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Abstract— This paper presents a new approach to the char-
acterization of tactile array sensors that aims to reduce the
computational time needed for convergence to obtain a useful
estimator for normal and shear forces. This is achieved by
breaking up the sensor characterization into two parts: a linear
regression portion using multivariate least squares regression,
and a nonlinear regression portion using a neural network
as a multi-input, multi-output function approximator. This
procedure has been termed Least Squares Artificial Neural
Network (LSANN). By applying LSANN on the 2nd generation
MIT Cheetah footpad, the convergence speed for the estimator
of the normal and shear forces is improved by 59.2% compared
to using only the neural network alone. The normalized root
mean squared error between the two methods are nearly
identical at 1.17% in the normal direction, and 8.30% and
10.14% in the shear directions. This approach could have
broader implications in greatly reducing the amount of time
needed to train a contact force estimator for a large number
of tactile sensor arrays (i.e. in robotic hands and skin).

I. INTRODUCTION

In the field of tactile robotics, there is currently a trend
towards using ever larger number of tactile sensors on a
robot [1], and this results in a communications bandwidth
issue between the sensors and the high-level controller.
Driven by the growth of the mobile phone industry, micro-
electro-mechanical system (MEMS) sensors have never been
cheaper or more readily available. This has led to researchers
incorporating large number of sensors into robotic hands for
grasping and manipulation [2]–[6], or as a robotic skin in
order to measure contact with the external environment to
create human-safe robots [7], [8].

However, with such a large number of sensors, there arises
a bandwidth issue as it is not feasible to communicate with
each individual sensor simultaneously due to the complexity
of wiring directly to each sensor as compared to a serial,
daisy-chain approach [9], [10]. Most researchers rely on just
serially reading each sensor signal, one-by-one, while other
researchers have devised schemes such as ”adaptive sensing”
[11]. For a large array of tactile sensors, this can lead to an
undesirably large delay in data transmission (∼90ms in the
case of [8]). Other researchers working on robotic skin have
tried to overcome this problem by having either individual
or groups of sensor elements have their own dedicated
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Fig. 1. Flowchart for the Training of the Least Squares Artificial
Neural Network (LSANN). Data collected from both the footpad sensor
and the force/torque sensor is used to generate the least squares estimator,
which is then used to train and cross-validate the LSANN. Once the LSANN
has been trained, it can be use to generate force estimates from the footpad
sensor voltages alone.

microcontroller for handling signal processing and communi-
cations [9], [12], [13]. Nevertheless these methods only help
in getting the sensor data to the high-level processor, and do
not offer any solutions in reducing the amount of data sent.
One way of addressing the problem of using a large number
of sensors is to first correlate the data in a meaningful manner
locally on dedicated microcontrollers, and only then sending
the dimensionally-reduced but relevant data onward to the
high-level controller.

Correlating the sensor signals both spatially and tem-
porally is useful as it can be used to determine more
complex tactile interactions, such as slip [14], [15], twist
[16], pinch [17], and shear [18]–[20]. Researchers in the
field of underwater robotics have correlated signals from
an array of pressure sensors for use as lateral-line sensors
for navigation [21]. However with many of these sensors, a
Fourier transform is used to correlate the signals, meaning
that it can take time to process the sensor signals (∼17ms
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in the case of slip detection [14]). In the context of robots
that run at high speeds such as the MIT Cheetah, where
the ground contact time is ∼110ms, a large sensor delay
or latency might mean that it will be too late for the robot
to take corrective actions. This highlights the importance of
managing the communications bandwidth to keep the latency
low.

Towards the goal of obtaining real-time (1kHz) normal and
shear force estimates for use in robotic ground locomotion,
a footpad sensor prototype has been developed for the MIT
Cheetah [19], [20]. The footpad takes the readings of an
array of piezoresistive sensors and uses that to reconstruct the
ground interaction forces. In a future prototype, a dedicated
microcontroller will do this processing of the individual
sensor readings locally, and only send the relevant three-
axis force measurement up to the high-level controller. This
would help alleviate the communications bandwidth issue
mentioned earlier as it reduces the amount of data being
sent. While the sensor performance was satisfactory, the
convergence rate during training of the neural network used
to obtain the normal and shear force correlation was slow.

To speed up the sensor characterization, it has been split
into two parts: a linear regression portion using multivariate
least squares regression, and a nonlinear regression portion
using a neural network as a multi-input, multi-output func-
tion approximator. This procedure has been termed Least
Squares Artificial Neural Network (LSANN) and will be
covered in more detail in Section III. Fig. 1 shows a flowchart
of how the footpad sensor signals and the force/torque sensor
data is used to train the LSANN estimator. The force/torque
sensor readings are only used to train the LSANN in a one-
time process. Once the LSANN has been trained, it can
be use to generate force estimates from the footpad sensor
signals alone. Other tactile sensors that use neural networks
for characterization [3], [22], [23] could possibly benefit
from implementing LSANN. In applications such as robotic
hands, there could be a large number of tactile sensor arrays
(perhaps one in each phalanx or link of the fingers), and so
this approach would greatly expedite the convergence of the
contact force estimators in the many sensor arrays, reducing
the burden on the communications line.

II. FOOTPAD SENSOR ARCHITECTURE

A. Sensor Electronics

This footpad is an improvement on the previous design
described by Chuah et al. [19], [20] where the goal is to build
a lightweight, low cost, yet robust footpad sensor suitable
for use in legged robots undergoing ground locomotion. A
2-by-3 array of barometric pressure sensors (MPXH6400A
from Freescale Semiconductor) is mounted onto a custom
printed circuit board (PCB) of size 32mm by 39mm. This
is a reduction in size from the previous prototype of 40mm
by 50mm. The thermoplastic casing on the pressure sensors
have been machined off to expose the silicon piezoresistive
element within. The difference between altered and unaltered
sensors can be seen in Fig. 2a and a magnified view of the
exposed silicon piezoresistive element can be seen in Fig. 2b.

(a) Barometric pressure sensors soldered onto the
PCB in a 2-by-3 array. The sensors on the right
PCB are unaltered, and the sensors on the left
PCB have been processed to expose the silicon
piezoresistive element within.

(b) Closeup view of the exposed silicon piezore-
sistive transducer within a barometric pressure
sensor. The black square in the middle is the
micromachined silicon diaphragm covered by a
silicone gel.

Fig. 2. Barometric pressure sensor array based force sensor.

This was done to improve the sensitivity of the sensors when
embedded in polyurethane rubber as described in Section
II-B]. As the barometric pressure sensors are commercial
off-the-shelf (COTS) sensors intended for measuring air
pressure, it is necessary to alter them in this manner to
achieve the desired sensitivity to deformations within the
polyurethane rubber. The analog signals from the sensors are
passed through a 12-bit Analog-to-Digital Converter (ADC)
(MCP3208 from Microchip Technology) that has been inte-
grated onto the PCB to prevent noise issues. The ADC then
interfaces with a 32-bit ARM Cortex-M3 microcontroller
(LPC1768 from NXP Semiconductors) through the Serial
Peripheral Interface (SPI) bus. The microcontroller then
processes the data before it is passed onto the CPU in the
MIT Cheetah.

B. Design and Fabrication

The design of the footpad has also been improved upon
and made more robust. The PCB with the associated elec-
tronics described in Section II-A is mounted onto a custom
insert made out of rigid, white urethane plastic (Task 4
urethane casting resin from Smooth-On) that is purpose made
to fit into a cavity in the MIT Cheetah’s foot, hence the
unique geometry. This can be seen in Fig. 3a. With the
PCB mounted onto the urethane plastic insert, the footpad
is then placed into a mold of the desired geometry and the



(a) Side view of 2nd generation force sensing
footpad. The top piece is a specially molded
plastic insert for mating with a cavity in the MIT
Cheetah’s foot.

(b) Bottom view of the 2nd generation force sens-
ing footpad. The sensors and PCB are embedded
in the translucent polyurethane rubber material.

Fig. 3. 2nd generation of barometric pressure sensor array based force
sensor.

barometric pressure sensors are over-molded with a translu-
cent polyurethene rubber of Shore A hardness 20 (Vytaflex
20 from Smooth-On). This can be seen in Fig. 3b. During
the rubber molding process, the sensors are coated with
the uncured polyurethane rubber and placed into a vacuum
chamber to draw out and remove any air bubbles between
the barometric pressure sensors and the polyurethane rubber.
The liquid polyurethane rubber is then allowed to cure for 16
hours and solidify. This results in a completely monolithic
footpad sensor that is robust, and protected from the external
environment, while weighing only 44g.

III. SENSOR CHARACTERIZATION VIA LEAST SQUARES
ARTIFICIAL NEURAL NETWORK (LSANN)

Using the Least Squares Artificial Neural Network
(LSANN) procedure, linear portions of the footpad sensor
data is first largely fitted using multivariate least squares
regression. This gives us a linear estimate of the normal
and shear forces that generally shows the trends in the data,
but fails to capture nonlinearities where rapid transitions
occur. The remaining nonlinearities in the data can then
be expressed as the difference between the linear force
estimates, and the actual force/torque sensor force readings.
This difference is then fitted using a neural network as a
multi-input, multi-output function approximator to obtain a
nonlinear estimate of the difference. The LSANN estimate
of the normal and shear force is then the sum of the linear
estimate and the nonlinear differences. Once the LSANN

Fig. 4. Data collection using the CNC mill and a force/torque sensor.
The footpad sensor is mounted to the CNC spindle mount and brought into
contact with the force/torque sensor. A prescribed trajectory is then assigned,
and data is collected using NI LabVIEW.

estimator has been trained with a set of force/torque sensor
data, it does not need to be re-trained and it is a one-time
process. Subsequent normal and shear force estimates are
obtained using only the signals from the footpad sensor as
inputs.

A. Experimental Setup for Data Collection

In order to make sense of the individual analog voltages
collected from the sensors, this data has to be correlated
with actual force readings. In this case, a 6-axis force/torque
sensor (ATI Delta SI-660-60 from ATI Industrial Automa-
tion) is used as the ground truth. A 3-axis CNC milling
machine (MicroMill DSLS 3000 from MicroProto Systems)
was altered and programmed to act as a positioner and to
bring the footpad sensor into contact with the force/torque
sensor and move it through different trajectories. This is the
same procedure used previously in [19], [20]. Fig. III-A
shows the experimental setup with the CNC mill pressing
the footpad sensor onto the force/torque sensor. During the
motion of the trajectories, 12-bit analog voltages from the
six barometric pressure sensors embedded in the footpad
are read via SPI by a ARM Cortex-M3 microcontroller a
1kHz sampling rate. At the same time, the forces in the
normal and shear directions of the force/torque sensor are
collected through a data acquisition system (CompactDAQ
9205 from National Instruments (NI)) at 1kHz as well,
and both the voltages from the footpad and the forces
from the force/torque sensor are synchronized in LabVIEW.
During testing before the data collection, no discernible lag
(<1ms) was ever found. The data is then further processed
in MATLAB using the LSANN procedure described below.

B. Linear Estimator using Least Squares Regression

Multivariate linear least squares regression is used to
pre-process the raw voltage signals and produce a linear
estimator of the forces in each of the normal and shear axis.
This step has the added benefit of reducing the dimension



of the input from six analog voltage signals down to three
estimated force signals. This is done by first collecting data in
each of the different axis of interest using the CNC mill. The
analog voltages are assembled into the array below where
vn,i represents the nth voltage sample from the ith pressure
sensor, where i ∈ (1, ..,6) and n ∈ (1, ..,N). vi is a column
vector of N samples.

V =


...

...
...

v1 · · · vi · · · v6
...

...
...



=


v1,1 · · · v1,i · · · v1,6

...
. . .

...
. . .

...
vn,1 · · · vn,i · · · vn,6

...
. . .

...
. . .

...
vN,1 · · · vN,i · · · vN,6


(1)

The corresponding force vectors are given as column
vectors below where fg,n is the nth force measurement in
the gth axis, where g ∈ (X ,Y,Z) and n ∈ (1, ..,N). Fg =
( fg,1 · · · fg,n · · · fg,N)

T is a column vector of N samples.
Using the multivariate linear regression model, we assume

that the force in each axis is a linear combination of
the voltages from the individual sensors multiplied by the
parameters, ag = (ag,1 · · ·ag,7)

T , and this can be represented
in the equation below. ε is the residual.

Fg =Vag + ε (2)

We can obtain an estimate of the parameters, âg by
minimizing the sum of squares.

âg = (V TV )−1V T Fg (3)

This then allows us to obtain an estimator for the force in
each axis using the voltage array in Eqn. 1.

F̂g =V âg (4)

Using the CNC mill, the footpad sensor was brought into
contact with the force/torque sensor and moved vertically
downward in the Z-axis until one of the pressure sensor
readings reached saturation. This was then repeated ten times
to get the data for computing the least squares parameter for
the normal force estimator in the Z-axis, âZ . Fig. 5 shows
the data collected. More complicated loadings could have
been used, but the idea here is to keep the data input largely
linear, so that the multivariate least squares regression does
not try to latch on to any nonlinearities present in the data.

The same procedure was repeated for the horizontal X-
and Y-axis to get the data needed to obtain the least squares
parameters for the shear force estimator in the X- and Y-axis,
âX and âY .

The least squares force estimator in the Z-axis, F̂Z gives a
root mean squared error (RMSE) of 0.91N out of a range
of 221.05N when compared to the true force value, FZ .

(a) Footpad sensor voltage counts and force sensor readings in the Z-axis

(b) Footpad sensor voltage counts and force sensor readings in the Y-axis

(c) Footpad sensor voltage counts and force sensor readings in the X-axis

Fig. 5. Footpad sensor voltage counts and force sensor readings. Data
collected for the multivariate linear least squares regression. The footpad
sensor is moved forwards and backwards in each axis repeatedly.



This gives a normalized RMSE of 0.42%. For the Y-axis,
F̂Y gives a RMSE of 13.34N out of a range of 233.35N
for a normalized RMSE of 5.72% and for the X-axis, F̂X
gives a RMSE of 21.09N out of a range of 218.99N for
a normalized RMSE of 9.63%. Overall, this indicates an
excellent fit in each axis to the linear training data. As a
point of comparison, soft silicon pressure sensors developed
by De Rossi et al. for use in a physical human-robot interface
of a lower-limb exoskeleton estimates normal forces with
normalized RMSE that range from 2.7% to 8.5% [24].

RMSE =

[
1
N

N

∑
i=1

(ŷi− yi)
2

] 1
2

(5)

Normalized RMSE =
RMSE

Range o f Fg
∗100% (6)

C. Nonlinear Regression using a Neural Network

Having obtained a good force estimator through multivari-
ate linear regression, we now seek to improve the estimator
by incorporating the nonlinear portions of the data as well.
We take the difference between the actual force data, F and
our estimated force data, F̂LS, as the desired output to our
neural network, where the input is the array of voltage signals
from the barometric pressure sensors. This makes use of the
universal approximation property of neural networks to pose
a multi-input-multi-output nonlinear modeling task.

First, we need to collect more data that is used to train the
neural network. Training data was first collected by having
the CNC milling machine run through a programmed training
path with the footpad in contact with the force/torque sensor.
Under a range of displacements in Z-axis up to 1.5mm
with steps of 0.1mm, the footpad was made to follow the
‘Asterisk Path’ and ‘Circular Path’ as shown in Fig. 6a. The
‘Asterisk Path’ starts from the origin and traverses outwards
to 3mm and then back to the origin. This repeats at 45
degree intervals until a full revolution is made. The ‘Circular
Path’ involves the footpad traversing a 2mm, then 4mm, and
finally a 6mm diameter circle in both clockwise and counter-
clockwise directions.

For cross-validation, a separate set of data has to be
collected to test the trained neural network on. ‘Testing Path
1’ involves the footpad moving 3mm along both the positive
and negative X-axis, followed by the Y-axis and ending with
it traversing a circular path of 6mm diameter clockwise and
then counter-clockwise. ‘Testing Path 2’ involved a diagonal
motion of 3mm in each of the 4 quadrants of the X- and
Y-axis. This was then followed with 4 smaller circular paths
of 3mm diameter along each of the positive and negative
X- and Y-axis. A qualitative depiction of the testing paths is
shown in Fig. 6b.

The Levenberg-Marquardt (LM) algorithm [25]–[27] is
then used to train a feedforward neural network with a hidden
layer size of 10, and it is given as:

[JTWJ+λdiag(JTWJ)]δ = JTW [ε̂− ê] (7)

(a) Training Paths. The two paths above were used to
collect the data used to train the neural network.

(b) Testing Paths. The two paths above were used to
collect the data used to test the neural network.

Fig. 6. Training and testing paths used to collect the data needed for cross-
validation. Both paths were run at several, set normal displacements in the
Z-axis.

where J is the Jacobian matrix, W is the weighting matrix,
λ is the algorithmic parameter, δ is the increment in each
iteration. The target force output is set as the residual, ε̂ , or
difference between the actual force data, F and our estimated
force data, F̂LS, i.e. ε̂ = F− F̂LS. When fully trained, the neu-
ral network gives us an estimate of the nonlinear differences
between the actual forces and the linear force estimates, ê.
To get the combined force estimate, F̂LSANN , we simply sum
the linear force estimate, F̂LS, and the nonlinear difference
estimate, ê, to get the equation below.

F̂LSANN = F̂LS + ê (8)

Using the cross-validation data collected from the ‘Testing
Path 1’ and ‘Testing Path 2’ trajectories. We can see how well
our LSANN estimator is at approximating the normal and
shear forces. By calculating the RMSE, normalized RMSE,
and coefficient of determination, R2, we see that LSANN
gives a near perfect estimate of the Z-axis force, with a
normalized RMSE of only 1.17% and a R2 value of 99.78%.
For the shear directions, the X- and Y-axis, the fit is less
perfect, with a normalized RMSE of 8.30% and a R2 value
of 81.03% for the X-axis, and a normalized RMSE of 10.14%
and a R2 value of 72.22% in the Y-axis. This compares
favorably with the estimator obtained using just the neural
network as a function fitting approximator. As an additional
benefit, the time needed to train the LSANN is only 59.0
minutes, while for just the neural network, the training time
is 144.5 minutes. This indicated a training time reduction of
59.2%. The estimator is a better fit in the X-axis compared
to the Y-axis due to the barometric pressure sensor array
being in a 2-by-3 configuration. This data is represented in
Table I and Fig. 7 shows the agreement between the LSANN
predicted forces and the actual force/torque sensor readings.

R2 =

[
1− ∑

N
i=1(yi− ŷi)

2

∑
N
i=1(yi− ȳi)2

]
∗100% (9)



(a) Predicted vs Measured Forces in the Z-Axis

(b) Predicted vs Measured Forces in the Y-Axis

(c) Predicted vs Measured Forces in the X-Axis

Fig. 7. Experimental results for agreement between the predicted force
and actual force. The blue line shows the actual force measured and the red
line shows the LSANN predicted force. Only a portion of the data collected
is shown here for the sake of clarity.

TABLE I
RMSE, NORMALIZED RMSE, AND THE COEFFICIENT OF

DETERMINATION, R2 FOR EACH AXIS

Z-axis RMSE (N) Normalized RMSE (%) R2(%)
LSANN 2.58 1.17 99.78

Neural Network only 2.42 1.10 99.90

Y-axis RMSE (N) Normalized RMSE (%) R2(%)
LSANN 12.84 10.14 72.22

Neural Network only 12.63 9.98 79.02

X-axis RMSE (N) Normalized RMSE (%) R2(%)
LSANN 10.48 8.30 81.03

Neural Network only 11.17 8.85 83.62

IV. CONCLUSIONS

This paper presents Least Squares Artificial Neural Net-
work (LSANN) as an approach to the characterization of
tactile array sensors for the reduction of the computational
time needed for convergence to obtain a useful estimator
for normal and shear forces. Sensor characterization is split
into a linear regression portion, and a nonlinear regression
portion. The linear regression portion applies a multivariate
least squares regression to data captured in each of the
normal and shear directions. This gives us a linear estimator
for the forces, F̂LS. The nonlinear regression portion uses a
neural network with the Levenberg-Marquardt algorithm as
a multi-input, multi-output function approximator, with the
target output being the residual, ε̂ , or difference between
the actual force data, F and our estimated force data, F̂LS,
i.e. ε̂ = F − F̂LS. Once fully trained, the neural network
gives us an estimate of the nonlinear differences, ê, between
the actual forces and the linear force estimates. To get the
combined force estimate, F̂LSANN , we simply sum the linear
force estimate, F̂LS, and the nonlinear difference estimate, ê,
to get F̂LSANN = F̂LS + ê.

By applying LSANN on the 2nd generation MIT Cheetah
footpad, the convergence speed for the estimator of the
normal and shear forces is improved by 59.2% compared
to using only the neural network alone from 144.5 minutes
down to 59.0 minutes. While the convergence time of 59.0
minutes is relatively long, this only needs to be done once
and the resulting parameters can be stored and reused. The
convergence time could also be shortened even more by using
a computer with a faster processor to do the calculations.
The normalized root mean squared error between the two
methods are nearly identical at 1.17% in the normal direction,
and 8.30% and 10.14% in the shear directions. There is
ongoing work to improve the shear direction readings by
using the results of finite element analysis simulations.

This approach could have broader implications in greatly
reducing the amount of time needed to train an estimator
for tactile sensor arrays where the number of sensor ele-
ments are large, as a large number of inputs to a neural



network generally increases the computational time needed
for convergence. For example in robotic hands or skin, where
multiple sensor arrays for determining normal and shear
contact forces during tactile interactions are desired, having
n sensor arrays would mean that using the LSANN approach
would make the characterization process ∼ 0.6n times faster.
This can also speed up the process of determining more
complex tactile interactions by making it faster to correlate
the sensor signals both spatially and temporally, potentially
making it easier for robots to detect slip and shear events as
well as other tactile modalities. There is currently ongoing
work to implement the LSANN computation on a dedicated
microcontroller to evaluate the computational time in real-
time operation.
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