three point group and TR
symmetries via calculating the group average of the TB
Hamiltonian,

HðkÞ ¼ 1

jGj
X
g∈G

RgHðgðkÞÞR−1
g ; ðD1Þ

with G the symmetry group containing jGj elements g and
Rg the representation of g for atomic wave functions. The
prerequisite for this approach to work is, of course, that the
Wannier functions transform similarly to atomic wave
functions. We use this symmetrized TB for calculating
surface states, mirror Chern numbers, and the Wilson loop
characterization of the TPs introduced in Appendix G.

APPENDIX E: FERMI SURFACE OF ZrTe

In the main text, we discuss the generic Fermi surface
and Lifshitz transitions connected to TPs. We find that ZrTe

FIG. 10. (a) [(b)] Band structure of WC with [without]
horizontal mirror symmetry. In the case with mirror symmetry,
the mirror eigenvalues of the bands are given. (c) [(d)] Band
structure of WC with tensile strain of 2% [5%] and (e) [(f)] with
compressive strain of −0.2% [−3%] along the z direction.

FIG. 9. (a) [(b)] Band structures of ZrTe without [with] SOC
using hybrid functional.
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is an excellent platform for studying our predictions in a
real material.
In Fig. 11, we show the Fermi surface of ZrTe at different

energies. At the Fermi level there are four Fermi surfaces
centered around A (neglecting possible Fermi surfaces
aroundK andK0). We assign topological charges according
to the scenario that an infinitesimal magnetic Zeeman field
is applied in the z direction. Upon lowering the energy from
the Fermi level, topologically nontrivial hole pockets touch
and their topological charges annihilate. Raising the energy,
one approaches the TPs G1 and G2. At the lower energy
TP G2, the outer hole pocket touches with the electron
pockets centered around A. The electron pockets connect
the two nontrivial hole pockets opposite of A and their
topological charges annihilate. At the higher energy TP G1,
the inner hole pocket reduces to a point and then reappears
outside as an electron pocket with opposite topological
charge (see inset of Fig. 11). Increasing the energy further,
only the electron pockets centered at A remain.

APPENDIX F: MIRROR CHERN NUMBERS

The nontrivial topology of ZrTe is driven by band
inversions at the A, K, and K0 points. These points are
located in the kz ¼ π and kz ¼ 0 planes, which are both
invariant under the horizontal σh mirror operation. This
enables us to plot the Berry curvature for specific mirror
eigenvalues m ¼ �i on these planes, as shown in Fig. 12
[44,72]. We facilitate the mirror Chern number calculations
with the symmetrized TB models.
In ZrTe both planes kz ¼ 0, π are characterized by mirror

Chern numbers Cm¼�i ¼∓ 1 (see Table I). Figure 12
clearly shows that the areas of high Berry curvature are
localized around the A, K, and K0 points, which confirms

the band inversion at these points. Because of the mirror
Chern numbers, we expect TI-like surface states on any
surface perpendicular to the mirror plane. These surface
states are protected by mirror and TR symmetry. If the
crossing points on the Γ-A line are opened by sufficient
C3-symmetry-breaking strain, the bulk becomes insulating
and the above mirror Chern numbers lead to a weak
topological insulator phase. The materials TaN, MoN,
and NbN, with trivial mirror Chern numbers in the
kz ¼ 0 plane, become strong topological insulators for
sufficient C3-symmetry-breaking strain.

APPENDIX G: WILSON LOOP
CHARACTERIZATION FOR PAIRS

OF TRIPLE POINTS

The Wilson loop can be defined on any path in k space
connecting two points k1 and k2 with the property
k1 ¼ k2 þG, where G is a reciprocal lattice vector. The
Wilson loop is defined as the path-ordered product [32]:

Wk1k2
¼ Pk1

� Y
j¼1;2;…

Pk0
j

�
Pk2

; ðG1Þ

with Pk ¼Pn∈occ junðkÞihunðkÞj the projector on the
occupied subspace of a Hamiltonian. The Wilson loop is
inherently gauge invariant due to the gauge invariance of
the projector Pk. The Berry phase associated with the loop
is given by the determinant of the Wilson operator
detðWÞ ¼ expðiϕBÞ. If the Hamiltonian has a symmetry
R, it can be shown that [73]

~RWk1k2
~R−1 ¼ WRk1Rk2

; ðG2Þ

with R acting in reciprocal space and ~R in occupied band
space. The symmetry expectation value of Wilson loop
eigenstates jvii is calculated as hvij ~Rjvii.

FIG. 12. The Berry curvature for specific mirror eigenvalues on
σh-mirror invariant planes in ZrTe.

FIG. 11. Fermi surface of ZrTe at different energies. We assign
a topological charge to each surface defined for an infinitesimal
magnetic field in the z direction. Red (blue) corresponds to Chern
number þ1 (−1) and black is Chern number 0. The inset is a
zoom-in of the second- and third-highest energies shown.
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We show here that a pair of TPs may be characterized by
a Z2 topological invariant. For Weyl [11] and Dirac [34]
semimetals, it is known that the Wilson loop spectrum on a
sphere enclosing the semimetallic point gives the topo-
logical classification of the crossing. Also, in our case with
TPs, a similar kind of topological classification is possible.
We apply the classification to the symmetrized TB model
for ZrTe (see Appendix D).
In Fig. 13(a), we show a spherical surface on which the

Wilson loop spectrum is to be evaluated. The sphere is
chosen such that the Hamiltonian is gapped everywhere on
the surface, the symmetry axis containing the TPs goes
through the center of the sphere, and both TPs are enclosed
by the sphere. The latter point is important, since there is
always at least one nodal line connecting two TPs; there-
fore, including only one TP would not fulfill the require-
ment that the Hamiltonian is gapped on the sphere. Note
that the Wilson lines are oriented such that the symmetry
axis goes through their center. In Fig. 13(c), we plot the
phases ϕi of the individual Wilson loop eigenvalues as a
function of the azimuthal angle θ. The TB model has eight
occupied states; therefore, we obtain eight Wilson loop
eigenvalue phases ϕi. Six ϕi (marked in black) are trivial
and stay very close to 0 (2π), but two (marked in red and
blue) seem to cross. Note that the σv symmetry constrains
the ϕi such that the Wilson loop spectrum is mirror
symmetric ϕi ¼ −ϕj [25]. Since the Hamiltonian is gapped
on the surface, and the Wilson loop is gauge invariant, the
individual ϕi change smoothly with θ. Therefore, the
connectivity of the ϕi can be determined as long as they
are not degenerate. To obtain the connectivity across the
degeneracy point between the red and blue Wilson eigen-
values, we calculate the C3 symmetry expectation values of

the corresponding states in Fig. 13(d). The gray dashed line
in Fig. 13(d) indicates the position of the crossing of the
blue and red lines in Fig. 13(c). Note that the crossing of red
and blue lines in Fig. 13(d) is accidental, and we find that it
can be avoided via choosing a cigar shape rather than a
sphere. However, the C3 symmetry expectation value is
nondegenerate at the crossing Fig. 13(c), and we can use
Fig. 13(d) to unambiguously determine the connectivity for
all θ. Therefore, the red and blue lines in the Wilson loop
spectrum clearly indicate two hidden Berry curvature
fluxes, one inward and one outward, through the sphere.
The fluxes can be separated in the Wilson loop eigenbasis,
corresponding to individual Chern numbers [74] of �1.
The difference of the two individual Chern numbers
divided by 2 constitutes a Z2 topological invariant for TPs.
At the polar regions θ ≈ 0 or θ ≈ −π, the Wilson loop

commutes with the C3 symmetry due to Eq. (G2). In this
case, the C3 expectation value in Fig. 13(d) is one of the
possible C3 eigenvalues f−1; expðiπ=3Þ; expð−iπ=3Þg,
which are the starting and ending points of the lines in
Fig. 13(d). Note that the six trivial ϕi (black dots) are
almost fixed to the C3 eigenvalues, whereas the two
nontrivial ϕi (red and blue dots) change the C3 eigenvalue
from f−1;−1g to fexpðiπ=3Þ; expð−iπ=3Þg. Responsible
for this behavior are the two valence bands having the
rotational eigenvalues −1, −1 for kz to the left of the two
TPs and expðiπ=3Þ, expð−iπ=3Þ for kz to the right of the
two TPs. Therefore, the planes above G1, G2 are topo-
logically distinct from the planes below, consequently
uncovering the existence of crossing points realized as
the two TPs here.
In Fig. 13(b), we give an example of a topologically

trivial pair of TPs. In this case, the C3 eigenvalues of the
valence bands are the same to the left and to the right of the
two TPs, and hence, the Wilson loop spectrum is, in
general, gapped with an even Z2 invariant.
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