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Abstract—Environmental noise and reverberation conditions
severely degrade the performance of forensic speaker verifi-
cation. Robust feature extraction plays an important role in
improving forensic speaker verification performance. This pa-
per investigates the effectiveness of combining features, Mel
frequency cepstral coefficients (MFCC) and MFCC extracted
from the discrete wavelet transform (DWT) of the speech, with
and without feature warping for improving modern identity-
vector (i-vector) based speaker verification performance in the
presence of noise and reverberation. The performance of i-
vector speaker verification was evaluated using different feature
extraction techniques: MFCC, feature-warped MFCC, DWT-
MFCC, feature-warped DWT-MFCC, a fusion of DWT-MFCC
and MFCC features and fusion feature-warped DWT-MFCC and
feature-warped MFCC features. We evaluated the performance of
i-vector speaker verification using the Australian Forensic Voice
Comparison (AFVC) and QUT-NOISE databases in the presence
of noise, reverberation, and noisy and reverberation conditions.
Our results indicate that the fusion of feature-warped DWT-
MFCC and feature-warped MFCC is superior to other feature
extraction techniques in the presence of environmental noise
under the majority of signal to noise ratios (SNRs), reverberation,
and noisy and reverberation conditions. At 0 dB SNR, the
performance of the fusion of feature-warped DWT-MFCC and
feature-warped MFCC approach achieves a reduction in average
equal error rate (EER) of 21.33%, 20.00%, and 13.28% over
feature-warped MFCC, respectively, in the presence of various
types of environmental noises only, reverberation, and noisy
and reverberation environments. The approach can be used for
improving the performance of forensic speaker verification and
it may be utilized for preparing legal evidence in court.

Index Terms—Discrete wavelet transform, environmental noise
and reverberation conditions, forensic speaker verification, fea-
ture warped-MFCC.

I. INTRODUCTION

The goal of speaker verification is to accept or reject the
identity claim of a speaker by analyzing their speech samples
[1], [2]. Speaker verification can be used in many applications
such as security, access control, and forensic applications
[3]. For many years, lawyers, judges, and law enforcement
agencies have wanted to use forensic speaker verification when
investigating a suspect or confirming the judgment of guilt or
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innocence [4]. Forensic speaker verification compares speech
samples from a suspect (speech trace) with a database of
speech samples of known criminals to prepare legal evidence
for the court [5].

Automatic speaker recognition systems are often developed
and tested under clean conditions [5]. However, in real forensic
applications, the speech traces provided to the system are often
corrupted by various types of environmental noise such as car
and street noises [5]. The performance of speaker verification
systems reduces dramatically in the presence of high levels of
noise [6], [7].

The police often record speech from the suspect in a
room where reverberation is often present. In reverberation
environments, the original speech signal is often combined
with a multiple reflection version of the speech due to the
reflection of the original speech signals from the surrounding
room [8]. The reverberated speech can be modeled by the con-
volution impulse response of the room with the original speech
signal. The amount of reverberation can be characterized by
reverberation time (T20 or T60), which describes the amount
of time for the direct sound to decay by 20 dB or 60 dB,
respectively [9]. The presence of reverberation distorts feature
vectors and degrades the speaker verification performance
because of mismatched conditions between trained models and
test speech signals [10].

For speaker verification systems, it is important to extract
the features from each frame which captures the essential
characteristics of the speech signals. There are various feature
extraction techniques used in speaker verification algorithms
such as mel frequency cepstral coefficients (MFCC), linear
prediction cepstral coefficients (LPCC), and perceptual linear
predictive coefficients (PLPC) [11], [12]. The MFCC is the
most widely used as the feature extraction techniques for
modern speaker verification systems and it achieves high
performance under clean conditions [13], [14]. However, the
performance of the MFCC features drops significantly in the
presence of noise and reverberation conditions [8], [14].

A number of techniques, such as cepstral mean subtraction
(CMS) [15], cepstral mean variance normalization (CMVN)
[16], and RASTA processing [17], have been used to extract
features by reducing the effect of noise directly from speaker-
specific information. However, these techniques are less ef-
fective for non-stationary additive distortion and reverberation
environments [8], [18]. Pelecanos et al. [19] introduced a
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feature warping technique to speaker verification to compen-
sate the effect of additive noise and linear channel mismatch
in the feature domain. This technique maps the distribution
of the cepstral features into a standard normal distribution.
Feature warping provides a robustness to noise, while retaining
the speaker-specific information that is lost when using other
channel compensation techniques such as CMS, CMVN, and
RASTA processing [20].

Multiband feature extraction techniques were used in [21]–
[24] as the feature extraction of noisy speaker recognition
systems. These techniques achieved better performance than
traditional MFCC features. Multiband feature techniques are
based on combining MFCC features of the noisy speech sig-
nals and MFCC extracted from the discrete wavelet transform
(DWT) in a single feature vector.

The fusion of MFCC and DWT-MFCC features of the
speech signal improves speaker verification performance under
noisy and reverberation conditions for two main reasons.
Firstly, reverberation affects low frequencies more than high-
frequency subbands, since the boundary materials used in most
rooms are less absorptive at low frequency subbands [25]. The
DWT can be used to extract more features from the low fre-
quency subbands. These features add some important features
to the full band of the MFCC. Thus, fusion of MFCC and
DWT-MFCC features of the reverberated signals may achieve
better forensic speaker verification performance than full band
cepstral features in the presence of reverberation conditions.
Secondly, the MFCC features extracted from the DWT add
more features to the features extracted from the MFCC of the
noisy speech signals, thereby assisting in improving speaker
recognition performance in the presence of noise. [14].

In this paper, we investigate the effectiveness of combining
the features of MFCC and DWT-MFCC of speech signal with
and without feature warping for improving i-vector speaker
verification performance under noise, reverberation, and noisy
and reverberation conditions. We used different individual and
concatenative feature extraction techniques for evaluating the
modern i-vector forensic speaker verification performance in
the presence of various types of environmental noise and
different reverberation conditions.

Although the combination of MFCC and DWT was used
as the feature extraction technique in [14], [24] to improve
the performance of speaker identification systems, the effec-
tiveness of combining feature warping with DWT-MFCC and
MFCC features individually or concatenative fusion of these
features has not been investigated yet for state-of-the-art i-
vector forensic speaker verification in the presence of environ-
mental noise only, reverberation, and noisy and reverberation
conditions. This is the original contribution of this research.

The remainder of the paper is organized as follows. Section
II provides a brief introduction to speech and noise data
sets used in this paper. Section III presents feature extraction
techniques. The i-vector based speaker verification is described
in Section IV. Section V describes the experimental method-
ology. The results and discussion are presented in Section VI,
and Section VII concludes the paper.

II. SPEECH AND NOISE DATA SETS

This section will briefly outline the Australian Forensic
Voice Comparison (AFVC) and QUT-NOISE databases which
will be used to construct the noisy and reverberation corpora
described in this section.

A. AFVC database

The AFVC database [26] consists of 552 speakers. Each
speaker was recorded in three speaking styles: informal tele-
phone conversation, information exchange over the telephone,
and pseudo-police styles. Informal telephone conversations
and information exchange over the telephone were recorded
between two speakers using a telephone. For the pseudo-
police style, each speaker was interviewed by an interviewer
and the speech signals were recorded using a microphone.
The clean speech signals were sampled at 44.1 kHz and 16
bit/sample resolution [27]. The AFVC database will be used
in this paper because this database contains different speaking
style recordings for each speaker, and these speaking styles
are often found in casework and police investigations.

B. QUT-NOISE database

The QUT-NOISE database [28] consists of 20 noise ses-
sions. The duration of each session is approximately 30
minutes. QUT-NOISE was recorded in five common noise
scenarios (CAFE, HOME, CAR, STREET, and REVERB).
The noise was sampled at 48 kHz and 16 bit/sample resolution.

For most forensic speaker verification approaches, the clean
speech signals from existing speech databases are corrupted
with short periods of environmental noise collected separately
at a certain noise level. However, while the large number
of speakers in the speech databases available to researchers
through these approaches allows a wide variety of speak-
ers to be evaluated for speaker verification systems, most
existing noise databases such as the NOISEX92 database
[29], freesound.org [30], and AURORA-2 [31] have limited
conditions and short recordings (less than five minutes). The
limited duration of noise databases has lacked the ability to
evaluate test speaker recognition systems in a wide range of
environmental noise conditions in forensic situations. There-
fore, in this paper, we mixed a random session of noise from
the QUT-NOISE database with clean forensic audio recordings
to achieve a closer approximation to forensic situations.

C. Construction of noisy and reverberation corpora

The forensic audio recordings available from the AFVC
database [26] cannot be used to evaluate the robustness of
forensic speaker verification in the presence of environmen-
tal noise and reverberation conditions, because this database
contains only clean speech signals. In order to evaluate the
performance of the speaker verification systems in the pres-
ence of environmental noise and reverberation conditions, we
designed two corpora. First, a noisy forensic (QUT-NOISE-
AFVC) database, which combined noise from the QUT-NOISE
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database with clean speech from the AFVC database. Sec-
ond, the reverberation noisy forensic (QUT-NOISE-AFVC-
REVERB) corpus, which combined noise from the QUT-
NOISE database with clean speech from the AFVC database
in the presence of reverberation. A brief description of each
corpus is provided in this section.

1) QUT-NOISE-AFVC database: The objective of design-
ing the QUT-NOISE-AFVC database was to evaluate the ro-
bustness of forensic speaker verification under environmental
noise conditions. We extracted full duration utterances from
200 speakers using pseudo-police style and short duration ut-
terances (10 sec, 20 sec, and 40 sec) using informal telephone
conversation styles. These data can be used as enrolment
and test speech signals, respectively. Voice activity detection
(VAD) based on Sohn's statistical model [32] was used to
remove silence from the enrolment and test speech signals. It
was necessary to remove the silent portions from the test clean
speech signals before adding the noise because the silence
would artificially increase the true short-term active speech
signal to noise ratio (SNR) compared to that of the desired
SNR. The voice activity detection was applied to clean speech
instead of noisy speech signals in this paper because manual
segmentation of speech activity segments or speech labelling
may be implemented in a forensic scenario when encountering
noisy speech [5]. A random session of STREET, CAR, and
HOME noises from the QUT-NOISE database [28] was chosen
and down-sampled from 48 kHz to 44.1 kHz to match the
sampling frequency of the test speech signal. These noises
were used in this paper because these types of environmental
noise are more likely to occur in real forensic situations. The
average noise power was scaled in relation to the reference
speech signal after removing the silent region according to
the desired SNR. The noisy test speech signals were obtained
by sample summing of the test speech signal and the scaled
environmental noise at SNRs, ranging from -10 dB to 10 dB.

2) QUT-NOISE-AFVC-REVERB database: The aim of de-
signing the QUT-NOISE-AFVC-REVERB corpus was to in-
vestigate the effect of different reverberation conditions on the
performance of i-vector forensic speaker verification systems.

Training room impulse responses were computed from the
fixed room dimension 3×4×2.5 (m) using the image source
described in [33]. Table I and Figure 1 show reverberation
room parameters and a diagram of the room. We extracted full
duration utterances from 200 speakers using a pseudo-police
interview style. The VAD algorithm [32] was used to remove
the silent portions from the speech signals. These data can
be used as enrolment speech signals. Each of the enrolment
speech signals was convolved with the impulse room response
to generate the reverberated speech with the same duration as
the clean enrolment speech signal.

In order to investigate the effect of the duration of utterance
on noisy speaker verification, the test speech signals were
extracted from random sessions of 10 sec, 20 sec, and 40
sec duration from 200 speakers, using the informal telephone
conversation style after removing the silent portions using the
VAD algorithm [32]. The test speech signals were corrupted
with different segments of CAR, STREET, and HOME noises
from the QUT-NOISE database [28] at various SNR values

TABLE I: Reverberation test room parameter

Configuration Source position(xs,ys,zs ) microphone position (xm,ym,zm )
1 (2, 1, 1.3) (1.5, 1, 1.3)
2 (2, 1,1.3) (2.4, 1, 1.3)
3 (2, 1, 1.3) (2.8, 1 ,1.3)
4 (2, 1, 1.3) (2.8, 2.5 ,1.3)

 

Fig. 1: Diagram of the room.

ranging from -10 dB to 10 dB.

III. FEATURE EXTRACTION TECHNIQUES

The feature extraction approach can be defined as the
process of converting raw speech signals into a small sequence
of feature vectors. These feature vectors carry essential char-
acteristics of the speech signal to identify the speaker by their
voice [34]. This section describes a brief introduction to the
feature extraction techniques which are used in this paper.

A. MFCC feature warping

MFCCs have been widely used as the feature extraction
techniques for speaker recognition systems. They are extracted
features from the speech signals using cepstral analysis. The
human speech production process consists of an excitation
source and the vocal tract. The concept of the cepstral features
is based on separation of the excitation source and the vocal
tract [14]. The basic block diagram of extracting the MFCC
features is described in Figure 2.

The first step is to divide the speech signals into frames
using an overlapped window. In this research, the speech signal
was framed into 30 msec and 10 msec shifts by using a
Hamming window. Then, the discrete Fourier transform (DFT)
was used to convert the frame of the speech signals from
the time domain to the frequency domain. The MFCC can
be obtained using a triangular mel filterbank of 32 channels

 

Fig. 2: A block diagram of extracting the MFCC features
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followed by a transformation to the cepstral domain using
discrete cosine transform (DCT). The 13-dimensional MFCC
is extracted from each frame of the speech signals. The
first and second derivatives of the cepstral coefficients were
appended to MFCC features to capture the dynamic properties
of the speech signal [12].

Since additive noise and channel distortion corrupt the log-
energy of the cepstral features, the distribution of the cepstral
features over time undergoes nonlinear distortion [35]. Feature
warping [19] was used to compensate this nonlinearity by
mapping the distribution of a feature to standard normal
distribution. The process of the feature warping is described
in the following steps. Firstly, the characteristics of the speech
signal can be extracted by using MFCC features. Each cepstral
feature can be treated independently over a sliding window
(typically three seconds) [19]. Then, the values of the cepstral
features are sorted in descending order in a given sliding
window. The lookup table can be used to map the rank of the
sorted cepstral features into a warped feature using warping
normal distribution. The process is repeated by shifting the
sliding window for a single frame each time [19].

Given an N points analysis window and the rank R of
the middle cepstral feature in the current sliding window,
the lookup table (or feature warped components) can be
determined by finding m. [19]

N + 1
2 −R
N

=

∫ m

z=−∞

1√
2π

exp(−z
2

2
)dz (1)

where m is the feature warped components.
The warped value m can be estimated initially by putting

the rank to R = N , solving m by numerical integeration and
then repeating for each decremented value of R.

B. Wavelet transform

The wavelet transform is a tool for analyzing the speech
signals. It was used to solve the issues related to time
and frequency resolution properties in short time Fourier
transform (STFT) [36]. Unlike, the STFT that uses fixed
window size for all frequency bands, the wavelet transform
uses an adaptive window which provides high-time resolution
in high-frequency subbands and high-frequency resolution in
low-frequency subbands. In that respect, the human auditory
system exhibits similar time-frequency resolution properties to
the wavelet transform [36].

The DWT is a type of the wavelet transform that can be
represented as

W (j, k) =
∑
j

∑
k

x(k)2
−j
2 ψ(2−jn− k) (2)

where ψ is the mother wavelet function with finite energy
and fast decay, j is the number of the level, x(k) is the speech
sample, n and k are integer values. The DWT can be performed
using a pyramidal algorithm [37]. Figure 3 shows the block
schematic of the dyadic wavelet transform. The speech signal
(x) is split into various frequency subbands by using a dyad
of finite impulse response (FIR) filters, h and g, which are
a low-pass and high-pass filter respectively. The (↓ 2) is a

 

Fig. 3: Block schematic of the dyadic wavelet transform

down-sampling operator used to discard half of the speech
sequences after the filter is performed. The approximation
coefficients (CA1) can be obtained by convolving the speech
signal with a low-pass filter. The detail coefficients (CD1) can
be computed by convolving the speech signals with a high pass
filter. The decomposition of the speech signals can be repeated
by applying the DWT to the approximation coefficients (CA1).

C. Combination of DWT and MFCC feature warping tech-
niques

The technique for extracting the features is based on the
multiresolution property of the discrete wavelet transform.
The MFCC features were computed over Hamming windowed
frames of 30 msec size and a 10 msec shift to discard the
discontinuities at the edges of the frame. The MFCC was
obtained using a mel filterbank of 32 channels followed by
a transformation to the cepstral domain. The 13-dimensional
MFCC features, with appended delta (∆) and double delta
(∆∆) coefficients, were extracted from the full band of the
noisy speech. Feature warping with a 301 frame window
was applied to the features extracted from the MFCC. The
DWT was applied to decompose the noisy speech into two
frequency subbands: the approximation (low-frequency sub-
band) and the detail (high frequency sub-band) coefficients.
The approximation and detail coefficients were combined into
a single vector. The feature-warped MFCC was then used to
extract features from the single feature vector of the DWT.

In this paper, we investigate the effect of feature warping
on DWT-MFCC and MFCC features, both individually and
in a concatenative fusion of these features in the presence of
various types of environmental noise, reverberation, and noisy
and reverberation conditions, as shown in Figure 4.

To clarify the feature extraction labels used in Figure 4,
the two branches in Figure 4 are labelled 1 and 2. Each
branch can also be subdivided into two sub-branches labelled
A and B. The output from each sub-branch represents a
label of the feature extraction technique and these feature
extraction techniques can be combined to generate fusion
feature techniques. Tables II and III give a summary of feature
extraction labels and a description of the number of the
features extracted corresponding to each feature extraction
label. The symbol (FW) in Tables II and III represents the
acronym of feature warping. The feature extraction techniques
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described in Table II can be used to train the state-of-the-
art i-vector probabilistic linear discriminant analysis (PLDA)
speaker verification systems, which will be described in the
next section.
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Fig. 4: Extraction and fusion of DWT-MFCC and MFCC
features with and without feature warping (FW).

TABLE II: Summary of feature extraction labels

Sub-branch label Label feature extraction
1 A MFCC
1 B MFCC (FW)
2 A DWT-MFCC
2 B DWT-MFCC (FW)

Fusion 1 A and 2 A Fusion (no FW)
Fusion 1 B and 2 B Fusion both (FW)

TABLE III: Description of the number of features extracted
from each feature extraction labels

Label feature extraction Number of features
MFCC 39

MFCC (FW) 39
DWT-MFCC 39

DWT-MFCC (FW) 39
Fusion (no FW) 78
Fusion both(FW) 78

IV. I-VECTOR BASED SPEAKER VERIFICATION

The i-vector was proposed by Dehak et al. [38] and it has
become a common technique for speaker verification systems.
The i-vector can be used in a length normalized Gaussian

PLDA (GPLDA) classifier. The i-vector and length normalized
GPLDA classifier are outlined in the following sections.

A. I-vector feature extraction

The i-vector represents the Gaussian mixture model (GMM)
super-vector by using a single low-dimensional total variabil-
ity space that contains both speaker and channel variability.
This single-subspace was motivated by the discovery that
the channel variability space of joint factor analysis (JFA)
[39] contains speaker information which could be used in
recognizing speakers more efficiently. An i-vector speaker and
session dependent GMM super-vector, s, can be represented
as [38]

s = m + Tw (3)

where m is the super-vector of the mean from the universal
background model (UBM), T is the low-rank matrix represent-
ing the major variability across a large number of development
data, and w is the i-vector which has a standard normal
distribution. The i-vectors can be extracted by computing the
Baum-Welch zero-order, N, and centralized first-order, F,
statistic of the cepstral coefficients extracted from the speech
utterances. The statistic is calculated for a given utterance
with respect to the number of UBM components (C) and the
dimensions of the feature extraction (F). The i-vectors for a
given utterance are extracted as in [38]

w = (I + TTΣ−1NT)
−1

TTΣ−1F (4)

where I is an identity matrix that has a dimension CF× CF,
N is the F × F diagonal matrix, and F is performed
through concatenating of the centralized first-order statistics.
The covariance matrix Σ is the residual variability matrix.
The method for estimating the total variability subspace is
described in [38], [40].

The total variability matrix should be trained in both tele-
phone and microphone environments to exploit the useful
speaker variability obtained from both sources. McLaren et
al. [41] investigated the effect of using different types of
total variability matrix, such as pooled and concatenated on i-
vector speaker verification systems. For the pooled technique,
microphone and telephone speech utterances are combined
and an individual total variability matrix is used to train this
combination of speech signals. For the concatenated total-
variability technique, two total-variability matrices for micro-
phone and telephone are trained separately using speech from
those sources, then both subspaces are combined to generate
a single total-variability space. McLaren et al. [41] found that
the pooled technique achieved better representation of i-vector
speaker verification than the concatenated total variability
technique. Thus, the pooled total variability technique will be
used in this paper.

B. Length normalized GPLDA classifier

The PLDA was first proposed by Prince et al. [42] for
face recognition systems, and was later introduced to model
i-vector speaker verification by Kenny et al. [43]. Kenny in-
vestigated two PLDA models: GPLDA and heavy-tailed PLDA
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(HTPLDA). They found that HTPLDA improved speaker ver-
ification performance significantly compared with the GPLDA
model because the distribution of the i-vectors is heavy-tailed
[43]. Garcia-Romero et al. [44] proposed the length normal-
ized GPLDA technique to transform the behavior of the i-
vectors from the heavy-tailed to Gaussian behavior. The results
in [44] have indicated that the length normalized GPLDA gives
a similar performance with less computational complexity than
HTPLDA. Thus, the length normalized GPLDA was used in
this paper.

The length normalized GPLDA consists of two steps (a)
whitening i-vectors (b) length normalization. The whitening
process of i-vector, wwht, can be computed as

wwht = d−
1
2 UTw (5)

where Σ is the covariance matrix which can be estimated from
the development i-vector, U is an orthogonal matrix including
the eigenvectors of the covariance matrix, and d is the diagonal
matrix containing the corresponding of the eigenvalues. The
length normalized of i-vector, wnorm, can be computed as

wnorm =
wwht

‖wwht‖
(6)

The length normalization i-vector, wnorm, can be repre-
sented in the GPLDA model as follows,

wnorm
r = w̄norm + U1x1 + U2yr + εr (7)

where r = 1, 2, 3, · · · , R represents the number of the
recordings for each speaker, w̄norm is the speaker-independent
mean of all i-vectors, U1 and U2 are the eigenvoice and
eigenchannel matrices, respectively. The speaker factors x1 are
assumed to have standard normal distribution and the vector εr
represents the residual term assumed to be a standard normal
distribution with a zero mean and covariance matrix (Λ−1).
The GPLDA model consists of two parts: the speaker part
w̄norm +U1x1 with covariance matrix U1U

T
1 and represents

between speaker variability. The channel part U2yr + εr with
covariance matrix Λ−1 + U2U

T
2 , which represents within

speaker variability.
In our experiment, the precision matrix (Λ) is assumed to

be a full rank and the eigenchannel matrix (U2) is removed
from Equation 7. It was found that removing the eigenchannel
did not show significant improvement in speaker verification
performance and removing the eigenchannel matrix is useful
for decreasing the computational complexity [43], [44]. The
modified GPLDA can be represented by

wnorm
r = w̄norm + U1x1 + εr (8)

The details of the estimation model parameter {U1,x1,Λ}
are given in [43]. The scoring was conducted using the batch
likelihood ratio between the normalization i-vector of the
target wnorm

target and test wnorm
test and it can be represented as

[43]

score = ln
P (wnorm

target,w
norm
test |H1)

P (wnorm
target|H0)P (wnorm

test |H0)
(9)

where H1 is the hypothesis that the i-vectors come from the
same speaker and H0 is the hypothesis that they do not.

V. EXPERIMENTAL METHODOLOGY

The i-vector based experiments were evaluated using the
AFVC database. A universal background model with 256
Gaussian components was used in our experimental results.
The UBMs were trained on telephones and microphones from
348 speakers from the AFVC database. These UBMs were
used to compute the Baum-Welch statistics before training
a total-variability subspace of dimension 400. These total
variabilities were used to compute the i-vector speaker repre-
sentation. The i-vector dimension was reduced to 200 i-vectors
using linear discriminant analysis (LDA). The i-vectors length
normalization was used before GPLDA modelling using cen-
tering and whitening of the i-vectors [44]. The performance of
the i-vector PLDA speaker verification systems was evaluated
using the Microsoft Research (MSR) identity toolbox [45].

VI. RESULTS AND DISCUSSION

This section describes the effectiveness of fusion features
of MFCC and DWT-MFCC with and without feature warping
on the speaker verification performance under noisy, reverber-
ation, and noisy and reverberation conditions. The modern i-
vector PLDA was used as a classifier in all results throughout
this paper. The performance of speaker verification systems
was evaluated using the equal error rate (EER).

A. Noisy conditions

This section will describe the performance of fusion features
of MFCC and DWT-MFCC with and without feature warping
in the presence of STREET, CAR, and HOME noises only.
The effect of level decomposition and duration utterances on
the performance of fusion feature warping with MFCC and
DWT-MFCC based speaker verification systems will also be
described in this section.

1) Effect of level decomposition: This experiment evaluated
the effect of level decomposition used in the performance of
fusion feature warping with MFCC and DWT-MFCC features.
The full duration of enrolment speech signals was kept in
clean conditions, while 10 sec of the test speech signals
were corrupted with a random session of STREET, CAR, and
HOME noises at SNRs ranging from -10 dB to 10 dB. The
enrolment and noisy test speech signals were decomposed into
2, 3, and 4 levels using Daubechies 8 DWT.

Figure 5 shows the effect of the decomposition levels on
the performance of fusion feature warping with MFCC and
DWT-MFCC features in the presence of various types of
environmental noise at SNRs ranging from -10 dB to 10 dB.
Lower EER in Figure 5 indicates better performance of noisy
forensic speaker verification. It was found that increasing the
number of levels to more than three over the majority of SNR
values degraded the speaker verification performance in the
presence of various types of environmental noise. In this case,
the number of samples in the lowest frequency subbands was
so low that the essential characteristics of the speech signals
could not be estimated accurately by the classifier [23]. Thus,
level 3 is used in the feature extraction based on DWT in the
presence of noise in the next section.



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2728801, IEEE Access

7

-10 -5 0 5 10

SNR

0

5

10

15

20

25

30

35

40

E
E

R
 %

STREET

-10 -5 0 5 10

SNR

0

5

10

15

20

25

30

35

40
CAR

-10 -5 0 5 10

SNR

0

5

10

15

20

25

30

35

40
HOME

Level 2
Level 3
Level 4

Fig. 5: Effect of the decomposition levels on the performance
of fusion feature warping with MFCC and DWT-MFCC in the
presence of noise.
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Fig. 6: Effect of the utterance length on the performance of
fusion feature warping with MFCC and DWT-MFCC in the
presence of noise.

2) Effect of utterance length: In real forensic applications,
long speech samples from a suspected speaker are recorded
in an interview scenario under clean conditions, while the test
speech signal is corrupted by environmental noises and the
duration of the test speech signals is uncontrolled [5], [46].
Thus in this paper, the full duration of the enrolment speech
signals was kept in a clean condition, while the duration of
the test speech signals was changed from 10 sec to 40 sec.
The test speech signals were corrupted with random segments
of STREET, CAR, and HOME noises at SNRs ranging from
-10 dB to 10 dB.

Figure 6 shows the effect of the utterance length on the
performance of fusion feature warping with MFCC and DWT-
MFCC features in the presence of environmental noise. It
is clear that increasing the utterance duration improved the
performance of forensic speaker verification systems in the
presence of STREET, CAR, and HOME noises.

The reduction in EER, when the duration of the test speech
signal increases from 10 sec to 40 sec, can be computed as

EERred =
EER10 sec − EER40 sec

EER10 sec
(10)

where EER10 sec and EER40 sec are the EER of fusion
feature-warped DWT-MFCC and feature-warped MFCC fea-
tures when the duration of the test speech signals is 10 sec
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Fig. 7: Average reduction in EER for fusion feature-warped
DWT-MFCC and feature-warped MFCC features when the
duration of the test speech signals increased from 10 sec
to 40 sec. Higher average reduction in EER indicates better
performance

and 40 sec respectively. The average reduction in EER can
be computed by calculating the mean of EERred for various
types of environmental of noise at each noise level. Figure
7 shows the average reduction in EER for fusion feature
warped DWT-MFCC and feature-warped MFCC features when
the duration of the test speech signal increased from 10 sec
to 40 sec. In 0 dB SNR, the peformance of fusion feature-
warped with DWT-MFCC and feature-warped MFCC features
achieved an average reduction in EER of 17.92% when the
duration of the test speech signals increased from 10 sec to
40 sec.

3) Comparison of feature extraction techniques under noisy
conditions : This experiment evaluated the performance of
combining MFCC and DWT-MFCC features with and without
feature warping in the presence of various levels of envi-
ronmental noise. The full length of enrolment speech signals
was used, while 10 sec of the test speech signals was mixed
with random sessions of STREET, CAR, and HOME noises
at SNRs ranging from -10 dB to 10 dB. Figure 8 shows
a comparison of speaker verification systems using different
feature extraction techniques in the presence of environmental
noise at various SNR values. We conclude the following points
from this figure:

• The performance of forensic speaker verification sys-
tems achieves significant improvements in EER over the
majority SNR values when applying feature warping to
the MFCC features in the presence of various types of
environmental noises (blue solid vs blue dash).

• Fusion of feature warping with MFCC and DWT-MFCC
features achieves greater improvements in EER than
fusion without any feature warping in the presence of
various levels of environmental noises (green solid vs
green dash).

• Fusion feature warping with MFCC and DWT-MFCC
achieves significant improvements in EER over traditional
MFCC features in the presence of various types and levels
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Fig. 8: Comparison of speaker verification system using different feature extraction techniques in the presence of noise.

of environmental noises (green solid vs blue dash). The
reduction in EER for fusion feature warping with MFCC
and DWT-MFCC at 0 dB SNR is 48.28%, 30.27%, and
41.17%, respectively, over MFCC features in the presence
of random sessions of CAR, STREET, and HOME noises.

• Feature warping did not improve the performance of
the forensic speaker verification system when DWT-
MFCC was used as the feature extraction. However, the
performance of speaker verification improves by applying
feature warping to MFCC features (red solid vs blue
solid). The major drawback of using DWT-MFCC (FW)
as the feature extraction is that it lost some important
correlation information between subband features. The
lack of correlation information between subband features
decreases the performance of speaker verification systems
[47].

The reduction in EER for the fusion of feature warping with
MFCC and DWT-MFCC features over feature-warped MFCC
, EERred, can be computed as

EERred =
EERMFCC(FW ) − EERfusion

EERMFCC(FW )
(11)

where EERMFCC(FW ) is the equal error rate for feature-
warped MFCC and EERfusion is the equal error rate for
fusion feature warping with MFCC and DWT-MFCC features.
The average reduction in EER can be computed by calculating
the mean of EERred for various types of environmental noise
at each noise level.

Figure 9 shows average reduction in EER for fusion feature
warping with MFCC and DWT-MFCC over feature-warped
MFCC features in the presence of various types of environ-
mental noise for each noise level. The results show that fusion
feature warping with MFCC and DWT-MFCC achieves a
reduction in average EER over feature-warped MFCC features
in the presence of various types of environmental noise at
SNRs ranging from -10 dB to 10 dB. At 0 dB SNR, the average
reduction in EER for fusion feature-warping with MFCC and
DWT-MFCC over feature-warped MFCC is 21.33%.
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Fig. 9: Average reduction in EER for fusion feature warping
with MFCC and DWT-MFCC over feature-warped MFCC in
the presence of various types of environmental noise. Higher
average reduction in EER indicates better performance

B. Reverberation conditions

This section will describe the performance of speaker verifi-
cation based on the fusion features of MFCC and DWT-MFCC
with and without feature warping under reverberation condi-
tions only. The effect of decomposition level, utterance length,
reverberation time, and position of source and microphone on
the performance of forensic speaker verification will also be
presented in this section.

1) Effect of decomposition level : The effect of the decom-
position level on the performance of fusion feature warping
with MFCC and MFCC-DWT was evaluated by using different
decomposition levels. We computed the impulse response of
a room by using reverberation time (T20= 0.15 sec). The T20
was used instead of T60 in this paper because T20 reduces the
computational time when computing the time reverberation in
a simulated room impulse response [9]. Each of the enrolment
speech signals was convolved with the impulse room response
to generate the reverberated speech, while a 10 sec duration
of the test speech signals was kept in a clean condition. The
first configuration of the room is used in this experiment, as
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Fig. 10: Effect of level decomposition on the performance of
fusion feature warping with MFCC and DWT-MFCC under
reverberation conditions only.

shown in Table I and Figure 1.
In this experiment, we used Daubechies 8 of the DWT

and different decomposition levels (2, 3, and 4) to investigate
the effect of the decomposition levels on the performance of
fusion feature warping with MFCC and DWT-MFCC under
reverberation conditions only. Figure 10 shows the effect of
level decomposition on the performance of fusion feature
warping with MFCC and DWT-MFCC under reverberation
conditions only.

It was found from Figure 10 that level 2 achieves better
improvement in performance than other decomposition levels.
Reverberation often affects low frequencies more than high
frequencies, since the materials used in the most popular
rooms are less absorptive at low frequencies, leading to
longer reverberation times and more distortion of the spectral
information at those frequencies [25]. Thus, the performance
of speaker verification in reverberation environments improved
by increasing the number of coefficients at a low frequency
using two levels of decomposition.

2) Effect of reverberation time: This experiment evaluated
the effect of reverberation time on the performance of fusion
feature warping with MFCC and DWT-MFCC (level 2) by
using different reverberation times. We computed the impulse
response of the room by using the following reverberation
times: T20= 0.15 sec, 0.20 sec, and 0.25 sec. Each impulse
room response matrix was convolved with enrolment speech
data to generate reverberated enrolment data at different re-
verberation times, while a 10 sec duration of the test speech
signals was maintained in a clean condition. The first configu-
ration of the room was also used in this experiment, as shown
in Table I and Figure 1.

Figure 11 shows the effect of reverberation time on the
performance of fusion feature warping with MFCC and DWT-
MFCC. The performance of speaker verification was degraded
by increasing the reverberation time. There was a degradation
of 34.42% in the performance of fusion feature warping
with MFCC and DWT-MFCC when the reverberation time
increased from 0.15 sec to 0.25 sec. The reverberation adds
more inter-frame distortion to the cepstral features when
the reverberation time was increased. Therefore, increasing
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Fig. 11: Effect of reverberation time on the performance of
fusion feature warping with MFCC and DWT-MFCC.

the reverberation time leads to decreased speaker verification
performance [48].

3) Comparison of feature extraction techniques under re-
verberation conditions: The performance of i-vector speaker
verification was evaluated using various feature extraction
techniques in the presence of reverberation, as shown in Figure
12. The enrolment of the speech signals was reverberated
at 0.15 sec reverberation time, while a 10 sec portion of
the test speech signals was kept in a clean condition. The
first configuration of the room was used in this experiment,
as shown in Table I and Figure 1. It was found from Fig-
ure 12 that fusion feature warping with MFCC and DWT-
MFCC features (level 2) improves the performance of speaker
verification over other feature extraction techniques and it
achieves a reduction in EER of 20.00% over feature-warped
MFCC. The performance of forensic speaker verification under
reverberation conditions achieved significant improvements in
EER when feature warping was applied to MFCC features.
The performance of speaker verification based on the subband
features (DWT-MFCC and DWT-MFCC (FW)) degraded in
the presence of reverberation because of subband features lost
some important information between subband features.

4) Effect of utterance duration: We investigated the effect
of varying utterances duration on the i-vector PLDA speaker
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Fig. 12: Comparison of speaker verification performance using
different feature extraction techniques in the presence of
reverberation.
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Fig. 13: Effect of test utterance duration on the performance
of fusion feature-warping with MFCC and DWT-MFCC under
reverberation conditions.
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Fig. 14: Effect of configuration microphone and source po-
sitions on the performance of fusion feature warping with
MFCC and DWT-MFCC features

verification systems in the presence of reverberation conditions
only. In this experiment, we reverberated the full duration
of the enrolment speech signal at 0.15 sec using the first
configuration of the room described in Table I and Figure 1,
while the duration of the test speech signals was changed from
10 sec to 40 sec.

Figure 13 shows the effect of test utterance duration on
the performance of fusion feature warping with MFCC and
DWT-MFCC (level 2) in the presence of reverberation con-
ditions only. The results show that as the utterance length
increases, the performance of fusion feature warping with
MFCC and DWT-MFCC improves. The reduction in EER is
approximately 46.04% when the duration of the test speech
signals increased from 10 sec to 40 sec.

5) Effect of source and microphone position : In this
experiment, the enrolment speech signals reverberated at 0.15
sec, while 10 sec of test speech signals was kept in clean
conditions. The position of the source signals was not changed
and four different positions of the microphone were used to
investigate the effect of source/ microphones position on the
performance of fusion feature warping with MFCC and DWT-
MFCC (level 2). The configuration of source/ microphones
used in these experimental results is shown in Table I and
Figure 1.
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Fig. 15: Effect of the decomposition levels on the performance
of fusion feature warping with MFCC and DWT-MFCC in the
presence of reverberation and various types of environmental
noises.

Figure 14 shows the effect of microphone/ source positions
on the performance of fusion feature warping with MFCC
and DWT-MFCC. The results demonstrate that changing the
distance between the source and microphone affects the per-
formance of fusion feature warping with MFCC and DWT-
MFCC. Configuration 2, which has the shortest distance
between the source and microphone, achieved the highest
improvement in EER compared with other configurations. The
performance of fusion feature warping with MFCC and DWT-
MFCC decreased when the distance between the source and
microphone increased.

C. Noisy and reverberation conditions

The performance of fusion feature warping with MFCC
and DWT-MFCC was evaluated and compared with speaker
verification based on traditional MFCC and feature-warped
MFCC under noisy and reverberation conditions. The effect of
level decomposition and utterance length will also be discussed
in this section.

1) Effect of decomposition level on noisy and reverberation
conditions: The effect of the decomposition level on the
performance of fusion feature warping with MFCC and DWT-
MFCC was evaluated using Daubechies 8 of DWT and differ-
ent levels (2, 3, 4, and 5). The full duration of the enrolment
speech signals reverberated at 0.15 sec. Ten seconds of the test
speech signals was corrupted with different segments of CAR,
STREET, and HOME noises from the QUT-NOISE database
[28] at SNRs ranging from -10 dB to 10 dB.

Figure 15 shows the effect of the decomposition levels
on the performance of fusion feature warping with MFCC
and DWT-MFCC in the presence of reverberation and various
types of environmental noises. It is clear that level 4 achieves
better performance in EER over the majority of SNR values
and different types of environmental noises.

2) Comparison of feature extraction techniques under
noisy and reverberation conditions: This section compares
the performance of fusion feature warping with MFCC and
DWT-MFCC (level 4) with traditional MFCC and feature-
warped MFCC in the presence of reverberation and different
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Fig. 16: Comparison of speaker verification performance using
different feature extraction techniques in the presence of
environmental noise and reverberation conditions

types of environmental noise. In these experimental results, the
enrolment speech signals reverberated at 0.15 sec and 10 sec
of the test speech signals was mixed with different sessions
of CAR, STREET, and HOME noises at SNRs ranging from
-10 dB to 10 dB. The first configuration of the room is used
in this experiment, as shown in Table I and Figure 1.

Figure 16 shows comparison of speaker verification per-
formance using different feature extraction techniques in the
presence of environmental noise and reverberation conditions.
Overall, the results show that fusion feature warping with
MFCC and DWT-MFCC achieves improvements in EER over
feature-warped MFCC, when the test speech signals were cor-
rupted with random segments of STREET, CAR, and HOME
noises at various SNR values. The results also demonstrate
that feature-warped MFCC achieved significant improvements
in EER compared with traditional MFCC.

The average reduction in EER for fusion feature warping
with MFCC and DWT-MFCC over feature-warped MFCC
features was computed by calculating the mean of the EER
reduction for various types of environmental noise at each
noise level in the presence of reverberation, as shown in Figure
17. The results demonstrate that the performance of fusion
feature warping with MFCC and DWT-MFCC outperforms
feature-warped MFCC in average reduction of EER at SNRs
ranging from -10 dB to 10 dB. At 0 dB SNR, the average
reduction in EER of fusion feature warping with MFCC
and DWT-MFCC is 13.28% over feature-warped MFCC in
the presence of various types of environmental noise and
reverberation conditions.

3) Effect of utterance length: In order to evaluate the
effect of utterance length on the performance of fusion feature
warping with MFCC and DWT-MFCC in the presence of
environmental noise and reverberation conditions, we mixed
random sessions of STREET, CAR, and HOME noises from
the QUT-NOISE database [28] with 10, 20, and 40 seconds
from the test speech signals. The full duration of the enrolment
speech signals was reverberated at 0.15 sec without adding
environmental noises.

Figure 18 shows the effect of utterance length on the perfor-
mance of fusion feature warping with MFCC and DWT-MFCC
features (level 4) in the presence of noise and reverberation
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Fig. 17: Average reduction in EER for fusion feature warping
with MFCC and DWT-MFCC over feature-warped MFCC in
the presence of various types of environmental noise and
reverberation conditions. Higher average reduction in EER
indicates better performance
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Fig. 18: Effect of utterance length on the performance of
fusion feature warping with MFCC and DWT-MFCC in the
presence of noise and reverberation conditions

environments. It was found that the performance of speaker
verification under noisy and reverberation conditions improved
when the duration of the test speech signal increases from
10 sec to 40 sec at various types and levels of environmental
noise. The average reduction in EER for fusion feature-warped
DWT-MFCC and feature-warped MFCC features was 26.51 %
when the duration of the test speech signals increased from
10 sec to 40 sec in the presence of reverberation and various
types of environmental noise at 0 dB SNR as shown in Figure
19 .

VII. CONCLUSION

This paper introduced the use of DWT-based MFCC fea-
tures and their combination with traditional MFCC features
for forensic speaker verification. It evaluated the performance
of these features with and without feature warping. A state-of-
the-art i-vector PLDA based speaker verification was used as
a classifier in this paper. The performance of i-vector speaker
verification has been evaluated in the presence of environ-
mental noise only, reverberation, and noisy and reverberation
conditions. Experimental results indicate that the fusion feature
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Fig. 19: Average reduction in EER for fusion feature-warped
DWT-MFCC and feature-warped MFCC features when the
duration of the test speech signals increased from 10 sec to
40 sec in the presence of reverberation and various types of
environmental noises.

warping DWT-MFCC and feature-warped MFCC approach
achieved better performance under most environmental noise,
reverberation, and noisy and reverberation environments. The
robustness in the performance of the fusion feature approach
could be used in forensic applications. In future work, we will
evaluate the performance of the fusion feature approach using
other databases such as NIST 2010 and the performance will
also be evaluated using reverberation used in the QUT-NOISE
database.
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