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Abstract  

 

Quantitative Ultrasound (QUS) offers a reliable means to predict osteoporotic fracture risk, although 

to date it has not been generally used within routine clinical management since it does not provide a 

direct estimate of bone mineral density (BMD), and hence, the associated WHO criteria for 

osteopenia and osteoporosis. Langton has proposed that ultrasound propagation through cancellous 

bone may be considered as an array of parallel sonic-rays, the transit-time of each determined by the 

corresponding proportion of bone and marrow propagated. This concept has led to the development of 

ultrasound transit time spectroscopy (UTTS) to estimate solid (bone) volume fraction (SVF). 

However, within the real-world clinical environment, a bone, such as the calcaneus, has overlying 

soft-tissues that would result in a significantly time-extended transit time spectrum (TTS), and hence, 

an underestimated SVF. The aims of this experimental replication study were firstly, to investigate the 

effect of overlying soft-tissues upon UTTS derived SVF (UTTS-SVF) estimation, and secondly, to 

develop and evaluate a method to compensate for this, thereby providing a more accurate estimation 

of SVF. Four 3D-cylindrical replica cancellous bone samples, with flat-parallel cortex discs on 

opposite faces, were studied; with varying thicknesses of water-replicating overlying soft-tissues. 

Through-transmission ultrasound signals were recorded, from which the apparent TTS was derived 

via deconvolution. Pulse-echo signals were utilised to measure the thickness of water overlying the 

replica cortices. The TTS was then corrected for the ultrasound transit-time associated with the 

overlying water. Ultrasound transit time spectroscopy derived solid volume fraction (UTTS-SVF) was 

then calculated, and compared with the SVF value measured with microcomputed tomography (μCT-

SVF). The results demonstrated that varying water- thicknesses for each sample provided very similar 

formats of ultrasound transit-time spectra, but with significant extended time shifts. Compensation for 

overlying water thickness provided an accurate estimate of SVF for all samples; the overall of 

agreement between UTTS-SVF with μCT-SVF being 92.68%. It is therefore suggested that UTTS has 
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the potential to provide a reliable in-vivo estimate of BMD and hence application of the established 

WHO T-score for routine clinical assessment of osteoporosis.  

 

 

Keywords: Bone Volume Fraction, Transit Time Spectroscopy, Ultrasound, Soft Tissue  

 

 

 

1. Introduction:  

 

A common disease affecting quality of life, particularly for elderly people, is osteoporosis; which 

refers to “a decrease in bone mass and architectural deterioration of bone tissue, leading to enhanced 

bone fragility and consequent increase in fracture risk” (Christiansen 1991). Dual energy X-ray 

absorptiometry (DXA) is generally considered to be the preferred technique for routine clinical 

assessment of osteoporosis, utilising two X-ray energies; their intensities, along with knowledge of 

the attenuation coefficients of bone and soft tissue, are used to calculate the areal bone mineral density 

(aBMD, g/cm
2
).  

 

The quantitative ultrasound (QUS) technique has been demonstrated to provide a reliable prediction 

of osteoporotic fracture risk (Hans et al 1996, Bauer et al 1997, Thompson et al 1998, Njeh et al 

2000, Moayyeri et al 2012); being simpler to use, free from ionising radiation, lower cost and portable 

compared to DXA. The most common QUS parameters are speed of sound (SOS, m/s), broadband 

ultrasound attenuation (BUA, dB MHz
-1

) and stiffness index (SI, %). The correlations of these 

parameters with both bone volume fraction (BVF) and bone mineral density (BMD) have been 

extensively investigated (Gonnelli et al 1995, Gonnelli et al 1996, Hadji et al 1999, Karlsson et al 

2001, Cortet et al 2004). 

 

A number of in-vitro studies have reported correlation coefficients of approximately 0.8 between 

QUS parameters with BVF derived by microcomputed tomography (μCT) in cancellous (trabecular) 

bone samples; for example, r = 0.79 and 0.84 for SOS and nBUA respectively (Lee 2013) and r = 0.81 

and r=0.83 for SOS and nBUA respectively (Padilla et al 2008); noting that nBUA (dB MHz
-1

 cm
-1

) 

describes BUA divided by sample thickness.    

  

In-vitro studies have reported a broad range of correlation coefficients between BUA and bone 

density ranging from r = 0.83 to r = 0.97 (McKelvie et al 1989; McCloskey et al 1990; Nicholson et 

al 1994). It has been suggested that the correlation coefficient variability may be attributed to 

assessment of tissue samples from differing species (animal and human), and from different 

anatomical locations. In-vivo correlation coefficients between calcaneal BUA and DXA-estimated 

BMD range from 0.32 to 0.87 (Njeh et al 1997); again, being highly dependent on the anatomical 
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measurement site. For example, a site-matched calcaneal correlation coefficient of 0.79 has been 

reported at the calcaneus (Langton and Langton 2000), being only 0.47 for calcaneal BUA and lumbar 

spine BMD (Prins et al 1998). 

 

Significant correlation coefficients have been recorded between SOS and bone density in in-vitro 

studies ranging between r=0.71 to r=0.93 (; Evans and Tavakoli 1990, Bouxsein et al 1995, Njeh et al 

1995 Barkmann et al 2007), while, in-vivo studies have reported lower correlation coefficient varying 

widely from r=0.34 to 0.72 (Njeh et al 1997).     

 

The mathematical combination of BUA and SOS provides further QUS parameters such as stiffness 

index (SI) [defined as (0.67 x BUA) + (0.28 x SoS) – 420] (Jaworski et al 1995) and quantitative 

ultrasound index (QUI) [defined as 0.41 x (BUA + SOS) – 571] (Magkos et al 2005). Number of 

studies found that stiffness has better correlation with BMD than BUA and SOS alone (Lees et al 

1993; Xu et al 2014). However, again, the correlation is dependent on the measurement site. For 

example, Greenspan et al (1997) found the correlation between SI and BMD is higher in cancellous 

bone (r=0.86) compared to that in the trochanter, femoral neck and spine, being r= 0.77, r=0.80 and 

r=0.68 respectively.  

 

QUS is not generally utilised within routine clinical management of osteoporosis since its parameters 

have not been able to date to provide an accurate estimation of BMD, and hence, assign WHO criteria 

for osteopenia and osteoporosis to an individual subject.    

   

In 2011, Langton proposed a new concept to describe ultrasound propagation through cancellous 

bone; considering an array of parallel sonic-rays, the transit time (TT) of each determined by the 

proportion of bone and marrow propagated, exhibiting maximum TT through entire marrow (tmax) and 

minimum (tmin) TT through entire bone (Langton 2011). Thus, a transit time spectrum (TTS) may be 

described as the proportion P(ti) of sonic-rays having a particular TT t(i) (Langton and Wille 2013). 

Since the ultrasound ‘output’ signal having propagated through a test sample may be described as the 

mathematical convolution of the ‘input’ ultrasound signal and the transit time spectrum of the test 

sample, a TTS may be derived by deconvoluting the ‘output’ and ‘input’ ultrasound signals, as 

illustrated in figure 1. 
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This concept has led to the development of ultrasound transit time spectroscopy (UTTS) that has been 

scientifically validated by several studies (Langton et al 2014; Wille et al 2016; Al-Qahtani and 

Langton 2016a, 2016b). Recently, Wille and Langton (2016) have reported an accurate estimation of 

solid volume fraction (SVF). For a solid-liquid composite sample, the transit-time of a particular 

sonic-ray  is determined by the proportion of solid to liquid (SP(ti)), as shown in equation (1). By 

summing the product of the solid proportion and proportion of sonic-rays at each transit time between 

tmin and tmax, we may estimate the overall solid volume fraction of the test sample, as described in 

equation (2).  

 

SP (ti) = 1 - [
ti− tmin

tmax− tmin
]            (1)         

 

SVF= ∑ SP(𝑡𝑖 )·P(𝑡𝑖)

ti=tmax

ti=tmin

   (2) 

 

 

Figure 1. The derivation of an ultrasound transit time spectrum (TTS) via deconvolution.   

TTS 
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However, for in-vivo measurement of a bone such as the calcaneus within the heel, there are 

overlying soft-tissues between the surfaces of the skin and bone. Several studies have demonstrated 

the effect of overlying soft tissue upon ultrasound measurements. Kotzki et al. examined the influence 

of soft tissue using four fresh cadaver heels, and recorded an increase of SOS results (+11 to +28 m s
-

1
) after removal of soft tissues, whereas no significant change on BUA measurement was observed 

(Kotzki et al 1994). Häusler et al. (1997) using both contact and water bath methods reported that 

SOS is sensitive to the presence of soft tissue while BUA is insensitive.  Johansen and Stone (1997) 

have studied the effect of ankle oedema on BUA and SOS. Eleven elderly patients (with average ages 

of 81 years) with below-knee pitting oedema were assessed. They compared the measurements of the 

ankle BUA with oedema present to those after removal of oedema. The results showed that oedema 

reduced the mean of BUA measurements by 14.20%, and the mean SOS by 1.40%. 

 

From an UTTS perspective, the effect of the overlying soft-tissues will introduce a time-delay within 

the transit time spectrum (figure 2) and will consequently significantly underestimate the SVF.  

 

 

 

 

The aims of this experimental replication study were firstly, to investigate the effect of overlying soft 

tissues upon UTTS-derived SVF estimation, and secondly, to develop and evaluate a means to 

compensate for this, thereby providing an accurate estimation of SVF.  

 

 

Figure 2. The effect of overlying soft tissue upon TTS. 
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2. Materials and Methods:  

2.1. Samples: 

 

Four cylindrical (19 mm diameter, 30 mm height) cancellous bone replicating samples with 1 mm flat 

cortex discs on opposite faces were designed, as shown in figure 3, and 3D-printed using VisiJet FTX 

material (ProJet1200 Micro-SLA system).  The velocity, density and attenuation coefficient of the 

material were measured as 2470±10 m s
-1

, 1175 kg m
-3

 and 43±0.4 Np m
-1

 respectively.  

 

 

 

 

 

 

 

 

 

2.2. Experimental set-up:  

 

Two 19 mm (3/4”), 1 MHz, broadband, planar ultrasound transducers (Harisonics I7-0112-G, 

Olympus NDT, Waltham, MA, USA), as utilised clinically, were placed coaxially in a water-tank. 

The transmitting transducer was connected to a spike generator (Panametrics PR5058 pulser-

receiver), and the receive transducer was connected to a 14-bit digitiser card operating at a 50-MHz 

digitisation rate (National Instruments PCI5122, Austin, TX, USA); 5000 data points were collected 

equating to 100 μs.  

 

The transducer separation was adjusted to replicate varying overlying soft-tissue thicknesses of 5, 10, 

15 and 20 mm on either side of the sample. Figure 4 illustrates the experimental set-up demonstrating 

the position of the replica bone sample and replica soft tissues. 

 

 

 

 

 

 

 

 

      (a)            (b)       (c)                       (d)  

Figure 3. Cancellous bone replicating samples: (a) femoral head (b) iliac crest (c) 
lumber spine (d) calcaneus. 
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2.3. Ultrasound measurement and soft tissue thickness correction:   

 

For each sample and a fixed water thickness, through-transmission ultrasound signals through water 

alone (‘input’) and through the sample/water (‘output’) were recorded for UTTS analysis. The 

procedure was repeated for different water thicknesses. Further, each measurement was repeated five 

times, the sample being repositioned between measurements.    

 

Pulse-echo signals were measured to estimate the thickness of the water between transducer and 

sample as [d = (t/2)/vw]; where vw is the ultrasound velocity through water, measured experimentally 

at temperatures ranging between 22.4 °C to 23.2 °C and equating to velocities ranging between 1489 

m s
-1

 to 1492 m s
-1

. 

 

Minimum (tmin) and maximum (tmax) TT were experimentally measured through a fully solid sample of 

VisiJet FTX material and water respectively as d/vs and d/vw respectively, where d is the sample 

thickness.  

 

The pulser-receiver attenuator settings for the samples (‘output’, dB2) ranged between 15 dB and 35 

dB, to maximise the signal amplitude before saturation, while  the attenuator setting for water alone 

(‘input’, dB1) was 55 dB. Reducing the attenuator setting increases the ‘output’ signal amplitude that 

hence increases the apparent proportion of sonic-rays within the deconvolution-derived transit time 

spectrum (P(ti)). A pulser-receiver attenuator correction was therefore developed and applied to the 

Replica Bone sample                                

Receive transducer Transmit transducer  

Replica soft tissue (water) 

  Panametrics  T R 
Digitisation card Computer (LabView) 

Figure 4. Schematic diagram of experimental set-up. 
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deconvolution-derived transit time spectrum, described by equation (3), where ΔdB is the attenuator 

settings difference (dB) between ‘input’ and ‘output’ signal recordings.  

 

𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝 𝐨𝐮𝐭𝐩𝐮𝐭 𝐬𝐢𝐠𝐧𝐚𝐥 = (𝐨𝐮𝐭𝐩𝐮𝐭 𝐬𝐢𝐠𝐧𝐚𝐥)/𝟏𝟎^(𝜟𝒅𝑩 ⁄ 𝟐𝟎)   (3) 

   

The ‘raw’ transit time spectrum (TTS) was derived via deconvolution of the experimental measured 

‘input’ and ‘output’ ultrasound signals, from which the ‘raw’ UTTS–SVF was calculated utilising 

equations 1 and 2. 

 

By definition, the sum of all proportions of sonic-rays (P(ti)) should be unity. However, in practice, 

this summation is generally slightly reduced, attributed to additional attenuation factors including 

reflections and scattering within the test sample. The ‘raw’ TTS was therefore corrected by 

normalizing the sum of P(ti) between tmin and tmax to unity, as illustrated in figure 5. This is primarily 

based on the assumption that all ultrasound propagated signals would be detected in the absence of 

wave degradation effects such as phase interference and absorption.  

 

Figure 5: Mechanism of P(ti) correction.    

 

Finally, the ‘raw’ TT spectra were corrected for a specific overlying water thickness, achieved by 

subtracting the corresponding pulse-echo TT measurement. 
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Applying these two corrections (P(ti) and overlying soft tissue thickness) provided a corrected TTS, 

from which corrected UTTS–SVF was derived. UTTS-SVF with and without corrections were then 

compared to the actual SVF value measured with μCT (μCT-SVF).     

   

Figure 6 shows a detailed flow chart describing the UTTS-SVF derivation process. 

                        



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Micro-Computed Tomography analysis:  

 

The SVF of the replica models was also determined using micro-CT (𝜇CT 40, Scanco Medical, 

Brütisellen, Switzerland). The samples were scanned in air at 45 kVp and 177 μA, with an isotropic 

voxel size of 30 μm
3
 and a sample time of 0.6 s. The grey scale images were evaluated by applying a 

region of interest corresponding to the diameter of the cortex disk for each scan slice. The lower 

threshold of 42 (min/max: 0/1000) was chosen by histogram analysis to separate the trabecular 

structure from the background. Due to the low x-ray absorbing nature of the polymer, the built in 

Gaussian filter was adjusted (sigma = 2.3, support = 5) to remove additional noise (Campbell and 

Sophocleous 2014). The scan and analysis settings were kept constant for all models. The 3D 

reconstruction and the SVF [%] of each model were then calculated with SCANCO’s proprietary 

Input Signal 3D sample 

Digital Deconvolution 

  

Raw TTS 

  

Raw-SVF 

STT & P(ti) correction Corrected TTS 

  

Corrected-SVF 

Ex
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en
t 

 
D

at
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an
al

ys
is

  

Comparison 

 TTS: Transit Time Spectroscopy                             STT: Soft Tissue Thickness    
 P(ti): The proportion of sonic rays having  a specific transit time        SVF: Solid Volume Fraction 

Output Signal 
  

Eq 1&2 Eq 1&2 

Figure 6. A flow chart describing raw and corrected UTTS-SVF derivation process. 
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algorithms based on the methods of Hildebrand and Ruegsegger ( Hildebrand and Rüegsegger 1997, 

Hildebrand et al 1999). Reconstructed 3D micro-CT images of the utilised samples are shown in table 

1.    

Table 1. 3D image reconstruction of the micro-CT scans of the four replica models and micro-   

CT derived SVF. 

Sample FH IC LS CA 

 
    

SVF [%] 32.58 22.75 17.49 17.79 

 

2.5. Statistics analysis:  

 
The percentage of agreement between UTTS-SVF and μCT-SVF was performed using Excel 2010 

(Microsoft). One-way analysis of variance (one way ANOVA) statistically evaluated the differences 

between corrected UTTS-SVF measurements at all soft tissue thicknesses for all samples.   

 

3. Results and Discussion:  

 

Plots in figure 7 show qualitative comparisons of TTS for the four replica cancellous bone samples 

before and after compensation for the ultrasound TT associated with varied water thickness 

replicating overlying soft-tissue thicknesses.
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 Figure 7. Transit time spectra before (left columns) and after (right columns) 
compensation for soft tissue thicknesses for the femoral head (FH), iliac crest (IC), 
lumbar spine (LS), and calcaneus sample (CA) (from top to bottom).   
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Figure 8. Quantitative comparisons between UTTS-SVF (raw (striped bars) and corrected (grey 

bars)) and µCT-SVF (black bars) for the four cancellous bone replica models.   

 

Table 2. Average of % agreement of raw and corrected UTTS-SVF with µCT-SVF for all 

samples demonstrating the level of improvement resulting from mentioned corrections.      

  5 mm 10 mm 15 mm 20 mm Overall  

average 

Raw UTTS-SVF 11.56±6.83 % 9.42±5.84 % 7.57±4.56 % 6.58±3.59 % 8.76 % 

Corrected UTTS-SVF 93.24±1.49 % 91.83±2.86 % 92.67±4.44 % 92.93±2.13 % 92.68 % 

% improvement 87.44 % 89.53 % 91.66 % 92.77 % 90.35 % 

 

The qualitative comparisons in figure 7 clearly indicate that varying the water thickness for each 

sample provided very similar formats of TTS, but with overall time shifts commensurate with the 

corresponding water thickness (figure 7-left columns). Subtraction of the pulse-echo derived transit 

time provided almost identical TT spectra (figure 7-right columns). These findings agree with the 

previous study by Häusler which stated that the overlying soft tissue influences SOS (TT shift) but not 

BUA (same TTS format) (Häusler et al 1997).  

 

The overall percentage of agreement between ‘raw’ UTTS-SVF and μCT-SVF was low, being 8.76%, 

that increased to 92.68% when soft-tissue thickness and P(ti) corrected factors were implemented; 

enhancing the accuracy of measured UTTS-SVF by an average of 90.35% as shown in table 2 and 

figure 8.  
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Statistically, there were no significant differences among corrected UTTS-SVF measurements at all 

water thicknesses for all samples (p = 0.99). Further, the results show that corrected UTTS-SVF 

provided an accurate estimate of μCT-SVF.  

 

Although very good results have been achieved, the study poses some limitations. The measurement 

of tmin, which is the TT solely through bone, might be more difficult when utilizing natural bone tissue 

samples, compared to the current study, where tmin was experimentally measured using a reference 

block sample. This might be solved through the knowledge of ultrasound velocity through the bone 

along with the thickness of the examined cancellous bone, which can be determined by subtracting the 

transducer separation from the entire soft tissue thickness. Further, water was used as a surrogate for 

all soft-tissues that would be present in-vivo.  

 

The use of replica phantoms provides a controllable environment to investigate the characteristics of 

ultrasound propagation through human cancellous bone. Several previous studies have mimicked 

cancellous bone using different phantoms having different material properties such as acrylic 

(Langton and Wille 2013), stereolithography resin (Aygün et al 2010, Langton 2011), mixture of 

epoxy resin and gelatine (Clarke et al 1994), polyacetal cuboid (Lee and Choi 2007) and nylon wires 

(Wear 2009a, 2009b). In this study, we have used VisiJet FTX material with an ultrasound velocity of 

2470 m s
-1

 that was lower than that for human bone tissue (2900 m s
-1

) (Kaufman et al 2007); 

however, it is still significantly higher than for marrow-replicating water. Hence, a comparable 

acoustic impedance mismatch exists, resulting in reflection coefficients of 0.32 and 0.53 for VisiJet 

FTX /water and bone/marrow respectively.    

 

Material absorption and attenuation have been studied extensively as important factors affecting 

ultrasound propagation through complex structures such as cancellous bone ( Le 1998, Wear 2000, 

Wear 2009a, Zhang et al 2011). In this study, we assume these factors are incorporated within the 

TTS and that material absorption and attenuation are compensated for by applying the P(ti) correction.  

Future work will consider the role of absorption and attenuation within the UTTS analysis and it is 

expected that a better understanding may enhance the ability of UTTS to estimate SVF even more 

accurately.  Furthermore, it is envisaged to extend this work to estimate UTTS-BVF in-vivo, from 

which the discriminatory abilities of bone status using UTTS and DXA might be compared.         

                                                                                                                                                                                                                                                                                                                                                                                                             

4. Conclusion 

 

This study investigated the ability of UTTS to estimate the SVF of four replica cancellous bone 

samples, particularly associated with varying overlying soft thickness, replicated using water. 

Corrected UTTS-SVF provided a percentage of agreement of 92.68%, compared to only 8.76% for 
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uncorrected UTTS-SVF against ‘gold-standard’ micro-CT derived solid volume fraction (μCT-SVF). 

UTTS therefore has potential to provide an accurate estimate of BVF in-vivo, thereby offering for the 

first time, accurate estimation of BMD and implementation of WHO T-score criteria using ultrasound 

for routine clinical management of osteoporosis. 
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