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Abstract— Deep learning models have achieved state-of-the-
art performance in recognizing human activities, but often rely 
on utilizing background cues present in typical computer vision 
datasets that predominantly have a stationary camera. If these 
models are to be employed by autonomous robots in real world 
environments, they must be adapted to perform independently 
of background cues and camera motion effects. To address 
these challenges, we propose a new method that firstly 
generates generic action region proposals with good potential to 
locate one human action in unconstrained videos regardless of 
camera motion and then uses action proposals to extract and 
classify effective shape and motion features by a ConvNet 
framework. In a range of experiments, we demonstrate that by 
actively proposing action regions during both training and 
testing, state-of-the-art or better performance is achieved on 
benchmarks. We show the outperformance of our approach 
compared to the state-of-the-art in two new datasets; one 
emphasizes on irrelevant background, the other highlights the 
camera motion. We also validate our action recognition method 
in an abnormal behavior detection scenario to improve 
workplace safety. The results verify a higher success rate for 
our method due to the ability of our system to recognize human 
actions regardless of environment and camera motion. 

I. INTRODUCTION 

Recognizing and understanding human activity is 
essential for a wide variety of applications from surveillance 
purposes [1] and anomaly detection [2] to having safe and 
collaborative interaction between humans and robots in 
shared workspaces. More explicitly, for robots and humans 
to be cooperative partners that can assist human intuitively, 
it is crucial that robot recognizes the actions of human. With 
such abilities, a robot can identify the next required task to 
assist a human at the appropriate time as well as reducing the 
likelihood of interfering with the human activity [3]. 

Over the last decade, significant progress has been made 
in the action recognition field using conventional RGB 
images, optical flow information and the fusion of both [4]. 
Transitioning these computer vision techniques from 
benchmark dataset to real world robots is challenging. Real 
world imagery is far more diverse, unbiased and challenging 
than computer vision datasets, meaning these techniques 
tend to perform far worse when applied blindly to a robot 
vision system [5].  

Transitioning from computer vision approaches to 
robotics applications involves two main challenges. Firstly, 
the computer vision approaches rely on background cues due 
to the fact that traditional datasets tend to have contextually-
informative  backgrounds.  Secondly,  having  datasets  that 
mainly use stationary cameras would make the methods 
vulnerable to disturbing effects of camera motion.   
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Figure 1. Performance of our action recognition approach in two scenarios. 
Scenario1 involves action recognition by a moving robot with unbiased 
background. Scenario 2 comprises  abnormal behavior detection in an office 
environment. 

This would negatively impact the performance in robotics 
applications where it is critical to have mobile platforms. 

Motivated by the benefits of using object proposals in 
object recognition, it is demonstrated that generation of 
action region proposals is of great importance, because we 
can focus on the motion salient regions rather than the full 
video frames [7]. This leads to a big reduction in 
computational cost and an improvement in performance due 
to elimination of the background cues [6],[7]. However, to 
the best of our knowledge, no work has addressed two 
aforementioned challenges simultaneously. 

In this paper, we develop an action recognition system, 
that recognizes human actions regardless of the platform, 
background context and camera motion by jointly detecting 
and recognizing actions based on a new action region 
proposal method. To this end, we firstly correct the temporal 
cues by removing the effect of camera motion and then 
exploit the human motion boundaries to select a reliable 
action region proposal that are fed to the Convolutional 
Neural Networks (ConvNet). Through a wide range of 
experiments, we test our algorithm on 1) benchmark dataset 
[8], 2) a new datasets containing non-informative 
background, 3) a new dataset recorded by a mobile robot. 
We also validate our system in an abnormal human 
behaviour detection scenario to improve the workplace 
safety, which is applicable to other fields such as improving 
elderly care and reducing driving risk [9]. The approach in 
this experiment detects the abnormal actions in the work 
environment by jointly categorizing the scene and 
recognizing actions (Figure 1). Our paper provides the 
following contributions:  

 We develop a  new framework for jointly detecting 
and recognizing human activities using novel action 
region proposals. This enables categorization which 
is robust against both camera motion and irrelevant 
background contexts, and is therefore suitable for 
robots operating in the real world.  
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 We introduce two new unbiased datasets (without 
background bias); one achieved through careful 
composition of camera footage, the other through 
acquisition by a mobile robot. 

 We conduct a comprehensive suite of experiments 
evaluating the performance of our proposed 
technique on two benchmark datasets and the new 
unbiased background datasets.    

 We evaluate the performance of the proposed 
approach against existing state-of-the-art methods 
on our dataset recorded by a mobile robot to 
recognize human actions in work environment on 
our university’s campus. 

 Based on our action recognition system, we 
introduce an abnormal behavior detection scenario, 
in which the robot is able to detect abnormal 
behaviors.  

The rest of paper is organized as follows. In Section II, 
we review related work on action recognition in robotics and 
computer vision fields. We then present an overview of the 
approach and describe our network architectures in Section 
III. Section IV details experiment setup and experimental 
results followed by conclusion in Section V. 

II. RELATED WORK 

In robotics, action recognition plays a critical role for 
fluent human-robot interactions. There has been a number of 
studies on human action recognition [1], [10], and prediction  
[2]. Both hand crafted local feature representations and deep 
learned feature descriptors have been employed in these 
approaches, with both categories demonstrating excellent 
results in recognition of human actions. Hand-crafted local 
features such as Space Time Interest Points [11], Cuboids 
[12], Dense Trajectories [13], with rich descriptors of HOG, 
HOF, MBH have shown to be successful on a number of 
challenging datasets [8], [14].  

Although motion is an informative cue for action 
recognition, irrelevant motions in the background or the 
camera motion can be misleading. This is inevitable when 
dealing with realistic robotic applications in uncontrolled 
settings. Therefore, separating human action motion from 
camera motion remains a challenging problem. A few 
number of works tried to address this isse. Ikizler-Cinbis et 
al. utilized video stabilization by motion compensation for 
removing camera motion [15]. Wu et al. addressed the 
camera motion effects by decomposing Lagrangian particle 
trajectories into camera-induced and object-induced 
components for videos [16]. Wang et al. proposed a 
descriptor based on motion boundary histograms (MBH) 
which removes constant motions and therefore reduces the 
influence of camera motion [13]. What makes our method 
different from [13], is that we first reduce the smooth camera 
motion effects and get rid of background clutter by creating 
action region proposals based on a motion boundary 
detector. The selected regions would be used both in training 
and classification.  However, the approach in [13] employs 
MBH on full images as motion descriptor for trajectories. 

Among traditional methods, there are very few works 
that have tried to separate the background clutter from 
images. Chakraborty et al. presented an approach based on 

selective Spatio-Temporal Interest Points (STIPs) which are 
detected by suppressing background SIPs and imposing local 
and temporal constraints, resulting in more robust STIPs for 
actors and less unwanted background STIPs [17].   

Zhang et al. addressed the activity recognition problem 
for multi-individuals based on local spatio-temporal features 
in which extracting irrelevant features from dynamic 
background clutter has been avoided using depth 
information [10]. Our work is different from them in terms 
of jointly eliminating background clutter and camera motion 
using optical flow and motion boundary detection concept. 

Deep learning models are a class of machine learning 
algorithms that learn a hierarchy  of  features  by  building 
high-level features from low-level ones. After impressive 
results of ConvNets on image classification tasks [18], 
researchers have also focused on using ConvNet models for 
action recognition. Several outstanding techniques are 
introduced that have had a significant impact on this field, 
such as 3D CNNs [19], RNN [20], CNNs [21] and Two-
Stream ConvNet [22]. 

The majority of recent research has employed motion 
information to improve the results. Simonyan and Zisserman 
proposed a two stream ConvNet [22], which has formed the 
baseline of more recent studies [20]. In [22], spatial and 
temporal networks are trained individually and then fused. 
Additionally, two different types of stacking techniques are 
implemented for the temporal network, optical flow stacking 
and trajectory stacking. These techniques stack the 
horizontal (x) and vertical (y) flow channels (dt

x,y) of L 
consecutive frames to form a total of 2L input channels and 
obtained the best result for L=10 or 20-channel optical flow 
images. Recently, building on top of traditional Recurrent 
Neural Networks (RNNs), Donahue et al. proposed a long-
term recurrent convolutional model that is applicable to 
visual time-series modeling [20]. 

However, deep models ignore the effect of background 
dependency and moving camera in their training process and 
evaluations. In this work, our system is able to cope with the 
background clutter as well as camera motion using several 
motion cues to eliminate the regions that do not contain the 
human action. 

III. OVERVIEW OF THE SYSTEM 

Our human action recognition approach consists of two 
main stages: 

1) Selecting the action region proposals (motion salient 
regions) independent of camera motion and 
background information. 

2) Training ConvNets on action region proposals both 
in spatial and optical flow images, rather than full 
images. In the training process, we used 3 different 
ConvNet architectures: two stream ConvNet [22] 
followed by an SVM classifier to fuse the spatial and 
temporal features,  a 3-D ConvNet that classifies a 
sequence of video frames as a video clip [23] and a 
very deep convolutional neural network [24] which is 
employed under the same two-stream framework. 

The summary of approach is visualized in Figure 2. We 
describe each part in the following, before presenting 
experiments and evaluations in the next section. 



  

 
Figure 2. Overview of our approach for unbiased human action recognition on samples of the Guiabot robot dataset. The robot is moving from left to right, 
while approaching to people. The method is tested using two different ConvNet architecture, denoted by solid and dotted blocks.

A. Selecting Action Region Proposals  

Choosing the action region would eliminate irrelevant 
regions, which reduces the number of regions being 
processed, and subsequently faster computation time.  
However, we face some challenges to have a precise action 
region proposal. The main challenge of choosing action 
region proposals compared to object proposals, is that we 
require both appearance and motion cues to be able to select 
the motion salient area. Differentiating human actions from 
the background or other dynamic motions is the first 
challenge due to the diversity of human actions. The second 
challenge would be caused by a moving camera. In many 
computer vision systems, data are only recorded by 
stationary cameras, which is unlikely the case in robotics 
applications. Therefore, it is essential to be able to handle 
camera motion.  

In order to handle the mentioned challenges, we leverage 
the concept of motion boundaries to pick the interested area 
that only contains human activity. We firstly generate a 
mask by computing the motion boundaries using an 
algorithm that is built upon the presented work in [25]. Then 
we extract the action region proposals from video frames 
using the previously generated mask followed by an object 
proposal method [25, 26].  

To generate the motion boundaries, we use a 
combination of different spatial and temporal cues to shape a 
robust feature representation. The spatial information is 
three RGB channels, the norm of the gradient and the 
oriented gradient maps in four directions at coarse and fine 
scales.  

We use multiple temporal cues to identify motion 
boundaries and generate our cropping mask. The first cue is 
the horizontal and vertical optical flow signals for both 
forward and backward process, computed by the state-of-
the-art algorithm, classic+NL, proposed in [28] due to the 
sharpness of the flow boundaries which results in the best 
optical flow performance. The second one would be an 
unoriented gradient map computed as the magnitude of 
horizontal and vertical optical flow gradient maps. The third 
temporal cue is oriented gradient maps in four directions at a 
coarse scale computed as the average of gradient maps 
components, weighted by their magnitudes. The next cue 
would be image warping errors which can be critical to 
prevent some optical flow estimation faults. We can 

compute image warping errors ED using (1) which is defined 
at a pixel p as  

21 ; 1( ) ( ) - ( ( )) (1)D t t t tE p D p D p W p           

Where Wt;t+1 is optical flow between frame t and t+1 and D 
is a pixel-wise histogram of oriented gradients in eight 
orientations, which are all individually normalized to unit 
norm. The last one is motion boundaries histogram (MBH) 
that represents the gradient of the optical flow and can 
remove locally constant camera motion while keeping 
information about changes in the flow field. We compute 
spatial derivatives for both horizontal and vertical optical 
flow and orientation information is quantized into 
histograms, while we use the magnitude for weighting.  

Given this feature, we predict the binary boundary mask  
using structured random forests such that the predicted 
masks are averaged across all trees and all overlapping 
patches to yield the final soft-response boundary map [25]. 
Then, we employ it as a mask for video frames such that the 
area of motion is highlighted. Inspired by object detection 
approaches [26], [27], we select the desired region by 
applying an object detection method [26] on the resulted 
mask with highlighted motion areas.  

In the following sections, we explain the procedure for 
the training and classification, which are done using three 
different ConvNet architectures. 

B. Training Process and Classification  

Recently proposed methods train the network by center 
cropping or randomly cropping the full image [22], [20], 
[10]. As a result, these approaches might fail in real robotic 
scenarios due to confusion caused by unbiased background 
and a moving camera. Conversely, our approach addresses 
those challenges by automatically identifying the  image 
region where the action is likely to occur and then passes the 
action region as the input to the network. This process 
ensures that the most pertinent information to action is 
utilized. Therefore, we extract motion and appearance 
features of the motion salient region even if the actor’s spatial 
location changes throughout the image. 

1) Training a 16-Layer ConvNet 

We train our spatial and temporal networks on action 
region proposals obtained from Section A in spatial and 

Class score 

fusion of 

learnt features

by SVM 

. . . 

. . . 

. . . . . . 

. . . 

. . . 

. . . 

. . . 
. . . 

. . . 

ConvNets 

Sequence of 16 Frames 

Predicting 
human motion 

boundaries   
using spatial 
and temporal 

cues detailed in 
section III 

ti
m

e 

 . . .  

Action area 

selection based 

on the created 

binary image as 

a mask 

...

...

......

...

. . . 

...

...
...

...

3D 
ConvNets



  

temporal domains, respectively. Then we concatenate learnt 
features from both spatial and temporal streams and pass it 
to a SVM classifier to have a final classification. Our spatial 
and temporal networks contain three convolutional layers, 
three pooling layers and two fully connected layers that is 
built on top of the VGG-16 Layers architecture [29] 
implemented in Caffe [30]. 

2) Training a 3D ConvNet 

We also actively train on a sequence of our proposed 
RGB images using C3D architecture, which is particularly a 
good feature learning machine for action recognition [23]. 
We use 5 convolution layers, followed by 5 pooling layers, 2 
fully-connected layers and a softmax loss layer for predicting 
action labels. The number of filters for 5 convolution layers 
are 64, 128, 256, 256, 256, respectively. We input 16 frames 
as a video clip for each video either in benchmark or our 
introduced datasets with the kernel size of 3 as the temporal 
depth due to verified experimental results in [23]. As a result, 
the input dimension for training on our action proposals 
equals to 3×16×112×112. Since the 3D architecture involves 
exploiting both spatial and temporal cues during the training 
process, no temporal network is required. 

3) Training a 152-Layer ConvNet 

Another inspiring architecture to apply our method is 
ResNet which is introduced recently [24]. To the best of our 
knowledge, this architecture has not been used for action 
recognition, while we have found it so effective in this task. 
Residual network can overcome the degradation problem 
through direct identity mappings between layers as skip 
connections, which allow the network to pass on features 
smoothly from earlier layers to later layers. We feed our 
cropped spatial and optical flow images from Section A, 
which are resized to 224×224, to our network containing 152 
layers including convolutional layers and skip connections 
ending with a global average pooling layer and a fully-
connected layer with softmax.  

IV. EXPERIMENTAL SETUP 

In this section we briefly explain our validation setup on 
benchmarks and three other experimental setups.  

A. Validation on Benchmarks   

To have a thorough investigation of our method, we 
applied our method on two benchmarks in action 
recognition, UCF101 [8] and HMDB [14] using three 
ConvNet frameworks (details in Section III.B).  

UCF101 is a publicly available dataset, containing 13320 
video clips, which is organized in three splits of training and 
testing data. Our tabulated results contain the average 
obtained accuracies on these three splits (Table I). HMDB is 
also an action recognition benchmark dataset containing 68K 
video clips, which is also organized in splits of training and 
testing data [14]. The number of outputs for the final fully 
connected layer in all frameworks equals to the action 
classes which is 101 and 51 for UCF101 and HMDB 
datasets, respectively. 

B. Exp. I: Non-biased Background Dataset1 

The aim of this experiment is to investigate how the state-
of-the-art methods [23], [24] and our method perform in 
situations where the action’s background differs from the 
conventional background that exists in the public dataset. We 
gathered almost 20 video samples for each of 11 actions, 
mentioned in Figure 3a, from the real videos recorded by a 
camera on the QUT campus and some available Youtube 
video samples in order to include a wider range of context in 
background compared to the UCF101 dataset (Figure 3a). We 
tested both ConvNet models [23], [24], trained on UCF101 
dataset (provided in Table I), on the new dataset that we 
named “Non-biased background dataset”. 

C. Exp. II: Moving Camera Dataset2 

In this experiment, we recorded several unconstrained 
videos using a mobile robot (Guiabot) moving around our 
work environment to capture students doing normal and 
abnormal actions in the office environment (Figure 4). This 
datasets contains 16 videos for each action recorded in four 
places, office, corridor, kitchen and classroom. Camera 
motion ranges involved the robot moving from side to side, 
approaching the subject and rotating around the subject. 

D. Exp. III: Abnormal Behavior Detection  

The aim of this experiment is detecting abnormal 
behavior in workspace environment by a mobile robot. 
Depending on the environment, different action classes are 
more likely to be observed than others. For instance, in a 
robotic lab, we do not expect to see people eating, drinking 
or playing sports. We propose to exploit such knowledge in 
our abnormal behavior detection system, which leverages 
the successes of ConvNets for action recognition and place 
categorization.  
To this end, robot initially requires to identify the place as 
well as the action being performed by the human. Then, by 
incorporating the learned prior knowledge, robot makes a 
decision on whether human behavior in that classified 
environment is normal or not. We divide our explanation of 
this task into five stages:  

1) Scene categorization: In this part, we aim to do a 
frame based scene categorization. To this end, we use 
the Places205 network published by Zhou et al. [31], 
which is the state-of-the-art in scene categorization 
and follows the VGGNet architecture for training 
[29]. Their training dataset contains 2.5 million 
images of 205 semantic categories, with at least 
5,000 images per category. We feed our new dataset 
recorded on the mobile robot (Section C) into the 
Places205. The output is a probability distribution 
over the 205 known scene types and select the 
highest probability as the probability of the given 
scene P(Si).   

2) Learning the prior knowledge: our system should 
learn the likelihood of each scene-action pair, which 
would enable the robot to make a decision about the 

 
1 This dataset will be publically available. 
2 This dataset will be publically available. 



  

    

Figure 3. (a) Performance comparison of Three methods on UCF101 dataset. (b) Performance comparison of three methods on Non-biased background 
dataset. (c) Samples of generated action region proposals on our non-biased background dataset. 

      normality or abnormality of the human behavior. To 
this end, we need to calculate occurring likelihood of 
each action in different scenes in our scenario. We 
denote this probability as P(Si|Ai). To compute 
P(Si|Ai), we input samples of two public datasets on 
action recognition, UCF101 and HMDB to the 
Places205 network and take the scene with 
maximum probability as the most frequently 
occurred place for each action. 

3) Action recognition regardless of the scene: we denote 
the probability of the recognized action through our 
action recognition pipeline as P(Ai). 

4) Computing the occurrence probability of actions 
given the scene: we calculate this likelihood, P(Ai|Si), 
for each action and scene using the following 
equation: 
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     Where P(Si), P(Si|Ai) and P(Ai) can be gained from 
the first, second and third stages, respectively.  

5) Decision making: the aim of this stage is to compare 
the occurrence probability of an action given a scene 
P(A|S) (obtained from stage 4) with the occurrence 
likelihood of the same action with no scene 
knowledge P(A) (obtained from the stage 3). We 
follow a simple comparison algorithm; the 
recognized action in the detected scene is an 
abnormal behavior if the Abnormal Behavior 

Detection index, defined as ABD_Ind in equation (3), 
returns a positive number greater than a pre-defined 
threshold, Otherwise, it would be considered as a 
normal activity. 

   _ | (3)i i iABD Ind P A P A S   

     Since the problem is a binary classification and the 
probability values are scattered between [0,1], we set 
the threshold to 0.5. For instance, if P(A|S) is very 
low, only a recognized action with probability greater 
than 0.5 can meet the condition for being an 
abnormal behavior.  

Figure 5 demonstrates the overview of our abnormal 
behavior detection system and how it performs on one 
correctly identified example from our dataset. 

V. RESULTS 

This section present the results obtained from the 
experiments described above. 

A. Validation on Benchmarks   

In this section, we present the results of our action 
recognition system on UCF101and HMDB. Table I provides 
an extensive comparison with the state-of-the-art methods. 
We believe the main reason to achieve the matching 
performance with the state-of-the-art without exploiting the 
background cues is the elimination of camera motion. We 
can systematically crop the salient motion areas which leads 
to a more precise feature learning process. 
 

(a) 

(b) (c) 



  

Figure 4. Samples of generated action region proposals and recognized 
scene and action label on our Guiabot robot dataset. 

TABLE I.  PERFORMANCE COMPARISON WITH THE STATE-OF-THE-
ART DEEP NETWORKS ON UCF101 AND HMDB DATASET 

Methods 
 UCF101 HMDB 

Spatial Temporal Full Spatial 

Ours with Two-
stream Net. 

70.1% 80.7% 88.63% 40% 

Ours with C3D - - 73.3% 40.8% 

Ours with ResNet 74.73% - - 42.1% 

[22] 72.7% 

73.9% 
(L=1) 
81% 
(L=10) 

- 
 (L=1) 
88% 
(L=10) 

40.5% 

[20] 71.1% 76.9% 82.9% - 

[21] 73.1% - 88.6% - 

[4] - - 65.4% - 

C3D on full img. - - 79.8% 49.91% 

ResNet on full img. 79.82% - - 49.9% 

B. Exp. I: Non-biased Background Dataset 

Figure 3c verifies the outperformance of our method 
compared to the existing state-of-the-art methods [22], [23], 
[24], when background does not include any informative 
context (Non-biased background dataset). Figures 3b and 3c 
demonstrate the consistency in performance of our method 
regardless of the background context on both datasets. It is 
important to note changing the background in our new 
dataset, negatively impacts the performance of the state-of-
the-art methods. 

Due to random image cropping in [22], [23] versus 
selecting the motion salient areas in our approach during the 
training process, it is more likely that these methods fail to 
contain the motion cues.   

C. Exp. II: Moving Camera Dataset 

This experiment shows how our action recognition 
system successfully handles the camera motion better than 
the state-of-the-art methods. Table II demonstrates the 
accuracies for the proposed models in [22], [23], [24] and 
our method on our robot dataset using a moving camera. The 
reason would be due to eliminating the camera motion 
effects by actively training on action regions rather than full 
images. 
 

TABLE II.  PERFORMANCE COMPARISON OF OUR APPROACH  
AGAINST [22,23,24] ON GUIABOT ROBOT DATASET 

Actions 
Action recognition methods 

Ours [21] [22] [23] 

BodyWeightSquats 100% 62.5% 50% 75% 

JumpRope 93.75% 50% 50% 50% 

Punch 93.75% 43.75% 37.5% 43.75% 

Eat 68.75% 6.25% 18.75% 18.75% 

Drink 81.25% 25% 25% 31.25% 

D. Exp. III: Abnormal behavior Detection  

The results in this experiment show the power of our 
proposed approach in Section IV.D in detecting abnormal 
human behaviors in the workspace. 

The system used in this experiment includes an action 
recognition pipeline, a scene categorization method in 
addition to learning the prior knowledge. We investigate the 
use of three state-of-the-art action recognition approaches in 
the abnormal detection pipeline, while the rest of the system 
remains the same.  

The results indicate an 87.50% success rate for 
abnormal human behavior detection on our moving camera 
dataset containing 16 videos for each action in four places.  
We test [22], [23], [24] on our dataset. Results are shown in 
Table III.  

TABLE III.  COMPARISON OF ABNORMAL BEHAVIOR DETECTION 
SUCCESS RATES  

Ours [22] [23] [24] 

87.50% 37.5% 37.5% 43.75% 

We conjecture the ability of action recognition method 
regardless of environment and camera motion plays a 
significant role in enabling the robot to achieve a higher 
success rate in detecting abnormal behavior. 

VI. CONCLUSION 

In this paper, we focused on two of the main challenges 
in transitioning from computer vision methods to robotics 
applications; the sensitivity of many traditional approaches 
on background cues, and the effect of camera motion in a 
robotics context. 

We addressed these challenges by developing methods 
for selecting action region proposals that are motion salient 
and more likely to contain the actions, regardless of 
background and camera motion. Using two new datasets, the 
“Non-biased background dataset” and the “Moving camera 
dataset”, we demonstrated our method using both spatial and 
temporal images to outperform state-of-the-art ConvNet 
models, and enabling the development of an abnormal 
behavior detection system. The results obtained indicate how 
combining a robust  action recognition system with the 
semantic scene category knowledge can enable a robot to 
detect normal and abnormal human behavior in a typical 
office environment. 

In future work, robots equipped with SLAM systems that 
have access to semantic information will enable better action  



  

Figure 5. Overview of our approach for unbiased human action recognition 
on a sample of the Guiabot robot dataset. 

recognition performance. Real world robot operation 
introduces a number of challenges including varying lighting 
and motion blur; we will adapt successful investigations into 
learning features that are invariant to these issues in other 
fields such as place recognition to apply to action 
recognition. Finally, we plan to investigate the utility of 
online action recognition for informing robot operations in a 
range of tasks such as domestic chores and assistive 
robotics. 
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