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Abstract
Chronic wounds, in particular venous leg ulcers (VLU), represent a substantial burden for economies, healthcare systems and 
societies worldwide. This burden is exacerbated by the recalcitrant nature of these wounds, despite best practice, evidence-based 
care, which substantially reduces the quality of life of patients. Furthermore, co-morbidities such as diabetes and cardiovascular 
disease within ageing populations further contribute to the increasing prevalence in developed countries. This review provides 
an overview of the literature concerning the cellular and molecular mechanisms of wound healing and aspects where this process 
fails, resulting in a chronic wound. VLU may arise from chronic venous disease, which presents with many clinical manifestations 
and can lead to a highly complex disease state. Efforts to comprehend this state using various omics based approaches have 
delivered some insight into the underlying biology of chronic wounds and revealed markers of differentiation at the genomic, 
transcriptomic, proteomic and metabolomic levels. Furthermore, this review outlines the array of analytical tools and approaches 
that have been utilised for capturing multivariate data at each of these molecular levels. Future developments in spatiotemporal 
analysis of wounds along with the integration of multiple omics datasets may provide much needed information on the key 
molecules that drive wound chronicity. Such biomarkers have the potential to be developed into clinically relevant diagnostic 
tools to aid in personalised wound management.

Introduction
Chronic leg ulcers are a debilitating and costly affliction 
that impact tens of millions of individuals around the world. 
The etiology of these chronic wounds is attributed to a 
combination of a myriad of dysfunctional physiological and 
biochemical mechanisms, which result in a disease state that 
is highly complex and difficult to treat.

Patients with venous ulcers will often undergo a standard 
regime of compression therapy in order to restore dysfunctional 
physiology and repair the wound. However, in 30% of cases 
this intervention fails to resolve the wound and alternative 
therapies must be considered. It is unknown why this subset 
of individuals fail to respond to conventional therapy and, 
likewise, why the vast number of chronic wounds of varying 
aetiologies are recalcitrant to best-practice care.

Empirical evidence to date suggests a strong link to the 
underlying biochemistry of the wound as a contributing 
factor in non-healing ulcers. Thus, research within the last 
decade has focused on resolving the molecular aspects of 
chronic wounds, particularly in what drives the formation 
of these ulcers and contributes to their recalcitrant nature or 
ability to reepithelialise and subsequently heal. The molecular 
strategies employed to investigate wounds has been wide 
ranging and includes genomic, transcriptomic, proteomic and 
metabolomic methods. In addition, these methods are ideal 
for biomarker discovery and the subsequent development of 
diagnostic and prognostic tools for use in clinical practice. 
To date, a number of molecules have been shown to correlate 
with chronic wounds of varying aetiologies, however there 
are no diagnostic tools currently used within routine clinical 
care.
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This review will discuss molecular aspects of chronic wounds 
with a focus predominantly on venous leg ulceration (VLU). 
The purpose of this review is to provide an overview of wound 
healing, aspects where this process goes wrong, particularly 
in the event of chronic venous disease (CVeD), and the 
various molecular analytical strategies that can be employed 
to further our understanding in this field and in the search for 
clinically-relevant biomarkers. An excellent review on omics 
investigations of venous ulcers has recently been published,1 
however, we aim to build on this work and further describe 
various approaches for future research, additional biological 
considerations and the use of bioinformatics for analysis and 
data integration.

Chronic Wound Prevalence
The prevalence of chronic wounds is a major healthcare 
concern worldwide. Although the precise global burden is 
unknown, there is substantial data from research undertaken by 
developed nations that provide an implicit global perspective. 
These statistics have been summarised in Table 1.

Such a pandemic-like condition also engenders serious 
economic ramifications. The impact of chronic wounds is 
observed in healthcare systems worldwide, where treatment 
expenses have become burdensome.2-5 Within Australia, the 
treatment of chronic wounds was reported to cost the annual 
health budget AU$400–$500 million.6 However, based on 
a predicted 3% expense of total healthcare expenditure as 
observed in other developed nations, $2.9 billion per annum 
has been estimated as the most current direct healthcare cost 
for Australia.3 This represents a substantial burden on the 
Australian economy and is unsustainable for future economic 
prosperity. Moreover, with increased life expectancy, due 
to advancements in medical science, there exists a greater 

incidence of age-related pathologies, including chronic 
wounds and delayed healing outcomes.7-10

This has been, in part, due to the nation’s ageing population,11,12 
but is also attributed to a rise in co-morbidities that lead to 
non-healing wounds; including obesity,13 diabetes mellitus,14 
cardiovascular disease,15 age-related degeneration of the 
immune system,10 and poor nutrition.16 In addition to the 
pressures placed on hospital systems, local communities suffer 
from chronic wounds as well, with patients experiencing 
significant losses in work productivity and increases in social 
disengagement. Patients will often ostracise themselves, 
avoiding contact with others and subsequently ensuring 
noncompliance with their treatment or therapy.17-21 Moreover, 
there is mounting evidence that suggests psychological 
factors, and not just the underlying wound pathophysiology, 
have a profound impact on healing trajectory.19,22 Patients 
with chronic leg ulcers will experience restricted mobility, 
social isolation, and an overall decrease in their quality of 
life.23-26 These aspects disturb a patient’s mental health and 
subsequently manifest with increases in sleep disturbance,27 
negative emotions,28 depression and anxiety.29 

From the literature, it is clear that chronic wounds have a grave 
impact upon the state, the economy, clinics and the hospital 
system, communities, and patients. This impact within 
Australia and societies worldwide has acted as a strong driver 
of research and development into chronic wounds. This is 
supported by recent data which suggest that, although chronic 
wounds represent a very significant clinical challenge, there 
is a higher priority to invest in research, rather than additional 
hospital beds, in order to meet the challenge and reduce the 
systemic burden of wound perpetuation.30

Table 1. The prevalence of chronic wounds across global regions.

Geographical
Region Prevalence Number of people 

affected
Number of
inhabitants Reference

Australia 3–61 / 1000 people 0.73–1.48 million 24.3 million 201

Africa 19–130 / 1000 people 20–135 million† 1.033 billion‡ 202

USA 21 / 1000 people* 6.6 million 314 million 4

India 4.48 / 1000 people 5.5 million 1.237 billion 203

Europe 3–4 / 1000 people 1.5–2.0 million 500+ million 204

UK 3.5 / 1000 people 220,000† 63 million‡ 202

* estimated from affected individuals
† estimated from prevalence data
‡ based on available historical population data
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Wound Healing: The Acute Context
The Phases of Healing: an Insight to Where Healing Stalls
In order to comprehend the molecular problems associated 
with wound chronicity, the underlying processes involved 
in normal wound repair must be understood as failure or 
dysregulation at any point during the healing continuum could 
result in a non-healing wound. Acute wounds share a number 
of physiological similarities, as they do differences, with 
chronic wounds. Through reflection on the normal wound 
healing processes, one can begin to identify where, why, and 
how chronic wounds can form. Under normal conditions, 
acute wounds will heal in a time-efficient manner through an 
orchestrated progression of four major overlapping phases 
of wound healing (Figure 1), which include: haemostasis, 
inflammation, proliferation, and remodelling.31-34

In stark contrast to acute wound healing, chronic wounds fail to 
reach the same endpoint, with prolonged inflammatory, and/or 
perturbed proliferative or remodelling phases, eventuating in 
non-healing ulceration or an undesired fibrosis of the tissue.35 
The highly orchestrated process of wound healing involves 

multiple cell types, which include: platelets, mast cells, 
macrophages, neutrophils, lymphocytes, myofibroblasts, 
fibroblasts, epithelial cells, pericytes, endothelial cells, nerve 
cells, and stem cells.34,36-38 The majority of these cells will 
interact with each other and the extracellular matrix (ECM) 
environment through a series of complex signalling pathways 
involving a multitude of proteins, peptides, metabolites, 
and biomolecules, including small interfering and micro 
ribonucleic acids (miRNAs).39, 40 Thus, these molecules reflect 
the driving forces associated with repair and regeneration; 
with molecular milestones met during each stage of the wound 
healing process, and which progress the wound towards 
a successful healing outcome. In order to distinguish those 
molecular differences inherent in chronic wounds that lead 
to prolonged or non-healing events, it is crucial to review the 
process of healing in the acute wound environment.

Haemostasis
Haemostasis occurs immediately following an injury to 
vascularised tissues. Vasoconstriction occurs through pain 
receptors, injury to vascular smooth muscle, and the activation 

Figure 1. Four phases of wound healing including: (i) Haemostasis; (ii) Inflammation; (iii) Proliferation; and (iv) Remodelling. 
Many events occur during the various stages of the wound healing process and at any stage a wound can stall or become 
perturbed. Adapted from: 33, 42, 198, 199.
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of platelets following exposure to extravascular collagen. The 
activated platelets also initiate the blood clotting cascade at 
the site of the injury. Platelets subsequently release various 
cytokines and growth factors, including platelet-derived 
growth factor (PDGF), insulin-like growth factor-I (IGF-I), 
vascular endothelial growth factor (VEGF), basic fibroblast 
growth factor (bFGF) and transforming growth factor beta/
alpha (TGF-β/TGF-α). In addition, adhesive glycoproteins, 
such as fibrinogen, fibronectin, thrombospondin, von 
Willebrand factor, and vitronectin, are also released and cause 
the platelets to become adherent and aggregate together.41-43 
As platelet aggregation continues, locally expressed thrombin 
catalyses the conversion of fibrinogen to fibrin resulting in the 
formation of a fibrin clot.44 This temporary barrier not only 
protects against pathogenic microorganisms and continued 
water loss, but acts as a provisional matrix for the subsequent 
phases of healing.45 As the platelets continue to release 
growth factors and chemokines, these attractants facilitate 
the migration of various different cell types, including 
leukocytes, into the wound site to initiate the inflammatory 
phase of wound repair.

Inflammation and Humoral Immune Response
Inflammation occurs within minutes of wounding, wherein 
inflammatory cells are attracted to the wound site by 
complement activation, degranulation of platelets and products 
of bacterial degradation.46 An influx of neutrophils to the wound 
site marks the initial inflammatory cell response.47 These cells 
represent the first line of cell-mediated host defence and 
begin the phagocytosis of bacteria, simultaneously generating 
oxygen-derived free radical species, in an attempt to destroy 
foreign organisms. In addition, neutrophils release high levels 
of proteases (elastase, neutrophil collagenase, and matrix 
metalloproteinases (MMPs), such as MMP8 and MMP9), 
which actively degrade damaged cells and components of the 
extracellular matrix.42 Mast cells subsequently activate at the 
wound site and release granules containing serine proteases, 
histamines, and other bio-active amines that are responsible 
for immune defence and the physical characteristics of 
inflammation, including redness, heat, swelling, and pain.48 
After 48–72 hours post-wounding, the neutrophils undergo 
apoptosis and are replaced by circulating monocytes that 
mature into phagocytic macrophages.49

Macrophages are essential to the regulation of wound healing 
and, similar to neutrophils, possess a dual role in the healing 
process. They phagocytose microbes and remove dead and 
damaged tissue through the extracellular secretion of MMPs 
and elastase. However, unlike neutrophils, macrophages are 
able to regulate the proteolytic destruction of wound tissue 
through the secretion of protease inhibitors.50 Secondly, 
macrophages mediate the transition of wound healing into the 
proliferative phase by the release of a number of growth factors 

and cytokines, including interleukin-1 (IL-1), interleukin-6 
(IL-6), tumor necrosis factor-α (TNF-α), epidermal growth 
factor (EGF), interferon-gamma (IFN-γ), PDGF, TGF-β, 
TGF-α, FGF, and IGF-I.42,51,52 The net result of these 
mediators is the stimulation of migration and proliferation of 
keratinocytes (epithelial cells), fibroblasts, and endothelial 
cells, culminating in the end of the inflammatory phase and 
the beginning of the proliferative phase of healing.

Migration and Proliferation
The proliferative phase of healing is associated with 
angiogenesis, re-epithelialisation, the formation of granulation 
tissue, and the formation of a new extracellular matrix through 
the deposition of collagen fibres, elastin, proteoglycans, and 
fibronectin. Fibroblasts are the main cell type present during 
this stage. Generally quite sparse in normal dermal tissue, 
these cells migrate and proliferate to great numbers within 
the wound area.42 They produce proteases, including MMPs, 
to clear the wound site, and proteoglycans, fibronectin, 
and collagen for construction of the provisional ECM. A 
number of important growth factors regulate fibroblast 
activity, including PDGF, TGF-β, EGF, IGF-I, and FGF.49 
Macrophage-secreted FGF and PDGF stimulate fibroblast 
proliferation, chemotaxis, and collagenase expression. In 
addition, TGF-β, also secreted by macrophages, increases 
the overall production of mature matrix proteins and reduces 
matrix degradation through the stimulation of the secretion 
of tissue inhibitor of metalloproteinases (TIMPs), which 
inhibit MMPs.51 The developing granulation tissue eventually 
undergoes angiogenesis due to the presence of low oxygen, 
low pH, high lactate levels, and matrix associated mediators 
(such as VEGF, TGF-β, and bFGF).53, 54 The formation of new 
capillaries continues until the tissue oxygen and metabolic 
needs are met.

Re-epithelialisation subsequently takes place, wherein the 
epithelial cells around the wound margin migrate to cover 
the exposed wound surface.55 Keratinocytes begin the 
process; migrating, proliferating, and then differentiating 
into a functional epidermis. Growth factors, such as EGF, 
keratinocyte growth factor (KGF), and TGF-α, stimulate the 
mass migration of keratinocytes over the collagen fibres of 
the granulation tissue.42 More recently, human antigen R, a 
post-translational modifier of mRNAs that translate proteins 
involved in cell growth, differentiation, function, and death, 
has been observed to reduce cellular adhesion and promote 
keratinocyte migration.56 In addition, proteases that are 
produced by the leading edge of epithelial cells degrade the 
provisional matrix and allow the movement of these cells 
across the wound bed. Once the keratinocytes cover the entire 
surface their behaviour changes and they focus on proliferation 
and differentiation. As the basal keratinocytes proliferate, 
the number of cell layers increase and these cells undergo 
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differentiation into the various distinct stratified layers of the 
new epidermis.57 This re-epithelialisation and cornification of 
keratinocytes hallmarks the completion of the proliferative 
phase of wound healing and is the clinical indicator of 
healing; however, this is not the final phase of healing as the 
underlying granulation tissue is yet to be remodelled.

Remodelling and Maturation
The remodelling phase is the final phase of wound healing 
where granulation tissue matures to form scar tissue and the 
repaired tissue tensile strength is increased. Essentially, the 
number of capillaries is reduced as they aggregate to form 
larger vessels; cell density and metabolic activity within the 
granulation tissue decreases; and, changes to the collagen 
type, abundance, and organisation occurs.42,58 Type 3 collagen, 
initially produced at high levels during the proliferative phase, 
is replaced by type 1 collagen, which becomes the dominant 
collagen within the skin. Tissue tensile strength is subsequently 
enhanced through the reorganisation of the collagen fibres, 
which were randomly deposited during granulation tissue 
formation. Over several months, key enzymes such as lysyl 
oxidase and the transglutaminases, present within the ECM, 
begin covalently cross-linking the collagen molecules and, 
in concert with proteolytic MMPs and collagen-stimulating 
TGF-β, the matrix is transformed.59 The final outcome is the 
formation of a scar with a maximum of 80% of the tensile 

strength of the original skin.42 Normally, the majority of acute 
wounds will heal completely; however, extrinsic and intrinsic 
factors can complicate the process, causing the wound to 
resolve into a chronic state.

Wound Healing Breakdown and the Rise of Persistent 
Ulceration
A number of factors, both systemic and within the local 
microenvironment, can alter the physiological response 
to wounding (Table 2). Previous reports have described 
considerable differences between acute and chronic wound 
environments; however, there are still many biochemical 
‘unknowns’ related to why wounds become chronic. Moreover, 
there is even less information on the biochemical changes 
that drive a chronic wound to eventually close. It is clear, 
however, that the dysregulation and disruption of molecular 
mechanisms play a key role in the formation and persistence 
of chronic wounds. It is through a deeper understanding of 
the changes occurring at the protein level that mechanisms 
leading to wound resolution can be determined.

Aetiologies of Chronic Wounds
The aetiologies of chronic wounds are diverse, however, more 
than 80% of these wounds are related to diabetes mellitus, 
venous insufficiency, or high arterial blood pressure.60 
The majority of chronic wound aetiologies encountered 

Table 2. An inventory of some of the underlying local and systemic factors that influence the formation and persistence of 
chronic wounds.*

Local Factors Systemic Factors

Infection (e.g. pathogenic bacterial colonisation) Chronic disease (e.g. venous disease, diabetes mellitus)

Tissue maceration Malnutrition

Foreign bodies Congenital healing disorders (e.g. Marfan’s syndrome)

Altered protein abundance Alcoholism

Free radical oxidative stress Glucocorticoid steroids

Ischemia-reperfusion injury Chemotherapeutic drugs

Localised cancer Advanced age

Venous insufficiency Distant cancer

Mechanical trauma (e.g. pressure sore) Uremia

Hypoxia Anemia

Toxins Obesity

Radiation Smoking

Iatrogenic (side effects of interventions) Systemic infection

Biochemical dysregulation Genetic variants

*Adapted from 74, 205, 206.
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in clinical settings include ulcers of venous disease and 
insufficiency,61,62 arterial disease,63 mixed (venous and arterial 
disease),64 pressure,65 and diabetic neuropathy.66 Although 
venous disease represents a dominant ulcer aetiology, there 
are many different underlying conditions that can lead to the 
formation of a chronic wound.67-70 Less prominent aetiologies 
can arise from malignancies,71 rheumatoid arthritis,72 and 
lymphoedema.73 Despite differing aetiologies, most chronic 
wounds show similar behaviour and progression.74 This 
can be due to similarities in the basal genetic, proteomic 
and metabolomic response to injury and repair. As mRNA, 
enzymes, peptides and other metabolites play key roles during 
the phases of healing, any alterations to their actions can 
have dramatic effects on the healing outcome.42 Importantly, 
different aetiologies may have different effects on the wound 
biochemistry, however, the end result remains a disrupted 
healing process and the formation of a chronic wound.67-70

Often the wound aetiology becomes an important factor in 
the choice of treatment. For example, venous insufficiency 
requires compression to the afflicted limb through the use 
of bandaging or stockings, which improves circulation and 
can aid in the exchange of molecules from the wound site.75 
However, compression therapy often involves uncomfortable 
levels of pressure that lead to low patient compliance 
following the closure of a chronic wound, which results in 
wound reoccurrence rates of up to 70% within five years.76 
Moreover, it is often the underlying health of the limb that 
contributes to the healing of the wound or the persistence 
of an ulcer77 and in some cases these systemic aspects are 
overlooked in treating the wound. In addition, a number of 
wounds with varying aetiologies are encountered in clinical 
practice; these are compounded by other independent 
factors associated with wound persistence making wound 
management quite complex. Thus, the molecular changes 
that occur at the wound site that are similar and disparate 
between aetiologies represent an important consideration in 
the development of clinically relevant biomarkers.

Venous ulcers represent the vast majority of ulcers, with 
reports in the literature of between 45% and 90% of all 
ulcers.78,79 Venous leg ulceration represents the most severe 
manifestation of CVeD. As the literature suggests, CVeD 
is a multifaceted disease state with an array of clinical 
manifestations. The onset of the early stages of CVeD are 
subtle and tend to proceed undetected until the disease is 
well underway, hence the lack of aetiological understanding. 
There is firm evidence that CVeD is a progressive disease and 
that some lifestyle and environmental factors exacerbate the 
condition. As outlined in Figure 2, the progression of CVeD 
would appear to follow a discernible trend of conditions that 
facilitate perpetual inflammation. What remains elusive then, 
is the propensity for some patients to gradually advance to 

more severe stages of CVeD while others stagnate.

Chronic Venous Disease of the Lower Limb
Chronic venous disease is an extremely common, wide-
reaching disease; the prevalence of which increases 
significantly with age.80 CVeD can manifest itself with a range 
of clinical symptoms, the most distinctive being oedema, 
varicose veins, pigmentation and sclerosis of the skin, and 
venous ulceration. Although a patient may be asymptomatic 
or present only with an isolated symptom of CVeD, most 
patients suffer from several symptoms in combination. This is 
due to the complexity of the pathophysiological mechanisms 
that underpin these symptoms, some of which are associated 
with more detrimental effects on patient health than others. 
The term ‘Chronic Venous Disease’ therefore encompasses a 
wide range of disease states that appear in varying degrees 
of severity among patients. The CEAP (Clinical, Etiological, 
Anatomical and Pathophysiological) Classification system, 
outlined in Table 3, was developed to allow clinicians to 
categorise the severity of a patient’s CVeD. Higher CEAP 
values correspond to worse clinical pathologies, where the 
highest value of six indicates an active ulcer. Moreover, a 
clinical cohort study has shown that patients classified at a 
higher CEAP classification reported a reduced quality of 
life.81 Longitudinal studies have also shown that over six 
years (between 2000 and 2006), up to 32% of patients advance 
from C2 to higher CEAP classes,82 showing that CVeD is a 
progressive disease. This presents an implicit problem for 
developed countries with an increasingly ageing population.

Varicose Veins
Varicose veins can be described as convoluted and dilated 
veins, typically affecting the superficial veins of the lower 
leg. Varicose veins affect approximately one third of the adult 
population.83 Some prevalence studies, however, report the 
incidence of varicose veins to be as high as 56% and 60% 
in men and women, respectively.84 These patients often 
experience discomfort, oedema, and changes in appearance 
to the skin85 as a result of the condition, in addition to higher 
rates of depression and anxiety than the general population.86 
The tortuous appearance of varicose veins can be attributed 
to structural and biochemical changes that occur within the 
vein wall,83 as well as the mechanical stresses resulting from 
venous reflux and turbulence.87 It has been suggested that the 
mechanical stresses sustained by the vein wall and valves 
are the predominant cause of these structural changes.83 
However, this causal relationship has not been conclusively 
validated, and there is evidence to suggest that, not only the 
structural, but the biochemical changes within the vein may 
precede venous reflux and incompetence.88 Thus, the nature 
of biochemical changes within the lower limb are just as 
important in developing a comprehensive understanding of 
venous health. 
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Figure 2. The progression of chronic venous disease (CVeD) into venous ulceration. CVeD progresses from mild symptoms (seen 
in CEAP classes 1-3) to severe pathology (seen in CEAP classes 4-6). There is a clear relationship between sustained venous 
hypertension and the development of microangiopathy and chronic venous insufficiency, from which more severe disease states 
such as lipodermatosclerosis and venous ulceration can arise. The fundamental aspect in the progression of venous pathology 
is the perpetuation of inflammatory processes. The current standard of treatment for patients who experience severe symptoms 
of CVeD is compression therapy, designed to apply continual pressure on the microvasculature of the lower limb and reduce 
peripheral hypertension and its implications in inflammation. Although many patients experience relief from such treatment, a 
large proportion continue to endure severe symptoms of CVeD despite compliance with best practice care.80, 200

Table 3. Categories of CEAP (Clinical, Etiological, Anatomical and Pathophysiological). Categories are based on the 
presentation of symptoms increasing in severity. Note that the C4 category can describe a number of different changes to the 
skin. A classification of C4a describes the presentation of pigmentation and venous eczema. A classification of C4b describes the 
presentation of lipodermatosclerosis plus atrophie blanche.

CEAP 
Classification Pathophysiology Corresponding Symptom

C0 Asymptomatic No clinical symptom present

C1 Mild venous reflux Telangiectasia/reticular veins

C2 Aberrant ECM remodelling Varicose veins

C3

Venous hypertension, vasodilation, and fibrin cuff 
formation Oedema

C4a | C4b

Leukocyte extravasation / Iron deposition and 
sclerosis

Pigmentation + 
eczema

Lipodermatosclerosis + 
atrophie blanche

C5 Venous insufficiency with adequate healing Healed venous ulcer

C6 Inflammatory dysregulation Active venous ulcer
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While the thickness and distribution of cell types and ECM 
components are typically uniform throughout vein walls, this 
is not observed in varicose veins. Histologically, varicose 
veins have a highly heterogeneous distribution of tissue 
layers. The walls of varicose veins are sporadically arranged 
with sections of hypertrophy and atrophy, giving rise to their 
highly convoluted appearance. Compared to healthy veins, 
ECM components were found to be overabundant in varicose 
veins.89 This is likely due to the observed increase in growth 
factors such as TGFβ1 and bFGF which post-translationally 
modify TIMP and MMP expression90 in favour of ECM 
overproduction.89 In addition, ECM alteration could, at least 
in part, be explained by the differentiation of smooth muscle 
cells from a contractile to a proliferative phenotype,87 which 
secrete a different variety of proteins. Smooth muscle cells 
have been shown to produce excess levels of type I collagen 
and deficient levels of type III collagen.91 This disparity in 
typical collagen production may explain the loss of elasticity 
observed in varicose veins. 

Oedema
Oedema is the localised pooling of bodily fluid within 
the interstitium of tissues, and is often driven by venous 
hypertension. Venous hypertension is caused by sustained 
pressure in the vasculature of the leg, arising from valvular 
incompetence, failure of the calf muscle pump or blockage 
within the vein. Persistent pressure in the macroscopic 
vascular system is transferred to the capillary system, resulting 
in increased capillary permeability and other manifestations 
of microangiopathy. Fluid and cellular components of blood 
are less restricted to entering the interstitial regions of the 
blood vessel walls and the dermis, resulting in swelling of 
the lower limb. Oedema has been reported to be the most 
commonly presented symptom among patients with CVeD,92 
and its presence indicates a level 3 CEAP classification.

Lipodermatosclerosis
As increased permeability of capillaries also facilitates 
other pathology, oedema is rarely observed in isolation. 
Extravasation of leukocytes is another consequence of 
increased vessel permeability and is associated with the 
deposition of extraneous materials such as iron and fibrin in 
the pericapillary space and dermis. Browse et al. hypothesised 
as early as 1982 that the accumulation of fibrin in the dermis 
of the lower limb played a crucial role in venous ulceration, 
resulting from the inability of nutrients to efficiently diffuse 
into dermal tissues.93 Falanga et al. also noted decreased 
fibrinolytic activity in patients with lipodermatosclerosis and 
venous ulceration.94 Presence of these ‘fibrin cuffs’ in the 
pericapillary region of the lower limb has been shown to be 
heavily associated with the presence of lipodermatosclerosis 
and venous ulceration in patients.95-97 

Lipodermatosclerosis is a term that describes changes 
to the dermis of the lower limb. It is characterised by 
inflammatory lesions and hyperpigmentation of the dermis, 
finally progressing to fibrotic hardening of the skin and in 
an ‘inverted bottle’ appearance of the leg. Patients suffering 
from lipodermatosclerosis experience pain and tenderness 
in the area; the site is often warm, scaly and rigid to the 
touch.98 The condition is usually confined to the medial aspect 
of the lower limb. The presence of lipodermatosclerosis in 
patients is frequently associated with venous ulceration.99 
Nemeth et al. reported that the extent of lipodermatosclerotic 
symptoms in patients is strongly associated with venous ulcer 
recalcitrance.100 Histological examination of subcutaneous 
lipodermatosclerotic tissue reveals dilated veins, haemosiderin 
and fibrin deposition, sclerosis and haemorrhage.101 Acute 
phase lipodermatosclerosis also shows lymphocytic and 
inflammatory cell infiltrate, which diminishes as the disease 
progresses and the tissue becomes sclerotic.101 

Although the exact aetiology of lipodermatosclerosis 
has not been established, there is evidence to suggest 
that sustained venous hypertension leads to increased 
attachment of leukocytes to the endothelium wall resulting 
in their activation, analogous to an inflammatory response.102 
Macrophages and T lymphocytes were found to be the most 
commonly extravasated cells in lipodermatosclerotic skin 
biopsies, coinciding with increased ICAM-1 expression. 
Biopsies that represented persistent lipodermatosclerosis 
demonstrated increased quantities of the proinflammatory 
cytokines IL-1α and IL-1β103 that were not observed in acute 
cases. Pericapillary fibrin was also present in these specimens, 
in accordance with previous observations. Despite the strong 
correlation between pericapillary fibrin deposition and the 
presentation of severe dermal pathology, a number of studies 
have refuted the causal relationship between pericapillary 
fibrin and venous ulceration.99,104-106 There is evidence to 
suggest, however, that the presence of fibrin within the dermis 
recruits additional leukocytes to the area,107,108 perpetuating 
the inflammatory response. 

Iron Overload
Another key symptom of CVeD is iron overload. Excess 
iron is sequestered by the protein complex, haemosiderin, 
which is located in the intracellular region of cells that 
predominantly populate the dermis of the skin. Excessive 
levels of haemosiderin within the dermis have been shown 
to induce hyperpigmentation of the dermis,109 exacerbate the 
inflammatory response and delay wound healing in cases of 
venous ulceration. This appears to be due to the direct roles of 
haemosiderin in ECM degradation and inhibition of tissue repair 
mechanisms.110 Moreover, iron overload within hepatocytes 
has been directly correlated with liver fibrosis in patients with 
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iron storage disorders such as haemochromatosis,111 and it 
may be plausible that this also occurs in other tissues such as 
the dermis. Leonarduzzi et al. has demonstrated that oxidative 
stress resulting from iron overload stimulates the expression 
of macrophage-associated-cytokines in vitro, which can lead 
to the aberrant deposition of fibrotic tissue.112

Collectively, these studies suggest that excessive iron has direct 
implications in chronic inflammation and the consequential 
development of sclerotic tissue. This contention is supported 
by a study conducted by Caggiati et al., to investigate the 
extent of haemosiderin deposition within the dermis using 
Perl’s Prussian Blue (PPB) stain.113 Dermal biopsies of several 
specimens of differing stages of chronic venous disease were 
examined. Haemosiderin deposition was absent in normal and 
mildly pigmented skin samples, whereas increased staining 
was observed in samples taken from severely pigmented 
skin and lipodermatosclerotic skin. Importantly, PPB stain 
revealed that haemosiderin was also present in samples from 
the wound edge and bed of ulcerated specimens.113 Since 
specimens’ that exhibited regression of ulceration, yielded 
comparatively lower levels of staining, it is hypothesised 
that haemosiderin deposition diminishes with tissue healing. 
However, as specimens from fully healed ulcers could not be 
obtained due to ethical considerations, this hypothesis has not 
yet been substantiated.

Genomics and Transcriptomics
Genetic association studies are integral to understand the 
epidemiology of complex diseases; the ultimate goal being to 
identify genetic variants that contribute to pathology and their 
role in disease aetiology. This process may not only provide 
further information about the pathophysiology of a disease, 
but also reveal novel and potentially targetable biomarkers for 
disease onset and progression. There are a variety of methods 
to perform genetic association studies, including genome-
wide approaches and candidate-gene approaches. 

Genetic linkage and association studies have largely been 
successful in identifying genetic variants that contribute 
to Mendelian inherited diseases such as Huntington’s 
disease,114,115 cystic fibrosis116 and haemochromatosis117 
leading to effective screening tools for early diagnosis. These 
diseases, however, are generally the result of a small number 
of rare mutations that confer a high risk of disease onset and 
progression. More recently, genome-wide association (GWA) 
studies have been used to identify genetic variants that 
confer a greater risk of developing complex diseases, which 
potentially involve multiple genetic variants.118 For this reason, 
it has been difficult for GWA studies to comprehensively 
identify all genetic variants within a complex disease. 
This is because there can exist a large number of common, 

moderate risk genetic variants that may, collectively or in 
various combinations, predispose an individual to a disease. 
This is further confounded by environmental and lifestyle 
factors that may accumulate into a larger conferred risk of 
disease. It is therefore difficult to identify significant variants 
associated with complex disease traits, particularly when 
affected patients may display a range of disease phenotypes, 
such is the case for chronic venous disease. Successful GWA 
studies, therefore, require large numbers of cases and controls 
(typically in the thousands) and strict phenotyping criteria to 
identify variants that may only contribute a small amount to 
disease pathogenesis and/or progression.  

To date, no GWA study has been performed to identify variant 
alleles that contribute to CVeD or VLU. This is most likely 
due to considerations in the financial cost of such a study, the 
immense sample size required to achieve statistical power,119 
considerations in the demographic of the sample population, 
as well as the substantial chance of a high false discovery rate. 
An alternative to this method is the candidate-gene approach, 
where-by the presence of genetic variants associated with a 
pathway within a multifactorial disease are compared between 
a patient and control population, and the relative risk of the 
variant to disease characteristics is calculated, usually as an 
odds ratio.120 This method has been performed with respect 
to CVeD and VLU with some success, and has shown several 
genetic polymorphisms that are associated with disease 
characteristics of VLU.120-125 These include variants in genes 
that function in vascular development, iron homeostasis, 
haemostasis, extracellular matrix homeostasis and 
inflammation. The obvious shortcoming with the candidate 
gene approach, however, is that potentially significant 
genetic variants may be neglected. Due to the complexity 
of the intricate molecular mechanisms that underpin wound 
healing, particularly within the context of CVeD, there may be 
countless biochemical pathways and genetic variants therein 
that could possibly be overlooked. Despite this, the candidate 
gene approach has so far revealed valuable information, as 
the genetic variants identified to date may potentially act as 
valuable prognostic markers for wound healing, or perhaps 
even as therapeutic targets.

It is evident that investigating the genome may provide 
insights into the genetic variants that predispose an individual 
to VLU. In order to understand the inflammatory/healing 
processes at the molecular level, however, this method is 
not sufficient to explore how the genes are expressed within 
the wound environment. In particular, it is important not 
only to investigate the differential expression and activity of 
proteins between wounds at different phases of inflammation 
and healing, but to understand how these can affect wound 
healing.
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Transcriptomic analysis of venous leg ulcer tissue has revealed 
several significant genes that are differentially expressed 
between healing and non-healing wounds,126 many of these 
with direct roles in inflammatory and apoptotic pathways. 
Moreover, gene expression profile analysis has revealed 
differentially expressed genes within other tissue types, such 
as varicose veins. Varicose veins have been a particular topic 
of interest, due to their substantial role in the progression of 
CVeD and initiation of inflammatory stress in the lower limb 
resulting from a lack of venous return. Many studies have 
shown several genes to be differentially expressed between 
varicose veins and controls,127-130 however as yet there is 
inconclusive evidence as to whether this dysregulation is a 
cause or effect of the structural changes within the tissue. 
Overall, these data provide an insightful ‘snapshot in time’ of 
the pathophysiological stages that are understood to facilitate 
the progression of CVeD and provides a foundation on which 
to expand the current understanding of its development. 
Although this may provide potential prognostic and 
therapeutic targets, there is currently limited information on 
why these genes are differentially expressed, their role in 
wound healing, and their causative relationship with disease 
progression. This relationship could potentially be elucidated 
with a temporal analysis of gene expression within varicose 
vein and/or chronic wound patients at various stages of CVeD 
and wound healing.

There is strong evidence that CVeD is a largely heritable 
disease, but it is also well understood that environmental 
and lifestyle factors can have a significant role in its onset, 
progression and severity. The complex interplay between 
each of these factors make it difficult to elucidate the causal 
relationship between disease mechanisms and gene expression. 
Wound healing, like any other complex biological process, 
is driven at the functional level by numerous peptides and 
proteins that are assembled and post-translationally modified 
in ways that can’t be predicted by gene expression analysis.131 
It is dubious to attempt to draw accurate conclusions of the 
underlying molecular mechanisms of venous ulceration based 
on genomic and transcriptomic datasets alone, as analysis of 
the genome and gene expression is not sufficient to elucidate 
the relationship between the genome, gene expression and 
wound microenvironment. 

Proteomics and Metabolomics
The fields of proteomics and metabolomics have undergone 
substantial technological advancement over the last decade, 
particularly in the improvement of mass spectrometry 
instrument sensitivity and acquisition speed. This has resulted 
in great leaps in our understanding of wound biochemistry at 
both targeted and systems levels.

Chronic Wound Protein Inventory and Markers of 
Differentiation: The Wound Fluid Proteome
A number of previous studies have investigated the protein 
constituents of chronic wounds. Those prior to 2010 have 
been comprehensively reviewed elsewhere.132 Subsequent 
studies have expanded the list of known proteins present in 
chronic wounds, with hundreds of proteins detected within 
wound fluid.133-141 Although many additional proteins have 
been detected in wounds, such as various cytokines and 
interleukins through sampling by tissue biopsy and antibody-
based techniques, these are more difficult to detect using 
shotgun proteomics due to their relatively low abundance 
in wound fluid. It is likely that a single complete view of 
the wound proteome would require the use of multiple 
technologies, such as mass spectrometry with immune-
enrichment/depletion strategies or sequential windows in data 
acquisition, to aid in the detection of low abundant molecules.

Edsberg et al. generated a large catalogue of the proteins 
present in wound fluid of pressure ulcers, and compared the 
presence or absence of these proteins in wounds that healed 
and those that failed to heal.141 This study demonstrated 
key differences in the proteomes of pressure ulcers that 
reflected differences between healing wounds and persistent 
wounds, in addition to spatial differences between the centre 
and periphery of the wound. The proteome of wound fluid 
from venous ulcers has yet to be examined to the same 
comprehensive extent. Moreover, the finding that spatial 
differences exist within a chronic wound suggests that future 
studies could apply higher resolution sampling in order to 
better understand the biochemistry of the ulcer. Eming et al.135 
have compared acute wounds with venous leg ulcers and found 
an elevated abundance of proteins associated inflammation, in 
particular Annexin A1 and Protein S100-A9. This is further 
supported by the work by Krisp and others,133 who found 
elevated abundances for proteins within the annexin, S100 
and MMP families within diabetic ulcers. This suggests the 
major inflammatory response within a chronic wound may be 
similar across wound aetiologies.

Protein Degradation is Increased in Chronic Wounds
Comprehensive investigations of various enzymes present 
in wound fluid have demonstrated that non-healing ulcers 
have increased protease activity, predominantly MMPs, 
compared to acute wounds.142-149 Moreover, the actions of 
human proteases are further exacerbated by the actions of 
bacterial proteases.150 This heightened protease activity then 
leads to excessive protein degradation within the wound, 
which impacts on normal healing processes and homeostatic 
responses. Critically, the consensus within the literature 
suggests that the vast majority of non-healing wounds will 
have degraded proteins, which may imply that the peptide 
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products could be indicative of the chronic environment; 
potentially, these degradation products could be useful as 
biomarkers of wound healing or persistence. Therefore, the 
focus of biomarker discovery should be on the biomolecules 
of wound fluid as they exist within the local environment, so as 
not to discount the additional information that can be obtained 
from partially digested proteins. Moreover, the analysis 
of other biochemical constituents of wound fluid, such as 
proteins or polypeptides produced by wound microbes, which 
have been overlooked in previous studies of fluid, provides a 
unique perspective for biomarker discovery research. 

In comparison to acute wounds, chronic wounds have elevated 
levels of protease activity at the wound site.151 In chronic 
wounds, increased levels of MMPs released by fibroblasts, 
macrophages, eosinophils, and, in particular, neutrophils, 
actively remove components of the ECM. This degradation 
becomes a problem when MMP activity is poorly regulated 
and the equilibrium between MMPs and their inhibitors, 
the TIMPs, shifts in favour of the proteases, resulting in a 
stagnant inflammatory phase of healing.152 It has been noted 
that in chronic pressure ulcers the major collagenase present 
is the neutrophil-derived protease, MMP8.42 This suggests 
that neutrophils, present in the early stages of healing, play 
an important role in the development of chronic wounds. In 
addition to increased protease activity, chronic wounds also 
have elevated levels of pro-inflammatory cytokines compared 
to acute wounds.153, 154 There are two key inflammatory 
cytokines present in chronic wounds, interleukin-1 (IL-1) and 
TNF-α, which initiate the cascade of inflammatory mediators 
by targeting the endothelium.155 Neutrophils attached to the 
endothelium subsequently infiltrate the wound site, producing 
reactive oxygen species and damaging host tissues. A high 
abundance of these cytokines signal the infiltration of more 
neutrophils that further exacerbate localised tissue damage.156 
Interestingly, neutrophils also generate hypochlorous acid 
(HOCl) and N-chloramines through the myeloperoxidase-
H2O2-halide system. These effectively inhibit TIMPs within 
the wound site and shift the protease-antiprotease equilibrium 
further towards degradation.151 Furthermore, excessive and 
prolonged inflammation is suspected to be partially attributed 
to the presence of sustained quantities of TNF-α within the 
wound area, but research in this area is still limited and further 
investigation is required.157 

The Chronic Wound Metabolome
Compared to proteomic studies, metabolomic investigations 
into venous leg ulceration is still within its infancy. To date, 
the major metabolite targets within venous leg ulcer research 
have been L-arginine, oxidative free radicals, nitric oxide, and 
iron, with each molecule found to be significantly elevated 
within the chronic wound environment and strongly associated 

with aspects of inflammation.1,158,159 These data correlate 
with proteomic data on the presence of a local inflammatory 
phenotype within chronic wounds. Critically, within the 
literature there are limited examples of discovery-based or 
large screening metabolomic approaches for investigating 
venous leg ulcers. This has resulted in an extensive knowledge 
deficit on the dynamic functional aspects of VLU compared to 
the proteome. Much of the current perspective of the wound 
metabolome has been derived from targets assays, leaving a 
considerable gap within the literature that is yet to be fully 
explored.

Proteomics Approaches
Mass spectrometry is predominantly used over traditional 
chemical, gel or antibody based methods for large scale 
proteome analysis. This is primarily the result of research 
questions focussed on both the qualitative identification of 
proteins and the quantification of these proteins within a 
given system.160,161 Mass spectrometry facilitates this and can 
provide high mass accuracy with high confidence in protein 
identification and abundance.162,163 At present, there is a wide 
selection of mass spectrometry instruments available for use 
in a variety of different research investigations.

Top Down Proteomics 
Top-down proteomics focusses on the native protein or 
polypeptide. This is ideal in proteomic investigations where 
accurate masses for whole proteins can reveal the presence of 
post-translational modifications (PTM).164 Due to the size and 
physiochemical properties of some native proteins, aspects 
of ionisation and collision induced fragmentation within the 
mass spectrometer do not perform well. In the majority of 
top-down approaches, protein sequence information is not 
obtained, but rather crucial data on the macro-changes to the 
proteome can be observed, which can include protein-protein 
interactions.

An approach often taken in top-down proteomics involves 
profiling the biomolecular constituents of a sample and 
then later identifying those target analytes with differential 
abundance. These profiling experiments are highly suited to 
discovery phase analyses, wherein changes within a biological 
system can be more easily deduced.165 These analyses will 
often use MS1 survey scan data to fingerprint a sample 
and generate a mass spectrum that reflects the underlying 
biochemical landscape. Such methods are key to surface 
enhanced or matrix assisted laser desorption/ionisation (SE/
MA-LDI) time of flight (TOF) mass spectrometry (MS), 
where profiles of proteins/polypeptides of a sample represent 
the detectable biochemistry of that sample at a given point in 
time.
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SELDI-TOF MS is a biomarker discovery phase technology. 
The technology utilises chromatography-based chemistries 
to selectively bind proteins and peptides onto the surface of 
a metal target. This allows for the chemical separation of a 
complex proteome and with subsequent mass spectrometry, 
generates data by analysing molecules based on differences 
in their mass-to-charge ratio (m/z). It has advantages in high-
throughput capabilities and is well suited to early discovery 
phase research, but has become a defunct technology due to 
concerns with reproducibility.168,169 Alternatively, MALDI-
TOF MS continues to be used to examine wound biology, 
particularly through bacterial profiling and biopsy tissue 
imaging approaches.170,171 MALDI imaging requires the use 
of tissue sections and thus provides protein level information 
in relation to the architecture of the skin. This is ideal for 
investigating protein abundance gradients throughout the 
depth of tissue and those associated with major features, 
such as hair follicles or the wound edge. The investigation 
of pressure ulcers by Taverna et al.171 using MALDI imaging 
MS revealed that the biochemistry differs between the wound 
bed and the adjacent dermis in chronic wounds, whereas in 
healing wounds these areas show less variation.

Bottom Up Proteomics
The identification of proteins by mass spectrometry 
predominantly takes a bottom-up or shotgun approach; 
wherein proteolytically generated peptide fragments are 
sequenced by the mass spectrometer and then mapped 
to original proteins using in silico methods. Bottom-
up approaches will often separate peptides using liquid 
chromatography systems coupled directly to the mass 
spectrometer. Typical methodology requires the use of a 
proteolytic enzyme, commonly trypsin, which hydrolyses 
peptide bonds of specific amino acid residues (after lysine or 
arginine) and creates a pool of peptides. These peptides can 
then a separated by liquid chromatography and, due to the 
amino acid characteristics of tryptic peptides, these molecules 
retain a positive charge at an acidic pH, which allows easy 
manipulation and measurement of their gas-phase adducts in 
the mass spectrometer. The bottom-up proteomics approach 
generates data at the peptide level, which provides insight 
into, not only the amino acid sequence, but also the specific 
amino acid PTM or substitutions of a target protein.

Data Dependent Acquisition (DDA)
The traditional mass spectrometry approach using liquid 
chromatography tandem mass spectrometry (LC-MS/
MS) in DDA mode permits the identification of dominant 
peptide sequences and, subsequently, protein identification 
through sequence database matching. The majority of 
DDA experiments are performed using quadrupole-orbitrap 
or quadrupole-TOF based instruments due to their high 
resolution capabilities. Within the mass spectrometer, an 

initial survey scan of a complex mix of peptides will determine 
dominant precursor ions, which are subsequently fragmented 
by collision-induced-dissociation with an inert gas and the 
abundance of these product ions detected and displayed as 
mass-to-charge peaks within a spectrum. The majority of the 
wound fluid proteome has been identified using this approach, 
however, a more comprehensive interrogation of the venous 
ulcer wound is required.

Selected / Multiple Reaction Monitoring (SRM/MRM)
In targeted mass spectrometry, the precursor and product ion 
pairs, known as transitions, for a target peptide are known. 
Using DDA data, unique and highly detectable transitions 
can be targeted using a triple quadrupole mass spectrometer, 
where precursor masses are isolated in the first quadrupole, 
fragmentation within the second, and product ions isolated 
in the third quadrupole prior to detection. This approach is 
useful for multiplex experiments that measure the abundance 
of multiple peptide targets within a single run. Although MRM 
can facilitate the verification of biomarker targets and be used 
in the development of clinical diagnostic tests, there is limited 
information within the literature where this is the case.

Data Independent Acquisition (DIA)
Data independent acquisition utilises consecutive precursor 
isolation windows, of a fixed or custom variable size, to 
systematically capture the presence and quantity of peptides/
molecular targets.172 The detection of all fragmentation ions 
via this unbiased approach effectively digitises a biological 
sample for interrogation against spectral libraries of known 
peptides. Critically, there has been wide acceptance of the 
technology in multiple areas of research.173-181 However, 
DIA has not yet been applied to the proteomic profiling of 
wound fluid and, thus, offers a unique opportunity to increase 
the current knowledgebase on venous leg ulcers. The DIA 
approach would be expected to produce quantitative data 
on hundreds, potentially thousands, of proteins within 
wound fluid samples and may substantially progress our 
understanding of chronic wound biochemistry.

Metabolomics Approaches
Metabolomics includes the identification and quantification 
of metabolites generated as a result of cellular physiology.182 
Metabolomics captures the metabolome at a fixed point in 
time and thus contains a snapshot of both end-products and 
intermediates of cell and tissue metabolism. Metabolites 
include, but are not limited to, carbohydrates, lipids, vitamins, 
steroids, amino acids, nucleic acids, and peptides183,184 and 
are viewed as ideal biomolecules for diagnostic biomarkers 
within clinical practice.182,185 The two main approaches to 
metabolite discovery and measurement are nuclear magnet 
resonance (NMR) spectroscopy and mass spectrometry using 
either gas or liquid chromatography (GC-MS / LC-MS).
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NMR spectroscopy is a quantitative, reproducible and non-
destructive method capable of profiling liquid and tissue 
samples.186-188 Moreover, NMR is able to provide data on 
metabolites that cannot be ionised for mass spectrometry based 
detection, making it a valuable tool for biomarker discovery 
research. Mass spectrometry based detection of metabolites 
provides improved sensitivity and specificity over NMR 
spectroscopy. Moreover, this approach requires substantially 
less volume of sample, which is ideal for the analysis of 
microlitre volumes of wound fluid that are often collected. 
Both GC and LC utilise upstream columns (chromatography) 
to separate out metabolites prior to ionisation and detection 
within the mass spectrometer. Various column chemistries can 
be used to detect different classes of molecule, in addition to 
variable parameters (e.g. m/z range filters, selected reaction 
monitoring, collision energies) within the mass spectrometer.

Bioinformatic Integration of Omics Data
The generation of large multivariate datasets from multiple 
omics platforms can present a challenge when attempting to 
integrate these together to extract meaningful biological data. 
It is clear from the literature that any omics data integration 
relies on, at least, a three-step process of identifying a 
common variable to connect datasets (at minimum by sample 
name), delineation of relationship networks using ontological 
enrichment or clusters and modules, and application of a 
statistically sound model of the system that could permit 
simulation and prediction of system phenotypes.189-191 A 
number of quality reviews on the topic provide a wealth of 
resources to attempt omics data integration, with potential 
frameworks,189,190 available software and databases,85,191,192 and 
analytical methods189 described. The integration of multiple 
omics datasets could reveal new mechanism of action for the 
persistence or healing of chronic wounds and may enable 
the implementation of personalised medicine within clinical 
practice.190 Moreover, by integrating multi-omics datasets, 
the issues surrounding high false positive rates with genome 
wide association studies could potentially be mitigated by the 
incorporation and clustering of the other levels of molecular/
omics data.

Consideration of the temporal component within omics 
data integration represents a large challenge in itself, with 
transcription, translation and metabolic functions occurring in 
dynamic flux. This can confound the process of elucidating 
new regulatory mechanisms within a system and may require 
the use of correlation analyses to determine relationships 
between molecules.190 This aspect will be of paramount 
importance for the future of omics research into venous ulcer 
pathophysiology. To date, the integration of more than two 
omics datasets from complex systems (in particular, data 
from transcriptomic, proteomic and metabolomic analyses) 
has not been widely explored.193 It can be expected that once 

more comprehensive integrations are achieved within model 
systems, new approaches may be developed to address more 
complex diseases and systems, such as VLU and other chronic 
wound aetiologies.

Clinical Challenges in Biomarker Research
The discovery and development of biomarkers from wound 
fluid holds promise to help inform wound management 
practices and reduce this impact. Indeed, it has been described 
in the literature that the proteomic analysis of wound fluid 
is crucial for the discovery and delivery of indicators of 
healing.197 Wound fluid characteristics can differ dramatically 
between patients and between ulcers, including volume, 
biomolecule abundance, pH, microbiome, and trace metals. 
With respect to the investigation of the wound fluid proteome, 
the concentration of protein can vary dramatically.194 Critically, 
the normalisation of each sample by protein concentration or 
total protein is crucial to the comparative analysis of healing 
and non-healing wounds.

In addition, as wound fluid shares similarities to serum, 
there is the concern regarding dynamic range effects.134 For 
example, proteins present in wound fluid can vary in their 
abundance from those that are very high, such as albumin, 
to those that are in very low abundance, such as growth 
factors or cytokines.195,196 This wide dynamic range of protein 
abundance complicates the detection of low abundant protein 
species and often requires sample fractionation or complexity 
reduction through other methods. Likewise, metabolites of 
interest can be enriched for prior to data acquisition to remove 
confounding background molecules. 

Furthermore, patient compliance and participation can also 
be problematic, as patients can choose at any time point to 
withdraw from a study or fail to present at an expected time 
point. Nevertheless, despite however complex the clinical 
situation may be, the advantage of using clinical samples 
lies in the ultimate applicability of the research results to the 
clinical setting and research problem. This is often not the case 
in in vitro studies or in vivo animal models, where the samples 
do not directly reflect the human response, at the genetic, 
protein and metabolite levels, nor the uncontrolled reality of 
a clinical environment.The future of research into chronic 
wounds is to obtain a more comprehensive understanding 
of the biochemical changes that occur within wounds and to 
deduce key factors associated with healing.

Conclusion
The identification of clinically relevant molecules of chronic 
wound healing outcomes is an area of limited research. 
However, recent improvements in omics technologies provide 
the means to undertake more comprehensive investigations 
of chronic wound and aid in biomarker discovery and 
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increasing our understanding of VLU biology. Previous omics 
approaches have revealed significant differences between 
healing and non-healing chronic wounds. However, there are 
currently no clinically relevant biomarkers used in standard 
wound management practices. Several challenges still lie 
ahead for the analysis of clinical samples, cataloguing of the 
wound fluid proteome and metabolome, and the identification 
and development of biomarker tools. Advancements in MS 
sequencing technology, such as DIA, have not yet been 
applied to the analysis of wound fluid. These advances permit 
the comprehensive exploration of the wound fluid proteome 
with a greater depth and scope than that of previous studies. 
Moreover, metabolomic methods in biomarker discovery are 
yet to be fully explored with respect to the analysis of wound 
fluid from venous ulcers.

The use of a systems approach that includes an analysis of both 
the human genome, based on predisposing genetic variants, 
and proteome and metabolome of wound fluid represents a 
unique strategy towards biomarker discovery. Incorporating 
omics data from multiple perspectives provides a more 
comprehensive profile of wound fluid and the underlying 
pathophysiology of the wound. Through such a systems 
approach, the likelihood of deducing molecular markers of 
healing outcomes would be increased. Moreover, there is 
potential for such markers to be developed into tools that can 
assist with clinical practice and ultimately make a positive 
impact towards addressing a global health challenge.
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