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Correction of blink artifacts using independent
component analysis and empirical mode decomposition
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Abstract

Blink-related ocular activity is a major source of artifacts in electroencephalogram (EEG) data. Independent com-

ponent analysis (ICA) is a well-known technique for the correction of such ocular artifacts, but one of the limitations of

ICA is that the ICs selected for removal contain not only ocular activity but also some EEG activity. Straightforward

removal of these ICsmight, therefore, lead to a loss of EEGdata. In this article amethod is proposed to separate blink-

related ocular activity from actual EEG by combining ICA with a novel technique, empirical mode decomposition.

This combination of two techniques allows for maximizing the retention of EEG data and the selective removal of the

eyeblink artifact. The performance of the proposed method is demonstrated with simulated and real data.

Eyeblinks constitute a major source of artifacts in electroen-
cephalographic (EEG) recordings. This is primarily caused by

the movement of the eyelids over the eyeball despite the lack of
any concomitant movement of the eyeball (Matsuo, Peters, &
Reilly, 1975). It is suggested that the eyeball forms an electric

dipole and the eyelid acts as a sliding potential source; therefore
the movement of eyelids over eyeballs causes potential shifts and
contaminates EEG signals (Berg & Scherg, 1991). In general, the
eyeblink artifacts are characterized by a larger amplitude and a

lower frequency than the true EEG, with a fronto-polar distri-
bution of activity that gradually declines toward posterior elec-
trode positions; indeed, blink-related artifact amplitude is

inversely proportional to the square of the distance (Croft &
Barry, 2000). A commonway to remove these artifacts is to reject
blink-contaminated epochs. However, a disproportionate num-

ber of trials might be discarded this way; not only are task-rel-
evant neural responses thrown away but the power of statistical
tests might also be severely reduced. A practical alternative to the
rejection of artifact-laden epochs is the procedure of artifact

correction, whereby the epochs are ‘‘cleaned’’ by eliminating the
blink artifacts; various methods have been designed and com-
pared to this end (see, for details, Croft & Barry, 2000; Croft,

Chandler, Barry, Cooper, & Clarke, 2005; Hoffmann & Fal-
kenstein, 2008; Ille, Berg, & Scherg, 2002; Joyce,Gorodnitsky, &
Kutas, 2004; Picton et al., 2000). One popular class of ocular

artifact correction methods is based on regression in the time
domain, that is, a proportion of the electro-oculographic (EOG)
recording is ‘‘subtracted’’ from each scalp electrode (Gratton,

Coles, & Donchin, 1983; Quilter, MacGillivray, & Wadbrook,

1977; Schlogl et al., 2007). Another popular method for ocular
artifact correction is based on blind source separation, usually by

means of independent component analysis (ICA), which is based
on the assumption that the blink artifact is represented by a
limited number of independent components (ICs). Once identi-

fied, these ICs can be selectively removed during the inverse ICA
transformation to yield the clean data (Jung et al., 2000; Vigario,
1997).

A potential problem using these methods, albeit one often over-

looked, is that both the recorded EOG signals and the ICs selected
for removal will contain some EEG data in addition to the blink
artifacts (Castellanos &Makarov, 2006; Frank & Frishkoff, 2007).

So, using this method to correct blink artifacts is likely to result in
the loss of some true EEG data as well (Barbati, Porcaro, Zappa-
sodi, Rossini, & Tecchio, 2004; Ille et al., 2002; Joyce et al., 2004).

In this article, a novel method is proposed for the correction
of blink artifacts that aims to separate these artifacts from the
EEG data, resulting in a more exclusive removal of the artifact
and therefore ensuring a better reconstruction of EEG data from

the artifact-contaminated epochs. Essentially, this method con-
sists of three steps: (1) transforming the original data into ICs, (2)
performing an empirical mode decomposition (EMD; Huang et

al., 1998) of the ICs containing blink artifacts, and (3) classifying
the intrinsic mode functions (IMFs) obtained by means of EMD
as either blink or EEG and selectively removing the blink-related

intrinsic modes. These three steps can be performed automati-
cally. In the following sections the proposed method is presented
and its performance in removing blink artifacts is demonstrated

using simulated and real data.

Selectively Removing Blink Artifacts Using ICA and EMD

The first step in the proposed method is to transform the data by
means of ICA. The underlying assumption of the ICA is that the
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signals recorded at each electrode position are linear mixtures of
a number of sources with an independent time course. The aim of
ICA is to find a set of spatial filters that inverts this mixture and

recover the original sources, called independent components
(ICs). So, if the multichannel EEG recording is considered as a
mixture of brain and artifactual blink signals, ICA provides a

spatial filter that captures these blink artifacts in a limited num-
ber of ICs (Jung et al., 2000). Once these ICs are identified, they
can be excluded from the inverse transformation back to the

signal space. The use of ICA to capture eyeblink activity is a
well-established method, and discussions of its strengths and
limitations can be found elsewhere (Frank & Frishkoff, 2007;
Hoffmann & Falkenstein, 2008).

One limitation of using ICA for ocular artifact correction is
that a straightforward removal of the ICs containing artifacts
most likely results in some loss of EEG data, because those ICs

will rarely consist of only blink-related EOG activity. Further-
more, when eyeblink activity is not captured by a single IC but
spreads out over multiple components, that is, when the ICA

suffers from a split variance, the amount of lost EEG data could
be considerable when these multiple ICs are removed (Frank &
Frishkoff, 2007).

To retain the true EEG activity in those selected ICs con-
taining blinks, a recently introduced technique, empirical mode
decomposition, for an adaptive representation of nonstationary
signals is applied (Huang et al., 1998). Unlike other signal de-

composition methods, such as the Fourier or the wavelet trans-
forms, EMD is purely data driven, that is, the basis of the
decomposition is adaptively derived from the data. Furthermore,

because the EMD is based on the local characteristic time scale of
the data, it is applicable to nonlinear and nonstationary signals,
such as large-scale brain responses (Liang, Bressler, Buffalo,

Desimone, & Fries, 2005).
The EMD procedure considers a signal or time series to be

composed of one oscillation riding on top of another, slower
oscillation that is, in turn, riding on still slower oscillations.

Therefore, application of the EMD to a signal amounts to an
iterative procedure that identifies each of these intrinsic oscilla-
tory modes by their characteristic time scales. Here, the effective

steps of EMD are briefly summarized:

1. Given a signal x(t), identify all local extremes (maxima and
minima).

2. Interpolate between maxima to estimate the upper envelope

xup(t) and between minima to estimate the lower envelope
xlow(t).

3. Compute the mean of the two envelopes, m(t)5 (xup(t)1
xlow(t))/2, and subtract it from the data: d(t)5 x(t)�m(t).

Steps 1–3 are repeated on d(t) until the resulting signal, c1(t),
satisfies the three following criteria: (1) the number of extremes
and the number of zero crossings must either be equal or differ at

most by one, (2) the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima must
be zero at any time point, and (3) the difference between two

consecutive repetitions, in terms of standard deviation, must not
be smaller than some predetermined criterion. Once this is
achieved, the resulting signal is considered to be the first IMF.

After an IMF is identified it is subtracted from the original data,
and the residue is taken as the new data fromwhich the next IMF
can be identified by repeating the steps that yielded the first IMF.
No more IMFs are extracted from the data when the residue

becomes a monotonic function or when it becomes negligibly
small. Therefore, the end result of the EMD method is a set of
IMFs ordered according to their characteristic time scales plus a

residual that, when linearly summed together, constitute the
original signal.

Although EMDensures a complete reconstruction of the data

by summing all IMFs, removing the artifactual IMFs selectively
from the summation could effectively filter out the artifact from
the original data. So, instead of removing the entire IC from the

inverse ICA transformation, the artifact-free part of the IC can
be incorporated together with other ICs to reconstruct the data.
Consequently, the proposed method of combining ICA and
EMD allows for the selective removal of only those modes of the

IC predominantly associated with blink artifacts and minimizes
the loss of true EEG data.

A crucial step in the proposed EMD-based method for the

successful correction of the blink artifacts is the classification of
the IMFs as either a blink- or an EEG- related mode. To fully
automate the whole correction procedure, a simple criterion, al-

beit ad hoc, is applied for the classification of the IMFs based on
their standard deviations (SDs). Though the SDs of the IMFs
representing the EEG-related components will differ to a certain

extent depending on the strengths of constituent frequency bands
(i.e., alpha, beta, gamma), they will still be considerably lower
than the SDs of the IMFs representing the blink artifacts, be-
cause of the characteristic differences in amplitudes of EEG and

blink signals. Based on this property, the following classification
rule is suggested: If the SD of an IMF is larger than p times the
SD of the first IMF, then that IMF and all other lower order

IMFs will be classified as blink-related modes. Simulation results
that are described later in this article suggest that this classifi-
cation procedure produces optimal results with p between 1.5 and

2.5.

Illustration of the EMD Method

An illustrative example of how the EMD of an IC results in
multiple IMFs, which subsequently can be used to separate a

superimposed blink and EEG signal, is shown in Figure 1. The
top panel shows a signal (in black) that is composed of a sim-
ulated eyeblink superimposed onto an IC obtained from an ICA

decomposition of 64-channel EEG data. Application of the
EMD method to this signal produces seven IMFs (bottom
panel). Using a p (5 the SD of second or higher order IMFs/the

SD of the first IMF) of 2, the first four IMFs (in blue) are clas-
sified as true EEG activity, that is, the SDs of the second, third,
and fourth IMF are smaller than 2 times the SD of the first IMF.

Visual inspection of these four modes confirms that they are a
reasonable represention of the relatively high frequency oscilla-
tory components in the original data and do not evidently show
any characteristics of artifactual blink-related activity. The fifth

IMF (in red) has a SD larger than 2 times the SD of the first IMF,
and hence this IMF and the two remaining lower-order IMFs (in
red) are classified as blink-related activity. Here, visual inspec-

tion of the IMFs confirms that these last three modes (in red) are
characterized by relatively large amplitudes and low frequencies
that are also observed in the blink activity. As can be seen in the

top panel of Figure 1, the sum of the first four IMFs (in blue)
provides a good approximation of the original IC activity (in
black), whereas the sum of the last three IMFs (in red) provides a
good approximation of the eyeblink activity. Therefore, this ex-
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ample shows how EMD could separate blink-related activity
from neural activity based on the differences in both time scale
and amplitude of intrinsic oscillatory modes.

Validation of the EMD Based Method

A major problem in EOG correction, including the eyeblink re-
moval research, is the lack of an obvious quantitative method of

validation. This is partly because, in an experimental situation,
there is no access to the uncontaminated EEG activity, and
therefore there is no quantitative criterion against which the

performance of a correction method could be rigorously mea-
sured (Croft & Barry, 2000). Often the success of a correction
method is measured qualitatively, whereby the corrected wave-
forms are supposed to have face validity based on visual inspec-

tion, therefore promoting subjectivity (Verleger, Gasser, &
Mocks, 1982). In the earlier example (Figure 1), visual inspec-
tion of the IMFs that are retained in the data set do not show any

blink activity, yet the IMFs that are selected for removal contains
some low frequency EEG components as well. Therefore, it is
important to use some additional quantitative measures in ad-

dition by which the success and the error of the correction
method can be quantified, and this is only possible through sim-
ulation studies. Here a simulation was performed in which a
blink template was superimposed onto artifact-free IC data and

subsequently removed using EMD, allowing for a direct com-
parison between the original and the corrected signal. This sim-
ulation also allowed for an evaluation of the performance of the

classification method based on the relative SDs of the IMFs by
systematically varying the values of p and the size of the artifacts
relative to the variation in the data.

In the simulation, 100 segments of 4 s (2,048 sample points) of
artifact-free IC data were selected from a 64-channel EEG study
conducted in our laboratory (see, for details, Lindsen, Jones,

Shimojo, & Bhattacharya, 2010). An eyeblink template of 2 s
duration was obtained by averaging 140 peak-aligned blink in-
tervals from 2 randomly chosen participants in this study. This
eyeblink template was superimposed onto the IC data with a

random offset varying between 0 and 2 s, creating waveforms
resembling those data segments containing real blink artifacts.
The relative size of this artifact, defined as the peak-to-peak am-

plitude of the blink template, was taken as s times the SD of the
data segment on which it was superimposed, with s varying be-
tween 20 and 40 in steps of 2. The value of p (the multiplication

factor that determines the upper limit of acceptable SDs in the
classification of IMFs) varied between 1 and 7 in steps of 0.25.

At every pair {p, s}, EMDs were obtained for the 100 seg-
ments with superimposed blink artifacts, and for each of these

EMDs, the IMFs that were classified by our proposed
classification method as containing blink-related components
were discarded. Then, for each segment, the correlation coeffi-
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Figure 1.Empirical mode decomposition (EMD) of an EEG signal with an eyeblink artifact. The top panel shows the signal plus artifact (black line), the

cleaned signal (blue line), and the artifact removed by EMD (red line). The bottompanel shows the seven independent mode functions (IMFs) generated

by an EMD of the signal plus artifact. The first four IMFs (blue lines) are classified as containing EEG, and their sum is taken as the cleaned signal. The

last three IMFs (red lines) are classified as containing the blink artifact, and these are removed from the signal. The inset shows in detail the differences

between the original and cleaned signals.



cient between the cleaned data, that is, the sum of the IMFs
classified as containing EEG and the original data without the
artifact, was computed as a measure of the goodness of fit. As a

result, 100 values were obtained for every {p, s} pair, and the
average was taken as an indication of how much of the original
signal was maintained after artifact correction. Figure 2 shows

the results of this simulation. In addition to the correlation co-
efficient, the mutual information between the original and the
corrected signal was also calculated. The mutual information is

sensitive to both linear andhigher order correlations between two
signals whereas correlation coefficient is sensitive to only linear
correlation (Li, 1990).

Over the intervals of varying artifact sizes tested in this simu-

lation, the optimal performance of theEMD1ICAmethod is fairly
constant between correlation values of .55 and .60. The mutual
information estimates showed a similar pattern as the correlation

coefficients but were, in general, slightly lower with maximum val-
ues ranging from .35 to .4 nats. The simulation also shows that
classification performance deteriorates for both too high and too

low values of p due to the exclusion of IMFs containing EEG data
and to the inclusion of IMFs containing artifacts, respectively. The
classification is optimal when p is between 1.5 and 2.5.

Next, the improvement of the combined ICA and EMD
method over the traditional ICAmethodwas assessed by directly
comparing the outcomes of the two methods for the data of one
randomly chosen participant from the same data set used in the

simulation study. An ICA decomposition of the data (64 EEG,
two VEOG, and two HEOG channels) was obtained with the
infomax algorithm implemented in the EEGLAB toolbox (Del-

orme & Makeig, 2004). One single IC was identified by visual
inspection as containing blink artifacts. First, the IC containing
blink artifacts was removed before the inverse transformation

recalculated the data. Next, the IMFs of the IC containing
blinks were obtained with an EMD, and the IMFs representing
the artifact were excluded before the inverse ICA transformation.

The difference in the amount of data lost between removing

entire ICs and removing only the blink components of the ICs by
means of EMD during inverse ICA transformation is illustrated
qualitatively in Figure 3. This figure shows the data from five

midline electrodes, Fpz, Fz, Cz, Pz, and Oz. In the top panel, the
original data show an eyeblink artifact occurring between
approximately 2 and 4 s with a maximal impact on the fronto-

polar electrode. The reconstructed data are shown in the bottom
panel of Figure 3. Although traditional ICA-cleaned (red lines)
and the proposed ICA1EMD-cleaned data (blue lines) are

largely similar, differences do appear on close inspection (see
figure insets), and these differences are more pronounced on an-
terior than on posterior electrodes. When the cleaned fronto-

polar signals are overlapped with the original data (inset A), it is
evident that the combined ICA1EMD method retains more in-
formation in the data, especially on shorter time scales. The su-
periority of the ICA1EMD method over traditional ICA gets

more apparent during the time period containing the blink: The
ICA-cleaned data show spiky behavior locally that does not seem
to be present in the original data, and such spurious peaks are not

present in the ICA1EMD-cleaned data (inset B).
To further quantify the improvements of the ICA1EMD

method over the traditional ICA method, the correlation coeffi-

cient (and the mutual information) between the ICA1EMD-cor-
rected data and the original data was compared with the
correlation coefficient between the ICA-only corrected data and

the original data. These comparisons focused on the data segments
outside the blink intervals, because these segments allow for an
assessment of the amount of EEG signal lost by correcting for
blinks with either the traditional ICA or the combined

ICA1EMD method. For electrode Fpz, where most of the data
loss is to be expected, the correlation between the corrected and
original data was .81 for the traditional ICA method and .86 for

the proposed EMD1ICA method. So, although the amount of
data lost with traditional ICA does not seem to be very large, the
ICA1EMD method manages to reduce this loss considerably.

The mutual information values were .32 and .40 nats between the
traditional ICA method and the original data, and between the
ICA1EMD method and the original data, respectively. Alto-
gether, these values indicate a considerable increase in the infor-

mation retained by using the combined ICA1EMD method as
compared to the traditional ICA method.

Discussion and Conclusion

In this article, a novel way to correct for blink-related ocular
artifacts has been proposed, based on the combination of EMD
and ICA decompositions of multichannel EEG recordings.

Whereas ICA provides a spatial filter that conveniently captures
widespread blink activity in a small set of ICs, the EMDmethod
can be used as a frequency filter (Flandrin, Rilling, & Goncalves,

2004) to selectively exclude the artifacts from these ICs and retain
useful EEG data that might be present in these ICs as well.

The approach described here is conceptually quite similar to
that recently proposed by Castellanos andMakarov (2006), who

applied a digital wavelet transform (DWT) to the ICs to separate
the blink artifacts from the EEG data. However, on purely the-
oretical grounds, it might be argued that the EMD is a more

suitable decomposition method for EEG/EOG data than the
DWT. In essence, EMD is an adaptive method, that is, it does
not assume that the same basis for decomposition is suitable for

an entire data set, but takes its basis from local dynamics in the
data. This property makes it highly suitable for the analysis of
nonstationary and nonlinear signals such as EEGs and transient
eyeblink artifacts. In contrast, the DWTassumes that the same

958 J.P. Lindsen & J. Bhattacharya

Simulation results

Relative Size of Artefact (s)

C
la

ss
ifi

ca
tio

n 
C

rit
er

io
n 

(p
)

20 25 30 35 40
1

2

3

4

5

6

7

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure 2. Results of the simulation study. The correlation between the

cleaned and original signal without artifact is coded in color for different

values of the relative size of the artifact (s) and of the classification

criterion (p).



basis is suitable for an entire data set and might yield spurious
harmonics because of the nonstationary and nonlinear nature of

the signals. Furthermore, performing EMD is computationally
straightforward, and the only assumption on the input is that it
has at least one minimum and one maximum. Surprisingly, de-

spite the appropriateness of EMD as a suitable technique for
EEG analysis, only a few applications have been reported so far
(Liang et al., 2005; Sweeney-Reed & Nasuto, 2007).

Here, it is shown how the EMDmethod, in combination with
ICA, could be applied to correct blink artifacts in EEG data by
excluding selective modes in data that contain relatively pure

blink activity. Interestingly, the reverse process of excluding the
modes that contain EEG data might be of potential interest for
another popular method of blink artifact correction based on
regression in the time domain (e.g., Gratton et al., 1983). The

regression method uses EOG recordings to subtract from each
scalp electrode a portion of the EOG signal, but is also likely to
subtract some EEG signal, as the EOG recording is most likely

not a ‘‘pure’’ recording of blink artifacts. So, EMD has the po-
tential to be applied to EOG signals for selectively eliminating
those IMFs associated with EEG, therefore ‘‘cleaning’’ the EOG

recordings before the subtraction process and improving the
performance of the regression method.

The main limitation of the combined ICA1EMD method is
that in addition to eliminating blink-related artifacts in the EEG,

it will also eliminate very slow time scale EEG activity, compa-
rable to or slower than the time scale of blink artifacts.1 For
example, the inset of Figure 1 shows that although the profile of

the original signal on a smaller time scale ismaintained, the large-
scale low-frequency trend in the original signal is removed

together with the blink-related activity. Potentially, this might
greatly reduce EEG activity in the delta (up to 4Hz) range aswell
as ERP components with a time course of several hundreds of

milliseconds. But it must be noted that the loss of slow drift due
to the removal of lower order IMFs will occur only if there is a
significant overlap between both the frequency characteristics

and the spatial distribution of the eyeblink activity and the orig-
inal EEG as captured by the selected ICs. Importantly, this data
loss is relative to the original, uncorrected data; when only ICA is

used to correct for blink artifacts, the entire ICs containing blinks
would be removed regardless of their frequency content.

Eyeblink artifacts are typically asymmetric with respect to the
horizontal axis, that is, the positive peak amplitude is higher than

the negative peak amplitude. In contrast, the IMFs are, by defi-
nition, symmetrical, as the mean of the upper and lower enve-
lopes is required to be zero at any time point. Therefore, the blink

artifact cannot be completely captured by one single IMF but
will be distributed over multiple lower order IMFs; see, for ex-
ample, the bottom panel of Figure 1. For this reason, in the

proposed classification criterion, the first IMF that has a SD
larger than p times the SD of the first IMF is excluded together
with all lower order IMFs, regardless of the SD of these IMFs.
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1It is shown that for a structured broadband Gaussian process, EMD
works as a dyadic filter bank; the mean oscillation of a given IMF is
roughly twice that of the previous one (Flandrin et al., 2004).



In addition to eyeblinks, saccades are another prominent
source of artifacts in the EEG. Whereas eyeblinks have a char-
acteristic frequency profile that falls outside the frequency range

of interest in the study of many EEG components, the frequen-
cies involved in saccade artifacts typically overlapwith this range.
For this reason, a frequency-basedmethod for artifact correction

is less suitable for the correction of artifacts caused by saccades.
Furthermore, the amplitude of saccade artifacts falls generally in
the same range as other fluctuations in the raw EEG, rendering a

classification method based on the relative size of the SDs of the
IMFs problematic.

Finally, eyeblink artifacts are not only a problem in the
recording and analysis of EEG data but provide similar prob-

lems for the analysis of magnetoencephalogram (MEG) data.
Despite some general differences between EEG and MEG
signals, the characteristic properties of blink artifacts that the

proposed EMD-assisted ICA procedure exploits, that is, its
relatively slow time scale and relatively large amplitude com-

pared to neurally generated signals, are present in both meth-
ods of recording. So, the proposed method for blink artifact
correction has potential merit for use in both EEG and MEG

data.
In conclusion, combining ICA with EMD provides a useful

method to retain EEG activity in ICs representing eyeblink ac-

tivity. The EMD procedure is an intuitive and computationally
straightforward method that separates a signal in modes with
different characteristic time scales, allowing for the selective re-

moval of the modes with a slow time scale and large amplitude
activity typical of eyeblink artifacts. The instantaneous and
adaptive nature of the EMD makes it especially suitable for the
analysis of nonstationary and nonlinear processes like EEGs and

transient eyeblink artifacts. In this article the effectiveness of the
ICA1EMDmethodwas illustrated with both real and simulated
data, and a criterion was provided for the classification of IMFs

as either containing EEG or blink activity that allows for a fully
automated correction of blink artifacts.
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