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Abstract

The Marcus-Hush theory of electron transfer has seen increasing use as predictive alternative

to the phenomenological Butler-Volmer (BV) equation for Faradaic reactions kinetics. Here, we

analyze and simplify the asymmetric Marcus-Hush (AMH) model, first proposed by Marcus and

recently used by Compton’s group to fit experimental data that exhibit two di↵erent reorganization

energies, depending on the sign of the overpotential. The AMH model has a single reorganization

energy and an asymmetry parameter to account for di↵erent inner sphere force constants, but its

practical use is hindered by the need to numerically evaluate the improper integral over electronic

Fermi distribution. Moreover, the domain of integration must be arbitrarily truncated to avoid

divergence, due to some ambiguities in the derivation, which also limit the validity of the AMH

model to weakly curved Tafel plots. Nevertheless, by defining a region over which the formula

applies, we derive a simple formula to replace the Fermi integral by exploiting similarities with our

recent approximation of the symmetric limit of the Marcus-Hush-Chidsey (MHC) model. These

results enable the AMH model to approach the same ease of use as both the MHC and BV models

and highlight the need to develop a more comprehensive theory of asymmetric charge transfer.
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I. INTRODUCTION

The microscopic electron transfer theory [13], pioneered by Marcus [19, 20] and Hush [11,

12], has achieved great success in predicting reaction rates for both homogeneous bulk re-

actions and heterogeneous electrode reactions [21] that exhibit curved Tafel plots, which

cannot be described by the phenomenological Butler-Volmer (BV) equation [2]. The funda-

mental assumption of Marcus-Hush (MH) theory is a quadratic dependence of the (excess)

free energy of the reactant and product along a configurational reaction coordinate mainly

associated with solvent reorganization, where electron transfer occurs iso-energetically at a

transition state defined by the intersection of these parabolae. The forward and backward

rates vary with overpotential, as the parabolae are shifted vertically (in energy) relative to

each other.

For Faradaic reactions at electrodes the theory must further be augmented by integrating

over all electron energy levels according to the Fermi distribution, which leads to so-called

Marcus-Hush-Chidsey (MHC) kinetics [5, 17]. Chidsey first applied the MHC model to

liquid-solid charge transfer mediated by self-assembled monolayers [5]. Recently, the MHC

model has also been shown to predict solid-solid charge transfer in Li-ion batteries [1], thus

opening the possibility of improving BV-based engineering models [23]. The expression for

MHC kinetics involves an improper integral over the electron Fermi distribution that requires

numerical evaluation, which has led to the development of a number of approximations

to facilitate its implementation [4, 22, 24, 28], including both very accurate [4] and very

simple [28] analytical approaches.

All these studies have examined the “symmetric” MHC model [8] in which the reactant

and product free-energy parabolae have equal curvatures, controlled by a single outer-sphere

reorganization energy, but “asymmetric” kinetics have been observed in many recent exper-

iments [6, 9, 10, 14, 16, 25, 27], in which the MHC theory requires di↵erent reorganization

energies to fit the curved Tafel plot of the high-rate cathodic and anodic reactions sepa-

rately. Drawing from early work of Marcus [18], Compton and co-workers implemented and

popularized the asymmetric Marcus-Hush (AMH) model, which has a single reorganization

energy but introduces an asymmetry parameter to describe di↵erent inner-sphere force con-

stants [7, 14, 15]. The BV, MHC, and AMH models are compared in Fig. 1 in a Tafel plot

for moderately large over potentials.
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Unlike the symmetric MHC model, there are some ambiguities in the original derivation

of the AMH model [18], related to the fact that two non-tangent parabolae of di↵erent

curvatures have either two or zero intersections, rather than one in the symmetric case.

Additional assumptions are thus required to calculate the reduction and oxidation rates. In

the case of the AMH model, this leads to restrictions on the allowable overpotentials and

truncation of the range of electron energy levels [15], in order to avoid the divergence of the

improper integral over the Fermi distribution.

Despite these and other di�culties in developing theories of asymmetric inner-sphere

charge transfer [13], we focus here on describing the mathematical properties of the AMH

model and deriving a simple formula to approximate the Fermi integral. Unlike the sym-

metric MHC model, we are not aware of any simplifying expressions or algorithms for the

AMH model, so this result should facilitate experimental comparisons and engineering ap-

plications.

FIG. 1. Comparison of Butler-Volmer (BV), symmetric Marcus-Hush-Chidsey (MHC), and

asymmetric-Marcus-Hush (AMH) kinetics as a function of applied overpotential. Note that at

small overpotentials, the AMH rates are well captured by BV with ↵ 6= 1
2 . However, for large

overpotentials, BV significantly over-predicts the rate.
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II. THEORY

A. Marcus-Hush-Chidsey kinetics

The symmetric Marcus-Hush-Chidsey (MHC) model for electrode kinetics assumes equal

force constants for reactants and products, and results in the following expression for the

reduction and oxidation rate constants [5, 17]:
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where A is a pre-exponential constant factor, � is the dimensionless reorganization energy, ⌘

is the dimensionless overpotential, x is the dimensionless integration variable, and �G

red/ox,s

is the activation energy. When two signs are present, the top refers to reduction and the

bottom to oxidation. Especially for concentrated solutions and solids [1, 3], it is important

to note that this overpotential is defined as the departure of the electrode potential (inter-

facial voltage di↵erence between electrons and ions) from the formal potential (including

logarithmic concentration terms), often used in chemistry for studies of electrode kinetics,

rather than from the equilibrium potential (given by the Nernst equation), which is the

standard definition used in chemical engineering [3, 23].

B. Asymmetric Marcus-Hush kinetics

The AMH model for electron-transfer kinetics takes into account unequal inner-sphere

reorganization energies by introducing an asymmetry parameter, �, which describes the

di↵erence between inner-shell force constants of oxidized and reduced species a Faradaic

reaction. The AMH model is defined as follows:
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Note that when � = 0, this asymmetric formula reduces to the symmetric MHC model.

Importantly, Eq. 2 is restricted in applicability based on the truncation of the approximating
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series by which it was derived [15]. Although the restrictions in relevant parameter ranges

vary system to system, conservative estimates require |�| < 0.35, � � 1, and |⌘| . 10 [14].

Nevertheless, � � 1 is typical for a variety of asymmetric reactions [15].

For the remainder of the analysis, we will focus only on the oxidation rate constant and

free energy, as the results are easily repeated for reduction. For ease of notation, we refer to

the oxidation rate constant and free energy barrier as simply k

a

and �G

a

.

C. Clarification of the AMH model

This AMH formula has already demonstrated good agreement with experimental data

in numerous studies [9, 15, 26] and is becoming increasingly important in understanding

electrochemical systems, whenever symmetric MHC kinetics fails. Mathematically, however,

the model is not well posed. In particular, the improper integral in Eq. 2 does not converge.

Therefore, we must modify the original formula, in agreement with observations made by

Compton et al. [14]. This change does not a↵ect the results of previous studies and may

enable better understanding of this asymmetric kinetic theory.

As has been previously noted, the integrand in Eq. 2 is a function with a peak similar

to a Gaussian for small x, and numerical evaluation of the integral must be done within

some finite x range, typically ±50 [7]. This integration limit is not solely for computational

speed; we will show that the integrand diverges as x goes to either positive or negative

infinity unless � is exactly zero (the symmetric MHC case).

The cause of the divergence of the integrand is that the nondimensional Gibbs free energy

barrier, �G

a

(x), is a cubic function of x when � is non-zero. Depending on the sign of �,

�G

a

(x) must tend to negative infinity at either x = 1 or x = �1 with a speed of O (|x|3).
The second part of the integrand, (1 + exp(x))�1, which is related to the Fermi distribution,

decays no faster than O (exp(�|x|)). Thus, the integrand diverges at a rate of O (exp(x3)),

and the integral in Eq. 2 must diverge for any � 6= 0. A numerical demonstration is provided

in Fig. 2. For x within ±50, the integrand is nearly a Gaussian function with a peak close

to zero. However, when x > 300, it grows quickly and dominates the peak around zero.

In order to avoid the divergence in Eq. 2, instead of integrating over the entire real axis,

we have to restrict the integral within a certain domain D, such that the integrand has

a peak within this domain, but takes small enough values on both boundaries. Thus, we
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FIG. 2. Numerical evaluation of the integrand in Eq. 2 with � = 60, � = 0.3 and ⌘ = 0. We see

on the right that for x � 50, the integrand is dominated by the growing cubic term, which results

from series truncation in the derivation of Eq. 2.

rewrite the AMH formula as,
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Unfortunately, the domain D has to be specified case by case according to the parameter

choices. In general, D = {x 2 R| � 50  x  50} is a very good choice as suggested by

Compton’s group [14], but a check of the validity of this integral region needs to be done

for any new parameter choices.

In addition, for small values of the nondimensional reorganization energy, �, the peak

domain D is not well separated from the “blow up region”. A typical example is shown in

Fig. 3. In this case, the integral domain D cannot be clearly defined, and the AMH model

in Eq. 3 is out of its valid range. In the remainder of the paper, we will always restrict our

discussions to the cases in which the integral domain D can be consistently defined.

D. Derivation of the AMH formula

Based on this discussion, it is clear that the AMH model is incomplete and could be

modified in various ways to more accurately capture inner-sphere e↵ects on electron transfer
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FIG. 3. Numerical evaluation of the integrand in Eq. 3 with parameters � = 1, � = 0.3 and ⌘ = 0.

kinetics. It is beyond the scope of this paper to examine the theoretical basis for the

AMH model or propose any alternatives, but we briefly draw attention to a key step in the

original derivation that we are not able to reproduce. In his classic 1965 paper [18], Marcus

considered the possibility of free-energy parabolae with di↵erent curvatures (force constants)

for the reduced and oxidized states and proposed the first asymmetric theory in Appendix IV.

With the aid of numerical estimates, he concluded that, for cases of relatively small driving

forces, the asymmetric factors in his equation (A13) can be neglected, while for relatively

large driving forces, equation (A13) should be replaced by his equation (A14a). In this step,

both the �

2
i

h`
s

i2 /16� term and the kT term from equation (A13) were neglected, but a

cubic term �

i

h`
s

i (�F

o0
R

/�)3/4 was added, which we are not able to derive systematically

from equation (A13). As noted above, this cubic term is responsible for the divergence of

the Fermi integral over all election energy levels and causes the need to arbitrarily truncate

the domain of integration.

The AMH model corresponds to the electrochemical variant of Marcus’ equation (A14a)

plus the �2
i

h`
s

i2 /16� term. The resulting expression has been successfully used to fit exper-

imental data with asymmetric curved Tafel plots [7, 14, 15], despite the ambiguities in both

its derivation and implementation. As such, we proceed to approximate the AMH model so

as to eliminate cumbersome Fermi integral.
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III. RESULTS

A. Approximation of the AMH integral

In this section, we present a closed-form analytical approximation for the domain-

restricted AMH formula, Eq. 3, based on some empirical observations of the integrand.

A mathematical reasoning on the validity of such an approximation is also discussed. Be-

cause Eq. 3 already relies on an empirical restriction of parameter values, the focus of this

work is on providing a useful approximation formula for the applicable parameter ranges

rather than formally deriving a uniformly valid approximation.

Compared to the symmetric MHC theory, the asymmetric formula only di↵ers by the

cubic term in �G

a

. Since the integral domain D normally consists of only a small range of

x, we may make some observations of the quadratic term and the cubic term within this

range.
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FIG. 4. Comparisons of the quadratic term and the cubic term in Eq. 3 within the integral domain

D with parameters � = 60, � = 0.3. The nondimensional overpotential ⌘ is chosen to be 40 (left)

and �40 (right).

Typically, the cubic term varies considerably less than the quadratic term within the peak

region of the integrand. Two examples are shown in Fig. 4. Therefore, one possible choice

for approximating Eq. 3 is to treat the cubic term as independent of x over the integral

domain D. This is mathematically equivalent to taking only the first term of the Maclaurin
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series of the cubic term, and neglecting all higher order terms. Then we get,
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where �G

s

is the corresponding free energy function of the symmetric MHC theory in Eq. 1.

Since the cubic term is independent of x, it can be moved out of the integral. Then we obtain

the approximated reaction rate,
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where k

s

(�, ⌘) is the corresponding reaction rate of the symmetric MHC kinetics, which

can be approximated a number of ways as discussed above. For simplicity, we apply our

previous approximation for the symmetric MHC kinetics formula here and finally obtain a

closed form approximation for the AMH theory [28],

k

red/ox,a

(�, ⌘, �) ⇡ A exp

⇢
��

⇣
⌘

4

⌘
1�

⇣
⌘

�

⌘2
�
� �

2 �

16

� p
⇡�

1 + exp(±⌘)
erfc

0

@��
q
1 +

p
�+ ⌘

2

2
p
�

1

A
.

(6)

where the double sign corresponds to reduction (above) and oxidation (below). The re-

duction and oxidation formulas di↵er only in the substitution of the reduction/oxidation

symmetric rate constant for k
s

.

The approximation formula in Eq. 6 works well when |�| < 0.35, in agreement with the

valid region suggested by Compton and coworkers [14]. In addition, this requires � � 1

because of the integral domain validation requirement. However, � � 1 is typical for

an asymmetric reaction [15]. It is critical that the absolute value of the nondimensional

overpotential ⌘ should not exceed the value of nondimensional reorganization energy �,

|⌘| < �, as also previously noted [14].

Finally, we consider the choice of the approximation for k
s

. We note that the approxima-

tion for symmetric MHC kinetics as used in Eq. 6 is less accurate for large � and ⌘ ⇡ 0 [28].

However, over the entire relevant parameter space, small errors in ⌘ (. 15 mV) correspond

to the same magnitude of error as introduced by using the chosen uniformly valid approx-

imation. Thus, it is unlikely that practical applications will require more accuracy for the
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symmetric part. Nevertheless, more accurate computational methods to evaluate k

s

can be

implemented instead [4].

B. Numerical Study

In Fig. 5, we compare our approximate formula Eq. 6 to the numerical integration of the

original AMH formula in Eq. 3 with di↵erent choices of � and ⌘, under the same conditions

considered in recent experiments [6, 9, 10, 14, 16, 25, 27] in which the curvature of the Tafel

plot is relatively weak, corresponding to large reorganization energy � � 1. For the case

� = 60 (roughly 1.5 eV at room temperature), even though the reaction rate varies by about

20 orders of magnitude over this parameter range, the approximations show good agreement

with the numerical results. The asymmetry caused by nonzero values of � is also accurately

captured.
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FIG. 5. Comparisons of asymmetric reaction rates obtained by numerically evaluating Eq. 3 with

the simple closed-form approximation, Eq. 6 for a typical reorganization energy, � = 60 (roughly

1.5 eV at room temperature), inferred from recent from recent experiments [14].

As expected from our analysis above, the numerical results show that the approximation

loses significant accuracy only when |⌘| gets larger than �. A numerical demonstration in

Fig. 6 shows that when |⌘| > � � 1, the approximation can be several orders o↵ from the

true value. Therefore, the application of approximate formula in Eq. 3 should be limited
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to the range |⌘| < �. Nevertheless, the original AMH formula is generally only accurate

for |⌘| < � [14], so this restriction does not further limit the use of the the approximation.

This only highlights the need to develop a more comprehensive model of asymmetric charge

transfer for a broader range overpotentials and reorganization energies.
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FIG. 6. Comparisons of asymmetric reaction rates by numerically evaluating Eq. 3 and a direct

calculation of approximation in Eq. 6. As in Fig. 5, � = 60. The approximation values di↵er

significantly from the true values when |⌘| > �.

IV. CONCLUSION

We have derived a simple closed-form approximation for AMH kinetics, Eq. 6, which

eliminates the need to evaluate the divergent Fermi integral in Eq. 2. The new approximation

relies on the observation that the integrand in the original expression can be approximated as

having a nearly-constant factor over relevant parameter regions and associated integration

limits, so that the remaining improper integral can be approximated by our previously

derived simple formula for MHC kinetics [28]. As previously noted [14], for small over-

potentials, |⌘| . 1, the AMH model is similar to the asymmetric Butler-Volmer equation

with ↵ 6= 1
2 , which provides an alternative to the formula presented here. At larger over

potentials, the BV equation neglects all curvature in the Tafel plot, which becomes significant
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even at moderate overpotentials (Fig. 1) and corresponds to orders of magnitude di↵erences

in the predicted reaction rates.

Our mathematical study also clarifies the range of validity of the AMH model itself. The

original model and our simple approximation are both only valid for large reorganization

energies � � 1 (scaled to k

B

T ) and moderate overpotentials, |⌘| ⌧ �. With these pa-

rameter constraints, the curvature of the Tafel plot is relatively small (on a logarithmic

scale), although significant di↵erences with BV kinetics by orders of magnitude at large

over potentials are still captured by the model. This regime is consistent with the ob-

served rates for a variety of liquid-solid Faradaic reactions recently fitted to the AMH model

[6, 9, 10, 14, 16, 25, 27], and in such cases, the present approximation would be a useful

mathematical simplification for data fitting or engineering models.

On the other hand, the AMH model cannot be applied to other reactions with smaller

reorganization energies (� < 10) and more strongly curved Tafel plots approaching a con-

stant limiting rate, which have been observed experimentally for both liquid-solid [5] and

solid-solid [1] interfaces. These studies have not detected any significant asymmetry in the

over-potential dependence, but in principle some Faradaic reactions with low reorganiza-

tion energies will have significant asymmetry from inner sphere force-constant variations

that cannot not be captured by the original AMH model. Therefore, there remains a need

to develop more comprehensive, but still simple, models of asymmetric charge transfer at

electrodes.
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