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Abstract—Probabilistic estimation using graphical models
plays an important role in today’s intelligent and autonomous
systems. This paper summarizes our work on robust probabilistic
estimation using such models. This robustness, i.e. the algorithmic
fault-tolerance in the presence of outliers is crucial for any
autonomous system aiming at long-term operation. We show
how probabilistic estimation using factor graphs can be made
tolerant against outliers in the underlying data and demonstrate
the feasibility of the proposed generic scheme in the domains of
SLAM and satellite-based localization.

I. INTRODUCTION

Autonomous systems aiming at long-term operation have
to be fault-tolerant. This does not only apply to the hardware
and the mechanical design of an autonomous system, but of
course to its software and algorithms as well. Fault-tolerant or
robust algorithms in this sense are methods that can cope with
unmodelled effects, inadequacies and errors in the underlying
data without breaking or diverging. Probabilistic estimation
based on optimization (i.e. least squares methods) has become
a widespread tool in many different domains in autonomous
robotics (e.g. [6, 14]). At the same time, however, it is well-
known that least squares optimization suffers from an inherent
vulnerability against outliers. It is therefore worthwhile to
explore how the robustness and outlier tolerance of such
algorithms can be improved in order to increase the overall
system’s performance and capabilities.

In the following, we shortly review the concept of factor
graphs and how they can be used to represent different kinds
of probabilistic estimation problems. We then point out the
problem of the lacking robustness against outliers before the
proposed generic approach for robust estimation is explained
and results the domains of SLAM and GNSS-based localiza-
tion are presented.

II. FACTOR GRAPHS

Factor graphs are bipartite undirected graphs and have been
proposed by [5] as a general tool to model factorizations of
large functions with many variables into smaller local subsets.
The idea can be applied to general probabilistic estimation
problems where the joint conditional probability distribution
one wants to estimate can be expressed as a product over
several single factors. These factors are formed according
to the dependency structure between the hidden variables
X and the given evidence Z (e.g. measurements or a-priori

knowledge):
P (X|Z) =

∏
i

Pi(X̄i|Z̄i) (1)

where X̄i ⊆ X and Z̄i ⊆ Z are arbitrary subsets of X and Z
respectively.

Since factor graphs are bipartite, they contain two sets of
nodes: one for the hidden variables and the other for the
probabilistic relations (the factors) between them.

A. Finding the Maximum a Posteriori Solution

The maximum a posteriori (MAP) estimate of the distribu-
tion P (X|Z), i.e. the most likely variable configuration X ∗
given the data Z , is formalized as an optimization problem of
the form

X ∗ = argmax
X

P (X|Z) = argmax
X

∏
i

Pi(X̄i|Z̄i) (2)

If the single factors Pi are Gaussian, they are of the general
form

Pi(X̄i|Z̄i) = η exp−1

2
‖ei(X̄i, Z̄i)‖2Σi

(3)

where ei(X̄i, Z̄i) is a problem-specific error function. Using
this relation and taking the negative logarithm, we can trans-
form (2) into

X ∗ = argmin
X

∑
i

‖ei(X̄i, Z̄i)‖2Σi
(4)

which is a least squares optimization problem, since we seek
the minimum over a sum of squared terms. Such problems
can be solved efficiently using a variety of methods like
Levenberg-Marquardt, Gauss-Newton or Powell’s Dog-Leg.

B. Factor Graphs for SLAM and Localization

1) Pose Graph SLAM: As an example, in pose graph
SLAM the set of robot poses X is to be estimated given
the control inputs U and loop closure detections. This can
be factored into the following expression, where loop closures
are represented by a factor between non-successive robot state
nodes:

P (X|U) =
∏
i

P (xi+1|ui,xi)︸ ︷︷ ︸
Odometry Constraints

·
∏
ij

P (xj |xi,uij)︸ ︷︷ ︸
Loop Closure Constraints

(5)
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Fig. 1: Factor graph representation of the pose graph SLAM prob-
lem. The large vertices represent the unknown robot poses, while
probabilistic relationships between them are expressed by the small
vertices. Odometry factors are represented by blue nodes while the
loop closure factor is shown in green.

The associated factor graph representation is illustrated in Fig.
1. For illustrative purposes, the variable nodes are always
depicted larger than the factor nodes between them.

The maximum a posteriori solution to the distribution rep-
resented by the graph is found according to

X∗ = argmin
X

∑
i

‖f(xi,ui)− xi+1‖2Σi︸ ︷︷ ︸
Odometry Constraints

+
∑
ij

‖f(xi,uij)− xj‖2Λij︸ ︷︷ ︸
Loop Closure Constraints

(6)

2) GNSS-based Localization: In GNSS1-based localization,
the position of a vehicle is to be estimated from the pseudo-
range observations to satellites orbiting the earth. The state
space in this problem contains at least the 3D position of the
vehicle and the receiver clock error, leading to a state space
that is at least 4-dimensional: x ∈ R4 = (x, y, z, δclock)T .

Several satellites are observed from every vehicle state
xt, each providing a pseudorange measurement ρtj . Given
the receiver position xx,y,zt and the position of the observed
satellite xSAT

tj , the expected pseudorange measurement is given
by the measurement function

h(xt, j) = ‖xSAT
tj − xx,y,zt ‖+ δEarthRotation + δAtmosphere + xδ

clock

t

(7)
The terms δEarthRotation and δAtmosphere correct ranging effects
caused by the earth’s rotation and atmosphere (ionospheric
and tropospheric propagation errors).

If we assume the measured pseudorange ρtj is given by
the measurement function h(xt, j) plus a zero-mean Gaussian
error term, then the error function of a single pseudorange
factor is given as

‖epr
tj‖

2
Σtj

= ‖h(xt, j)− ρtj‖2Σtj
(8)

with Σtj the covariance associated to the pseudorange mea-
surement ρtj . We can now solve for the maximum a posteriori
estimates of the vehicle states X = {xt}:

X∗ = argmin
X

∑
tj

‖epr
tj‖

2
Σtj

(9)

Any additional factors that account for further measure-
ments and sensor data can be easily incorporated by extending

1Global Navigation Satellite System
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Fig. 2: Two vehicle state nodes with their associated pseudorange
factors (green) in the GNSS-based localization problem. (a) in the
most general graphical model, there are no connections between the
vehicle state nodes. In (b), a state transition or motion model factor
joins two successive vehicle nodes.

the error function. For instance to incorporate state transition
or motion model factors, we solve

X∗ = argmin
X

∑
tj

‖epr
tj‖

2
Σtj

+ ‖est
t ‖2Σst

t
(10)

and so forth. Fig. 2 illustrates the resulting factor graph
representations with and without state transition factors.

III. OUTLIERS IN FACTOR GRAPHS

The last section provided a condensed introduction to factor
graphs and how they are a convenient representation for
probability distributions. The maximum a posteriori (MAP)
estimate of that distribution can be found by solving the least
squares optimization problem stated in (4). The single terms
ei that constitute the error function are built and maintained
by an application-dependent front-end.

Let us now consider that some of these ei that were
created by the front-end, are outlier constraints. That is, the
optimization problem consists of inlier constraints and outlier
constraints which cannot be distinguished beforehand.

Where could these outliers originate from? In the context of
pose graph SLAM, outlier constraints typically are false pos-
itive loop closure detections. That means, due to perceptional
aliasing, i.e. self similarity of the environment, the place recog-
nition module in the front-end fails and erroneously declares a
loop closure between two places that do not correspond. This
typically results in heavily distorted and unusable maps. In
the context of GNSS-based localization, so called multipath
satellite observations constitute the outliers. These multipath
measurements arise when the direct line of sight to a satellite is
blocked by a building, but the signal is received via a reflection
on buildings or the ground. The signal path therefore is longer
than the non-reflected direct path. This results in severely
biased position estimates. Multipath errors can also occur
when the signal is received multiple times, e.g. via the direct
line of sight but also via a reflection. In this case, correlation
errors lead to wrong pseudorange measurements that again
negatively influence the resulting position estimate. In general,
the reasons for outliers are dependent on the problem domain
and the techniques applied in the front-end. They usually occur
due to data association errors or unmodelled effects or wrong
or over-simplified assumptions on the data.



A. Dealing with Outliers – Related Work

The well known vulnerability of least squares methods
against outliers has of course led to a number of approaches
that are commonly found in the literature. In the domain
of model-fitting, regression and the like, sample consensus
methods like RANSAC [1], M-SAC or MLESAC [13] are state
of the art, along with more recent developments. Such methods
however cannot always be applied, since there might not be a
well-defined minimal set to solve the problem at hand.

A better alternative seem to be so called robust cost func-
tions like the Huber [4], pseudo-Huber or Blake-Zisserman
[3, ch. A6.8] functions. Although such approaches reduce the
influence of outliers on the optimization, we found they are not
sufficient to cope with severe outliers like false positive loop
closure constraints in SLAM or multipath errors in GNSS-
based localization [10, 11].

IV. ROBUST OPTIMIZATION FOR PROBABILISTIC
ESTIMATION

In order to make the optimization problem (4) robust against
outliers in the problem formulation, we propose the following
approach. Our general idea is to make the topology of the
factor graph partially variable and subject to the optimization.
This way, constraints can be removed from the problem
formulation as part of the optimization process.

This is achieved by augmenting the original optimization
problem (4) by a new set of hidden variables. In addition to
X ∗, which is the most likely configuration of variables given
the evidence Z according to the MAP estimate, the augmented
problem also estimates a set of so called switch variables S.

Each switch variable si ∈ R is associated with a constraint
ei that could potentially be an outlier. As we are going to see,
each switch variable si determines whether the associated ei is
removed from the optimization problem, or if it is maintained.
The switch variable exercises this influence on the constraint
via a multiplicative switch function Ψ : R→ [0, 1].

The original optimization problem in (4) in its augmented
form is given as:

X ∗, S∗ = argmin
X

∑
i

‖Ψ(si) · ei‖2Σi︸ ︷︷ ︸
switched constraints

+
∑
i

‖esp
i ‖

2
Ξi︸ ︷︷ ︸

switch prior constraints
(11)

Different switch functions Ψ can be defined, e.g. a step
function, or a sigmoid. However, our experiments showed that
a simple piecewise linear function of the form

ωi = Ψlin
a (si) : R→ [0, 1] =


0 : si < 0
1
asi : 0 ≤ si ≤ a
1 : si > a

(12)

with parameter a = 1 is a suitable choice and superior to the
previously proposed sigmoid function [11, 10].

The idea behind the switch variables is that the influence
of a constraint ei can be removed by driving the associated
switch variable si to a value so that Ψ(si) ≈ 0.

The influence of the switch variables can be described and
understood in two equivalent ways [10, 11]: In the topological
interpretation, a switch can enable or disable the constraint
edge it is associated with, thus literally remove it from the
graph topology. In the probabilistic interpretation, the switch
variable influences the information matrix of the factor it is
associated with and can drive it from its original value to zero,
thus increasing the covariance associated with this factor until
infinity. The resulting information matrix Σ̂

−1

i is given as

Σ̂
−1

i = Ψ(sij)
2 ·Σ−1

i (13)

The switch prior constraints ‖esp
i ‖2Ξi

in (11) are necessary
to anchor the switch variables at their initial values. Since it
is reasonable to initially accept all constraints proposed by
the front-end, a proper and convenient initial value for all
switch variables would be si = 1 when using the linear switch
function Ψlin

a . For the following, we call these initial values
γi. Like any other variable or observation in our probabilistic
framework, the switch variables si are modelled as normally
distributed Gaussian variables. The initial value is used as
mean of the distribution, so that si ∼ N (γi,Ξi). Notice that
a proper value for the switch prior covariance Ξi has to be
determined. This value is a free parameter of the proposed
robust back-end formulation. It has been shown in [10, ch.
6.4] that Ξi can be safely chosen from a range of values,
independent of the problem domain or the underlying data.
For all conducted experiments, we set Ξi = 1.

V. DISCUSSION

Before we apply the proposed scheme of robust probabilistic
estimation to two different domains and present results, we
want to shortly discuss the implications that arise from it with
respect to the size and hardness of the optimization problem.

First of all notice that it is not necessary to provide a switch
variable for every constraint in the optimization problem. In
fact, this should be avoided. Instead, a switch variable should
only be associated to those constraints that can potentially
be outliers. E.g. in the context of SLAM, each loop closure
constraint should be associated with a switch variable, while
odometry constraints might go safely without them.

a) Influence on the Problem Size: Obviously, the pro-
posed robustified problem formulation significantly enlarges
the original optimization problem. For each potential outlier
constraint present in the original problem, another variable and
an associated prior factor are added to the problem. However,
given today’s efficient solvers that exploit the sparseness of the
optimization problem, the size of the problem (i.e. the number
of variables and constraints) is not the most crucial factor that
determines the runtime behaviour. By far more important is
the sparse structure of the system’s Jacobian.

b) Influence on the Sparseness of the Problem: The ini-
tial sparse structure of the optimization problem is not changed
by the additional switch variables and their prior factors. This
is clear because each of the switch variables governs only one
constraint edge. The overall Jacobian of the proposed robust
problem formulation remains sparse. The resulting Hessian



TABLE I: The datasets used during the evaluation.

Dataset synthetic / real 2D/3D Poses Loop
Closures

Manhattan (original) synthetic 2D 3500 2099
Manhattan (g2o version) synthetic 2D 3500 2099
City10000 synthetic 2D 10000 10688
Sphere2500 synthetic 3D 2500 2450
Intel real 2D 943 894

remains sparse as well which is expressed in the sparse
interconnectivity of the problem’s graph representation [10].

VI. ROBUST ESTIMATION FOR POSE GRAPH SLAM

Following the scheme laid out above, we augment the
original pose graph SLAM problem in order to make it robust
against false positive loop closure constraints. Our proposed
problem formulation for robust pose graph SLAM is:

X∗, S∗ = argmin
X,S

∑
i

‖f(xi,ui)− xi+1‖2Σi︸ ︷︷ ︸
Odometry Constraints

+
∑
ij

‖Ψ(sij) · (f(xi,uij)− xj) ‖2Λij︸ ︷︷ ︸
Switched Loop Closure Constraints

+
∑
i,j

‖γij − sij‖2Ξij︸ ︷︷ ︸
Switch Prior Constraints

(14)

Fig. 3 illustrates the factor graph corresponding to this
problem formulation. Notice that only the loop closure con-
straints have been augmented to switched constraints, while
the odometry constraints remain unchanged.

In order to show the versatility and general feasibility of
the proposed approach, a number of different datasets were
used for the evaluation. Table I lists and summarizes their
important properties. These datasets are pose graphs consisting
of odometry measurements and loop closure constraints. They
are free of outliers, i.e. all loop closure constraints are correct.
To evaluate and benchmark the robust back-end, the datasets
are spoiled by additional, wrong loop closure constraints.
That means, loop closure constraints which do not connect
corresponding poses and thus are outliers are added to the
dataset, following different policies to simulate a realistic
distribution of false positives. These four outlier policies added
the outlier constraints either totally at random, in groups of 20,
only locally, or in groups of local constraints. Given the spoiled
datasets, the performance of the robust back-end was evaluated
by comparing the resulting trajectory against the ground truth
solution. The relative pose error RPE [7] was chosen as an
error metric.

Fig. 4 compares the RPE of the proposed robust back-end
to that of the non-robust state of the art formulation (solved by
g2o [6]) for all datasets and different numbers of outliers. The
robust back-end performs orders of magnitudes better, since
the state of the art approach is not able to cope with outliers,
despite being supported by the Huber cost function [4]. This

Fig. 3: Factor graph representation of the robustified pose graph
SLAM formulation evaluated in this paper. Individual robot pose
nodes are connected by odometry factors (blue). The switch variable
s2,i governs the loop closure factor (yellow). Depending on the value
assigned to the switch variable sij , the loop closure factor is gradually
activated or deactivated as part of the optimization process. The
switch variable is governed by a prior factor (black) that penalizes
the deactivation of loop closures.
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Fig. 4: Comparison of RPE measures between the proposed robust
(solid line) and the state of the art non-robust back-ends (dashed).
Notice how the robust solution is up to two orders of magnitude
more accurate for large numbers of outliers and stays constant,
independently of the amount of outliers. The non-robust solution was
supported by the Huber cost function, as proposed in [2].

is also illustrated in Fig. 5 that compares the robust and non-
robust solutions for two trials on the Manhattan world dataset.

Table II summarizes the results for the different datasets.
The minimum, maximum, and median RPEpos measures are
listed, as well as a success rate which measures the percentage
of correct solutions.

We see that the overall success rates are very high. In total,
from all 2500 trials, only two failed, leading to success rates
equal or close to 100%. We want to remark that the two failure
cases for the original Manhattan dataset and for the sphere
world dataset could be successfully resolved by using the
Huber cost function in combination with the proposed back-
end. If we allow this further extension (which comes at the

TABLE II: Overall RPEpos metric for the different datasets, with 0
to 1000 outliers using all policies and 500 trials per dataset.

Dataset
max
outl.
ratio

min
RPEpos

max
RPEpos

median
RPEpos

success
rate

Manhattan (g2o ) 47.6% 0.0009 0.0009 0.0009 100%
Manhattan (orig.) 47.6% 0.0009 5.9659 0.0009 99.8%
City10000 9.4% 0.0005 0.0005 0.0005 100%
Sphere2500 40.8% 0.0953 18.1674 0.0964 99.8%
Intel 111.9% 0.2122 0.2147 0.2132 100%



Fig. 5: Exemplary results on the Manhattan world dataset. 100 false
positive loop closure constraints have been added in groups of 20
(left) or totally at random (right). In both cases, the proposed robust
back-end converges to a correct solution (red), while current the state
of the art back-ends like g2o produce an unusable map (blue), despite
being supported by the Huber robust cost function. Ground truth is
shown in green for comparison, the deactivated false positive loop
closures are visible in grey.

(a) (b)

Fig. 6: (a) A vehicle state vertex with three switched pseudorange
factors espr (green), the associated switch variables and their prior
factors esp (black). (b) Illustration of the most complex factor graph
used in this paper: The switch variables are connected by switch
transition factors eswt (yellow) and the state transition factors est

(blue) connect the state vertices.

cost of slower convergence, due to the partially linear cost
function), we can conclude that a success rate of 100% was
reached.

VII. ROBUST ESTIMATION FOR GNSS-BASED
LOCALIZATION

Applying the same approach of robust estimation to the
problem of GNSS-based localization, we gain the augmented
switched pseudorange factor as

‖espr
tj ‖

2
Σtj

= ‖Ψ(stj) · (h(x, j)− ρtj)‖2Σtj
(15)

and together with the switch prior constraint defined as in (14),
this leads to the extended robust problem formulation:

X∗, S∗ = argmin
X

∑
tj

‖espr
tj ‖

2
Σtj

+ ‖esp
tj‖

2
Ξtj

(16)

Fig. 6(a) illustrates this extended formulation for a single vehi-
cle state variable. Notice how each pseudorange measurement
is associated with its own switch variable.

In contrast to the switch variables in the pose graph SLAM
problem, the switch variables in the GNSS-based localization
problem are not independent: If a satellite j is observed from
two successive vehicle locations xt−1 and xt, then stj is
likely to be equal to st−1,j . We can capture this conditional
dependence and model P (sij |st−1,j) as a Gaussian with

P (stj |st−1,j) ∼ N
(
st−1,j ,Σ

swt
tj

)
(17)

which leads us to the switch transition factor

‖eswt
tj ‖2Σswt

tj
= ‖stj − st−1,j‖2Σswt

tj
(18)

that can be easily incorporated as an additional factor into
the overall optimization problem. Using the switch transition
factors, we would solve

X∗ = argmin
X

∑
tj

‖espr
tj ‖

2
Σtj

+ ‖esp
tj‖

2
Ξtj

+ ‖eswt
tj ‖2Σswt

tj
(19)

for the maximum a posteriori estimate of X . More factors (e.g.
a motion model) can be incorporated in the same convenient
way, as illustrated in Fig. 6(b).

A. Results and Evaluation

The necessary data for the evaluation was collected in the
city center of Chemnitz, Germany, using the Carai concept
vehicle [9]. The vehicle was driven over a road junction several
times, where severe multipath effects regularly occur due to
nearby high buildings. Among other sensor systems, the Carai
vehicle is equipped with a high-precision differential GPS
and inertial measurement unit that allows to determine the
vehicle’s position with a precision of 2 cm. The position
estimates of this high-precision unit were used as ground
truth for the following analysis. In addition to the high-
precision GPS unit, a consumer-class device (ublox LEA4)
provided the pseudorange measurements that served as inputs
for the optimization framework. To compare the estimation
results with the ground truth provided by the high-precision
GPS and IMU-devices from the Carai vehicle, the RMSE
metric was used. Furthermore, we compare the solution of the
robust optimization against a raytracing approach for multipath
detection [8].

The best results are achieved when combining the three
proposed factors for the switched pseudorange espr, the switch
transition eswt, and the vehicle state transition est. Fig. 7
shows the RMSE for each vehicle pose for the proposed
robust estimation, the conventional least squares method and
the raytracing approach of [8]. The resulting trajectories for
the robust and the conventional non-robust estimate can be
compared in Fig. 8.

As we can see, our proposed robust optimization approach
converges towards much better position estimates since it
is able to detect and reject multipath measurements during
the optimization process. It does not require an additional
pre-processing step or additional knowledge or models of
the environmental structure or the surrounding buildings. It
outperforms the conventional non-robust least squares solution
but also a sophisticated and computationally involved raytrac-
ing approach for multipath detection. Further details on the
application of the proposed robust estimation scheme can be
found in [10, 12].

VIII. CONCLUSIONS

We presented a generic scheme for robust, optimization-
based probabilistic estimation and demonstrated its feasibility
in two very different domains where the proposed method
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Fig. 7: RMSE metric compared for the proposed robust optimiza-
tion (red), the conventional least squares (blue) and the raytracing
method of [8] (black). Notice that the errors of the proposed robust
optimization are constantly low while the other two approaches
show significant spikes where the position estimation failed due to
unhandled multipath effects.
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Fig. 8: Estimated vehicle trajectory in an urban scenario. While the
conventional estimate (blue) based on the pseudorange readings from
a consumer-class GPS receiver is extremely biased due to multipath
errors, the robust estimation method proposed in this paper is able to
detect and reject these outlier observations. The resulting trajectory
estimate (red) is much closer to the ground truth (green).

outperformed non-robust state of the art approaches. Applying
fault-tolerant estimation algorithms that can cope with the
inevitable outliers and data association errors of the front-end
is a key technique to reliable and safe long-term autonomy in
real-world applications.

An implementation of the approach for g2o along with the
SLAM datasets used in the evaluation will be made available
to the community at our website (http://www.tu-chemnitz.de/
etit/proaut/forschung/robustSLAM.html.en).
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[7] Rainer Kümmerle, Bastian Steder, Christian Dornhege,
Michael Ruhnke, Giorgio Grisetti, Cyrill Stachniss, and
Alexander Kleiner. On Measuring the Accuracy of
SLAM Algorithms. Auton. Robots, 27:387–407, 2009.
doi: 10.1007/s10514-009-9155-6.

[8] Marcus Obst, Sven Bauer, and Gerd Wanielik. Ur-
ban Multipath Detection and Mitigation with Dynamic
3DMaps for Reliable Land Vehicle Localization. In
IEEE/ION PLANS, 2012.

[9] Robin Schubert, Eric Richter, Norman Mattern, Philipp
Lindner, and Gerd Wanielik. A concept vehicle for
rapid prototyping of advanced driver assistance systems.
In Advanced Microsystems for Automotive Applications
2010, pages 211–219. Springer, 2010.

[10] Niko Sünderhauf. Robust Optimization for Simultaneous
Localization and Mapping. PhD thesis, Chemnitz Uni-
versity of Technology, 2012. URL http://nbn-resolving.
de/urn:nbn:de:bsz:ch1-qucosa-86443.

[11] Niko Sünderhauf and Peter Protzel. Towards a Robust
Back-End for Pose Graph SLAM. In Proc. of IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2012.

[12] Niko Sünderhauf, Marcus Obst, Gerd Wanielik, and Peter
Protzel. Multipath Mitigation in GNSS-Based Local-
ization using Robust Optimization. In Proc. of IEEE
Intelligent Vehicles Symposium (IV), 2012.

[13] P. Torr and A. Zisserman. Mlesac: A new robust
estimator with application to estimating image geometry.
Computer Vision and Image Understanding, 78:138–156,
2000.
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