
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Salam, Md Iftekhar, Simpson, Leonie, Bartlett, Harry, Dawson, Ed,
Pieprzyk, Josef, & Wong, Kenneth Koon-Ho
(2017)
Investigating cube attacks on the authenticated encryption stream cipher
MORUS. In
2017 IEEE Trustcom/BigDataSE/ICESS, 1-4 August 2017, Sydney, N.S.W.

This file was downloaded from: https://eprints.qut.edu.au/111841/

c© IEEE 2017

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.337

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/89301919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eprints.qut.edu.au/view/person/Salam,_Md_Iftekhar.html
https://eprints.qut.edu.au/view/person/Simpson,_Leonie.html
https://eprints.qut.edu.au/view/person/Bartlett,_Harry.html
https://eprints.qut.edu.au/view/person/Dawson,_Edward.html
https://eprints.qut.edu.au/view/person/Pieprzyk,_Josef.html
https://eprints.qut.edu.au/view/person/Wong,_Kenneth.html
https://eprints.qut.edu.au/111841/
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.337


Investigating Cube Attacks on the Authenticated Encryption Stream Cipher
MORUS

Iftekhar Salam∗, Leonie Simpson∗, Harry Bartlett∗, Ed Dawson∗, Josef Pieprzyk∗† and Kenneth Koon-Ho Wong∗
∗Science and Engineering Faculty

Queensland University of Technology, Brisbane, QLD 4066, Australia
Email: {m.salam, lr.simpson, h.bartlett, e.dawson, josef.pieprzyk, kk.wong}@qut.edu.au

†Institute of Computer Science
Polish Academy of Sciences, Warsaw, Poland

Abstract—We investigated the application of cube attacks to
MORUS, a candidate in the CAESAR competition. We applied
the cube attack to a version of MORUS where the initialization
phase is reduced from 16 steps to 4. Our analysis shows
that the cube attack can successfully recover the secret key
of MORUS-640 with a total complexity of about 210 for
this reduced version, and similarly for MORUS-1280 with
complexity 29. Additionally, we obtained cubes resulting in
distinguishers for 5 steps of the initialization of MORUS-
1280; these can distinguish the cipher output function from
a random function with complexity of 28. All our attacks are
verified experimentally. Currently, the cube attack does not
threaten the security of MORUS if the full initialization phase
is performed.

1. Introduction

The cube attack is an algebraic cryptanalysis method
introduced by Dinur and Shamir [1]. The attack generalises
the idea of Higher Order Differential Attack [2] and Alge-
braic IV Differential Attack [3]. This paper investigates the
applicability of cube attacks to the authenticated encryption
(AE) cipher MORUS.

MORUS [4], [5] is a family of AE stream cipher al-
gorithms, and is a third-round candidate in the CAESAR
competition [6]. There are three variants: MORUS-640-128,
MORUS-1280-128 and MORUS-1280-256; where the first
number represents the state size and the latter one represents
the key size. The cipher provides both confidentiality and
integrity assurance for the input data.

MORUS ciphers use a key K of either 128-bits or
256-bits. The initialization vector V is 128-bits, for all
the variants of MORUS. Confidentiality of plaintext P is
achieved by XOR-ing P with the keystream generated by
the cipher to obtain the ciphertext C. MORUS provides
integrity assurance for the plaintext P and associated data D
by injecting P and D into the internal state and computing
a tag T in terms of the internal state.

There is very little analysis of MORUS in the public
literature. Mileva et al. [7] described the existence of dis-
tinguishers for MORUS under the nonce-reuse scenario and

analysed the state update function for collisions, reporting
collisions in the internal state of MORUS when an adversary
is able to inject specific differences into both the inter-
nal state and external inputs. Dwivedi et al. [8] analysed
MORUS-640 for SAT based state recovery and found the
attack has a complexity of 2370 which is not feasible.

1.1. Notations and Operations

• K = k0k1...klk−1
: The secret key of size lk bits.

• V : The initialization vector of size 128-bit.
• M t: The external input to the state at step t.
• P t: The input plaintext at step t.
• Dt: The input associated data at step t.
• St: The internal state at step t.
• St

j : The internal state at the jth round of step t.
• St

j,k: kth element of state St
j .

• ⊕: Bit-wise XOR operation.
• ⊗: Bit-wise AND operation.
• ≪ wi: Rotation to the left by wi bits, where 0 ≤ i ≤ 4.
• Word: A sequence of 32 bits or 64 bits, for MORUS-

640 and MORUS-1280, respectively.
• Block: A sequence of 128 bits or 256 bits, for MORUS-

640 and MORUS-1280, respectively.
• Rotl xxx yy(x, bi): Divide a xxx-bit block x into 4
yy-bit words and rotate each word to the left by bi bits,
where 0 ≤ i ≤ 4.

2. Description of MORUS

MORUS has 5 state elements S0,0, · · · , S0,4 where each
element is a register of length either 128 bits or 256 bits, for
MORUS-640 and MORUS-1280, respectively. Operations
performed in MORUS can be divided into five phases:
1) Initialization 2) Processing associated data 3) Encryption
4) Finalization 5) Decryption and tag verification

Note that there are two versions of MORUS which differ
only in the finalization phase. In this paper we mainly inves-
tigate the initialization phase of MORUS, so the difference
in the two versions does not affect our analysis. Figure 1
shows the different components of MORUS in generic form.



Figure 1. Generic Diagram of MORUS

One of the main component functions of MORUS is
the state update function Update(St,M t). As shown in
Figure 1, at each step t the state update function has 5
rounds with similar operations. Each round, two of the state
elements St

j,k are updated. The state update function takes

input from the internal state bits and the external input M t.
Depending on the phase the cipher is in, M t can be: all zero
bits, the associated data, the plaintext, or a representation of
the length of associated data and plaintext.

We describe here the initialization, associated data pro-
cessing and encryption phase of MORUS as these are the
phases where the cube attack is applicable.

2.1. Initialization

To start, the five state elements of MORUS are loaded
with the key, initialization vector and specific constants. The
interested reader can find the details in [4], [5]. After this,
the state update function Update(St,M t) is applied 16 times
with M t set to zero. The cipher does not produce any output
during this process. After these 16 updates the contents of
state element St+16

0,1 are XORed with the key K. The state
value at the end of this process is the initial internal state.

2.2. Processing Associated Data

This phase starts with the initial internal state. The
associated data is divided into ld blocks. At each step

the associated data block Dt is used as the external input
M t. This process is continued ld times to process all the
associated data blocks, again without producing any output.
This phase is omitted if there is no associated data.

2.3. Encryption

The input plaintext is processed after the associated data
processing phase. The plaintext is divided into lp blocks.
At each step t, the cipher uses the keystream generation
function to compute one output keystream block, and XORs
this with Pt to form Ct. The plaintext block P t is also used
as the external input M t to update the state of MORUS.
This process is continued lp times to process all the plaintext
blocks.

3. Cube Attack

The goal of the cube attack is to generate and solve
a system of linear equations to recover the secret key of
a cryptosystem. The main observation of cube attack is
that summing the cryptosystem’s output polynomial over a
specific set (cube) of public inputs (elements from V ) might
cancel out all the higher degree terms except terms associ-
ated with the monomials involving the cube variables; thus
resulting in a linear equation. These polynomials constructed
over the cube summation are called superpolys.

For an output polynomial of degree d the cube of size
d− 1 is guaranteed to produce a linear superpoly. Note that
there may exist cubes of size less than d − 1 which also
result in linear superpolys.

Cube attack is performed in two phases: Preprocessing
phase and Online phase. These are outlined below:

3.1. Preprocessing Phase

In the preprocessing phase, an adversary finds cubes
resulting in linear superpolys. Let f(K,V ) define the under-
lying cryptographic polynomial, constructed over lk secret
variables in K = {k0, · · · , klk−1} and lv public variables
in V = {v0, · · · , vlv−1}. Generally, the full symbolic repre-
sentation of f(K,V ) is very complex. So the cube attack
needs to estimate the degree of f(K,V ).

Estimating the degree involves selecting cubes of differ-
ent sizes and testing them using a probabilistic linearity test.
This is performed using the BLR test [9] which selects two
random inputs x, y and verifies that f(0, V ) + f(x, V ) +
f(y, V ) = f(x+ y, V ). The superpoly fc is nonlinear with
probability 2−j , if f(K,V ) passes the BLR test j times.

If a superpoly is linear with high probability, an adver-
sary then needs to determine whether the linear superpoly
will be useful for recovering the secret variables. Specif-
ically, cubes that pass the linearity test must be checked
to see whether they generate linear superpolys in terms of
the secret variables or are just constants. The construction
process of the linear superpoly fc is carried out as follows:

• To find the constant: set all the secret variables to zero
and the public variables to zero everywhere except the

962



cube bits. Sum over all possible values of the cube bits;
the resulting bit is the constant for the linear superpoly.

• To find the coefficient of ki: set all the secret vari-
ables to zero except ki and the public variables to
zero everywhere except the cube bits. Sum over all
possible values of the cube bits; the resulting bit is the
coefficient of ki.

The steps involved for finding a valid cube in the pre-
processing phase are summarized below:

1) Estimate degree d and select the cube size lc = d− 1.
2) Select a random cube: Randomly select a subset of lc

public variables from V = {v0, · · · , vlk−1} as the cube.
3) Perform the linearity test for the selected cube.
4) If the superpoly fails the linearity test then increase the

cube size lc by one and repeat from step 2.
5) If the superpoly passes the linearity test then compute

its coefficients as described above.
6) If the constructed superpoly is a constant then decrease

the cube size lc by one and repeat from step 2.

To recover all the secret variables an adversary needs
to find as many linearly independent superpolys as the total
number of secret variables.

3.2. Online Phase

In the online phase, an adversary needs to determine the
values of the linear superpolys for all the cubes found in the
preprocessing phase. The steps involved in the this phase are
outlined below:

1) For each cubes found in the preprocessing phase:

• Evaluate f(K,V ) over all possible values of the
selected cube and sum the resulting output.

• Construct the linear equation by substituting the
value of the linear superpoly.

2) Solve the resulting set of equations to recover K.

The adversary is assumed to have access to the cipher-
text/keystream depending on the attack model. The plaintext
has no effect on the cube summation if it is the same for all
evaluations of a given cube; in such case an adversary can
perform a ciphertext only attack. If this is not the case, the
adversary needs access to both the ciphertext and plaintext
(to access the keystream) and can perform a known plaintext
attack. Both of these attack models require an adversary
capable of manipulating the public variables.

3.3. Cube Testers

Cube testers were introduced as an extension of the cube
attack [10]. The goal of cube testers is to distinguish the
cipher output from the output of a random function, by
observing whether the cube summation always results in a
constant. An adversary can use these cubes as distinguisher.

4. Cube Attack on MORUS

This section discusses the applicability of the cube attack
to different phases of MORUS. The output polynomial of

TABLE 1. ESTIMATED DEGREE ACCUMULATION OF MORUS-640

Degree

Step S0 S1 S2 S3 S4 Output Attack Complexity

0 0 1 0 0 0 1 20 × 27

1 1 1 1 1 2 2 21 × 27

2 2 2 3 4 4 7 26 × 27

3 5 7 8 9 12 17 216 × 27

4 15 17 21 27 32 48 247 × 27

5 38 48 59 70 86 128 2127 × 27

MORUS is expected to contain variables from the key,
initialization vector, associated data and plaintext. As a
result, cube attacks on MORUS can be performed either in
the initialization phase, the associated data loading phase,
the encryption phase or the decryption phase. The goal of
the attack is to recover the secret key if applied to the
initialization phase. On the other hand, the goal of the attack
is state recovery if applied to the associated data loading
phase or encryption phase.

Note that a cube attack on either the associated data
loading phase or the encryption phase requires the attacker
to choose the cube bits from the associated data and the
plaintext bits, respectively. Therefore, the sum over all
the possible values of the cube chosen from the associ-
ated data/plaintext needs to be calculated. This means that
cube attack during these two phases requires authentica-
tion/encryption of multiple sets of associated data/plaintext
using the same key and initialization vector. This falls
under the nonce-reuse scenario, for which the designer of
MORUS does not claim any security. Therefore we do not
consider these further; instead, we focus our analysis on the
initialization phase of MORUS.

4.1. Cube Attack on the Initialization Phase

In the initialization phase the adversary can only ma-
nipulate initialization vector bits. We consider the scenario
where the cube bits are chosen from the initialization vector.

We start the preprocessing phase by finding appropriate
cube bits in the initialization vector which generate linear
superpolys, following the steps in Section 3.1. In the online
phase, an adversary evaluates the output function for all
cubes computed in the preprocessing phase to determine
the value of the corresponding linear superpolys, following
the steps in Section 3.2.

4.1.1. Estimated Complexity Analysis of Cube Attack.
The size of the cube is closely related to the degree d of
the output function. Table 1 shows the estimated maximum
degree accumulation for the MORUS-640 state contents and
the output function.

The degree of the output function grows significantly
with the increase in the number of steps. In each round the
state update is expected to double the degree of the contents
because of the application of the AND operation. Therefore
the degree of the output polynomial is also expected to grow
more than double at each step and is expected to reach the

963



TABLE 2. SEARCH SPACES FOR DIFFERENT CUBE SIZES OF MORUS

Cube Size Search Space Exhaustive Search Complexity

1 128 27 × 21

2 8128 212.99 × 22

.

.

.
.
.
.

.

.

.

7 94525795200 236.46 × 27

.

.

.
.
.
.

.

.

.

maximum possible degree of 128 after only five steps of
initialization phase. Table 1 also shows the increase in the
complexity of cube attack with the increases in the number
of steps. It seems that the cube attack would be infeasible
just after few steps of initialization phase if the cube sizes
are chosen as d− 1.

However there may exist cubes which are of size less
than d − 1. This happens if the initialization vector is not
mixed well with the secret key. This behaviour is expected
at least in the first couple of steps of the initialization phase.
We investigate existence of such lower dimension cubes.

Recall that we select cube bits from the 128-bit initial-
ization vector. For a cube of size n, there are

(
128
n

)
possible

cube choices. Table 2 shows the increase in the number of
possible search spaces with the increase in the cube sizes,
and it is evident that it will not be possible to exhaustively
test all the possible cubes over the whole search space for
larger cube sizes.

5. Experimental Procedure and Results

We conducted experiments to analyse the feasibility of
the cube attack on the initialization phase of MORUS. Our
analysis is performed using Sage 6.4.1 [11] and Python 3.6,
on a standard 3.4 GHz Intel Core i7 PC with 16 GB memory.

As discussed above, evaluating cubes of size d − 1
requires high computational time for the full version of
MORUS. So, we modified the MORUS design by consid-
ering fewer steps for the initialization phase.

Also, as illustrated in Table 2 for a reasonable cube size
it is not possible to exhaustively test all cubes over the whole
search space. Therefore we tested the existence of lower
dimension cubes and the cubes are chosen randomly instead
of searching over all possible cube choices. The chances of
finding a cube with linear superpoly may increase with the
increase in the numbers of cube tested; however, this also
increases the time complexity of the preprocessing phase.

We conducted experiments on the reduced version of
MORUS-640 and MORUS-1280-128, to find the existence
of lower dimension cubes. In our experiments, the associated
data length is set to zero to prevent degree accumulation.

5.1. Attack Algorithm

The steps for finding lower dimension cubes in the
preprocessing phase of our experiments are outlined below:

1) Select the number of cubes to test nc.

2) Select a cube size lc. Continue step 3 to 6 until nc

randomly chosen cubes are tested.
3) Select a random cube of size lc: Randomly select a

subset of lc initialization vector bits as the cube.
4) Do the linearity test using a randomly selected output

bit of the first ciphertext/keystream block.
5) If the superpoly fails the linearity test: Discard the

cube. Repeat the test from step 3 if the total number
of cubes tested are less than nc.

6) If the superpoly passes the linearity test: Construct the
linear superpoly following the methods described in
Section 3.1. Store the linear superpoly, the respective
cube and the output index. Repeat from step 3 if the
total number of cubes tested are less than nc.

The online phase of our experiment follows the same
steps as outlined in Section 3.2.

5.1.1. Finding New Cubes Using Existing Cube. To de-
termine new cubes using the existing ones, we can in-
crease/decrease the cube indices and the respective output
index by one. The new cube is valid if it satisfies the linearity
test and if the resultant linear superpoly is not a constant.
When increasing the cube indices, the process is continued
until the upper limit is reached for either any of the cube
indices or the output index, i.e., any of the cube indices or
the output index reaches the value 127 or 255 for MORUS-
640 and MORUS-1280, respectively. When decreasing the
cube indices, the process is continued until the lower limit
is reached for either any of the cube indices or the output
index, i.e., any of the cube indices or the output index
reaches the value 0.

5.2. Cube Attack on MORUS-640

We applied the cube attack to MORUS-640 with an
initialization phase of 4 steps. The preprocessing phase of
the attack was performed following the steps mentioned in
Section 5.1. To search for the cubes, we started with a cube
size of 2. We tested over 20,000 random cubes of size 2;
however, none of these random cubes passed the linearity
test. We then increased the cube size to 3 and searched
over 20,000 random cubes. Each cube are tested using 50
linearity tests. We found 2344 linear superpolys for cube
size 3, among which only 192 are non-constant. Note that
103 of these 192 equations consists of only a single variable.

Further experiments reveals that a lot of these 192 cubes
failed the linearity test when the number of tests are in-
creased from 50 to 100. This indicates that 50 linearity tests
are not sufficient. We expect that the superpolys found with
the 100 linearity tests will be linear with high probability.
We focused our experiments on the specific 103 cubes
mentioned above and obtained only 31 cubes where the
resultant superpoly passed 100 linearity tests. Example of
some of these cubes are listed in Table 3.

We used the technique illustrated in Section 5.1.1 to find
new cubes. Applying this technique to these 31 cubes, we
obtained more than 300 linear superpolys. These superpolys
cover all of the key bits except k22, k53 and k118.



TABLE 3. EXAMPLE OF CUBES FOR MORUS-640 (4-STEPS)

Cube Indices Output Index Superpoly
49, 13, 110 20 k4
27, 107, 61 17 k18

7, 6, 33 83 k44
102, 83, 22 123 k60 ⊕ 1
107, 104, 58 95 k64 ⊕ 1

69, 21, 9 59 k52 ⊕ 1
85, 10, 124 65 k34 ⊕ 1
58, 68, 40 31 k49

7, 104, 125 60 k87 ⊕ 1
102, 119, 56 93 k94 ⊕ 1

1, 66, 19 103 k104 ⊕ 1
82, 106, 3 58 k120

In the online phase, an adversary can select 125 in-
dependent linear superpolys with 125 variables. Most of
these linear superpolys consist of only a single variable
of the secret key. Only eight of the superpolys contains
two variables. Thus, the complexity of solving these linear
system of equation is negligible.

We implemented the online phase of the cube attack to
verify the correctness of the linear superpolys. We started
with a randomly generated 128-bit secret key and computed
the values of all the linear superpolys by summing the
output keystream bits for all the possible values (varying
the corresponding initialization vector bits) of the respective
cubes. The rest of the initialization vector bits are set to zero.
To compute the value of the linear superpolys, we accessed
29.97 keystream bits of the first output block constructed
over 125×23 ≈ 29.97 chosen initialization vectors. We then
reconstructed and solved the linear equations. This correctly
recovers 125 of the key bits. Note that three of the key bits
do not appear in any of the linear superpolys found in our
experiment. We need to guess these three secret key bits to
recover the whole key. So the total attack complexity of the
online phase is about 29.97 + 23 ≈ 29.98.

5.3. Cube Attack on MORUS-1280

We applied the cube attack to MORUS-1280-128 with an
initialization phase of 4 steps. In the preprocessing phase
we conducted experiments following the steps mentioned in
Section 5.1, to find cube variables from the initialization
vector bits by randomly selecting cubes of different sizes
and testing them for linearity. We started with cube size of
2 and tested 20,000 random cubes on MORUS-1280-128.
Each of these cubes are tested for 100 linearity tests using
a randomly selected output bit of the first ciphertext block.

We found 3947 cubes of size 2, where each cube passed
at least 100 linearity tests. But most of these cubes resulted
in a constant, only 13 cubes resulted in non-constant linear
superpoly. Cubes resulting in non-constant linear superpolys
are listed in Table 4.

We used the technique illustrated in Section 5.1.1 to find
new cubes using the cubes listed in Table 4. We obtained
total 408 linear superpolys with this technique. These linear
superpolys cover all the 128 key bits of MORUS-1280-128.

TABLE 4. EXAMPLE OF CUBES FOR MORUS-1280-128 (4-STEPS)

Cube Indices Output Index Superpoly
7, 68 171 k66 ⊕ 1
75, 64 158 k31
79, 8 159 k6

101, 117 127 k58 ⊕ 1
66, 67 13 k7
95, 20 1 k62 ⊕ 1
53, 42 72 k73 ⊕ 1
19, 75 183 k114
78, 62 218 k64 ⊕ 1
49, 48 251 k117 ⊕ 1
89, 2 53 k27
96, 40 42 k106
0, 56 37 k97 ⊕ 1

The cubes found for the reduced version of MORUS-
640 and MORUS-1280-128 are of size 3 and 2, respectively.
This indicates MORUS-1280 has a slower diffusion compare
to MORUS-640. This is due to the differences in loading
format of the internal state. In MORUS-1280, one of the
state elements is loaded with all zero values which may
have resulted in the comparatively slower diffusion.

In the online phase, an adversary can easily select 128
independent linear superpolys covering all the key bits and
solve those to recover the key. All the linear superpolys
obtained for MORUS-1280-128 consist of only a single
variable. So the complexity of solving these equations are
negligible.

To verify the correctness of the linear superpolys, we
implemented the online phase of the cube attack on the
4 step initialization version of MORUS-1280. We started
by selecting a randomly generated key and computed the
value of all the linear superpolys by summing the output
keystream bits for all the possible values (varying the cor-
responding initialization vector bits) of the respective cubes.
The rest of the initialization vector bits are set to zero. To
compute the sum over all the cube bits, we accessed 29

keystream bits of the first output block for 128 × 22 = 29

chosen initialization vectors. Following this we were able
to reconstruct and solve the equations to recover the 128-bit
secret key. The complexity of the attack is 29.

5.4. Cube Testers on MORUS-1280

We conducted experiments searching for cubes on mod-
ified version of MORUS with five or more initialization
steps. In the preprocessing phase of these experiments, we
did not find any cubes resulting in non-constant superpolys;
however, for MORUS-1280 with five steps of initialization,
we found cubes of size 9 resulting in constant superpoly.

This suggests that we can use these cubes of size 9
as distinguishers for MORUS-1280 with five initialization
steps. Example of some of these cubes are listed in Table 5.
These cubes passed at least 100 linearity tests.

In the online phase, an adversary can evaluate any of
the cubes listed in Table 5. If the adversary is given access to
29 ciphertext/keystream for 29 chosen initialization vectors,

965



TABLE 5. EXAMPLE OF CUBES FOR MORUS-1280 (5 STEPS)

Cube Indices Output Index
39, 30, 26, 110, 77, 56, 28, 70, 32 219

61, 29, 32, 46, 103, 115, 116, 26, 28 219
88, 25, 56, 39, 45, 70, 16, 13, 94 236

49, 109, 53, 78, 114, 127, 68, 59, 93 244
13, 111, 1, 12, 43, 28, 26, 120, 5 163

they can sum those ciphertext/keystream bits and use the
sum to distinguish the output of the cipher from a randomly
generated output. The complexity of distinguishing this
modified version of MORUS-1280 is 29.

New distinguishers can be obtained using these existing
cubes following the technique described in Section 5.1.1.
Experimental analysis shows that with this technique we
can find more cubes of size 9, resulting in distinguishers
for five steps initialization version of MORUS-1280.

To obtain cubes of size 8 or less we extended our
experiments by removing one or more of the cube variables
from the cubes listed in Table 5. Evaluating the linearity of
the superpolys for such cubes, we found some valid cubes
of size 8. None of these cubes resulted in a non-constant
superpoly and can only be used as a distinguisher. We did
not find any cubes of size 7 or less. Thus, the best cubes for
MORUS-1280 with five initialization steps can distinguish
the cipher output from random with complexity 28.

6. Conclusion

We applied the cube attack to a reduced version of
MORUS-640 and MORUS-1280-128, where the modifica-
tion is a reduced initialization phase of 4 steps. The cube
attack can successfully recover the key for reduced version
of MORUS-640 and MORUS 1280-128 with complexity
210 and 29, respectively. The cubes identified for reduced
version of MORUS-640 and MORUS-1280-128 are of size
3 and 2, respectively; while the actual degree of the output
equation after 4 steps for both of these two variants is much
higher than 3. This means after 4 steps of the initialization
phase there exists comparatively lower degree monomials
in the output equation which does not appear together with
any other monomials of that equation. This suggests that the
key and initialization vectors are not mixed properly at this
point of the initialization phase.

We also observed that the cubes obtained for the reduced
version of MORUS-1280 are of smaller size compared to
the ones obtained for MORUS-640. This suggests MORUS-
1280 has a slower diffusion compared to MORUS-640.

We searched also for cubes with a higher number of
steps in the initialization phase. We did not find any cubes
resulting in non-constant linear superpolys when the number
of initialization steps are more than 4 steps. However, for
MORUS-1280 with 5 initialization steps, we obtained cubes
which result in constant. These cubes can be used as distin-
guishers for MORUS-1280 with 5 steps of initialization.

For MORUS-1280 the cubes resulting in distinguisher
for 5 steps initialization phase are of size 8 or 9; while

the cubes for 4 steps initialization phase are of size 2. This
shows the increases in the cube size are significant with the
increase in the number of initialization steps.

It is hard to estimate the size of the cubes for higher
number of initialization steps in MORUS without knowing
the exact algebraic normal form of the output polynomial.
We can choose cube size based on the estimated algebraic
degree. However, the estimated growth in the degree is
significant each step of the state update; thus the complexity
of the attack is expected to grow exponentially which will
be impractical just after a few steps of initialization phase.
Currently, the cube attack does not threaten the security of
MORUS if the full initialization phase is performed.

Acknowledgments

Iftekhar Salam was supported by QUTPRA, QUT HDR
Tuition Fee Sponsorship & QUT Excellence Top Up Schol-
arship. Josef Pieprzyk was supported in part by a grant DEC-
2013/09/D/ST6/03918, Polish National Science Center.

References

[1] Dinur, I. and Shamir, A., Cube Attacks on Tweakable Black Box Poly-
nomials. In A. Joux (Ed.), Advances in Cryptology - EUROCRYPT
2009, Vol. 5479, pp. 278-299, Springer Berlin Heidelberg, 2009.

[2] Lai, X., Higher Order Derivatives and Differential Cryptanalysis. In
R.E. Blahut, Costello , D.J., and Maurer, U.M., T. (Eds.), Communi-
cations and Cryptography: Two Sides of One Tapestry, Vol. 276, pp.
227-233, Springer US, 1994.

[3] Vielhaber, M., Breaking One.Fivium by AIDA an Algebraic IV Dif-
ferential Attack. IACR ePrint Archive. 2007/413. Retrieved from
https://eprint.iacr.org/2007/413.pdf, Accessed 28 May 2016.

[4] Wu, H. and Huang, T., The Authenticated Cipher
MORUS (v1). CAESAR Competition. Retrieved from
https://competitions.cr.yp.to/round1/morusv1.pdf, Accessed 23
February 2017.

[5] Wu, H. and Huang, T., The Authenticated Cipher
MORUS (v2). CAESAR Competition. Retrieved from
https://competitions.cr.yp.to/round3/morusv2.pdf, Accessed 23
February 2017.

[6] CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness. Available from:
http://competitions.cr.yp.to/index.html, Accessed 10 September
2015.

[7] Mileva, A., Dimitrova, V., and Velichkov, V., Analysis of the Authen-
ticated Cipher MORUS (v1). In E. Pasalic and Knudsen, L.R. (Eds.),
Cryptography and Information Security in the Balkans, Vol. 9540, pp.
45-59, Springer International Publishing, 2015.

[8] Dwivedi, A. D., Klouček, M., Morawiecki, P., Nikolić, I., Pieprzyk, J.,
and Wójtowicz, S., SAT-based Cryptanalysis of Authenticated Ciphers
from the CAESAR Competition. IACR ePrint Archive. 2016/1053. Re-
trieved from http://eprint.iacr.org/2016/1053.pdf, Accessed 03 March
2017.

[9] Blum, M., Luby, M., and Rubinfeld, R., Self-testing/correcting with
applications to numerical problems. Journal of Computer and System
Sciences, 47, pp. 579-595, 1993.

[10] Aumasson, J. P., Dinur, I., Meier, W., and Shamir, A., Cube Testers
and Key Recovery Attacks on Reduced-Round MD6 and Trivium. In
O. Dunkelman (Ed.), Fast Software Encryption - FSE 2009, Vol. 5665,
pp. 1-22, Springer Berlin Heidelberg, 2009.

[11] Stein, W., et al., Sage Mathematics Software (Version 6.4.1), The
Sage Development Team, 2015, http://www.sagemath.org.

966


