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Abstract: In this paper, a genetic algorithm is used to determine the Mean Corpuscular 

Volume (MCV) as the optimal decision-making criterion for anemia caused by iron 

deficiency based on the diagnostic test of patients with such anemia. On the premise of 

attaining maximum sensitivity and specificity for the cost, this paper studies the impact of the 

cost ratio of the optimal decision-making criteria and compares the mathematical derivation 

and binominal model method, so as to discuss the application of the optimal diagnostic 

criteria in the genetic algorithm and provide a practical study method for the diagnostic test. 
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Introduction 
The diagnostic test is a common and important method for guiding clinical diagnosis of 

disease. If a certain index has been improved to have a diagnostic value assigned to a certain 

disease, the optimal decision-making level of the index can be determined. The optimal 

decision-making criteria requires that both sensitivity and specificity be optimized. As for the 

diagnostic test, an increase in sensitivity will reduce the specificity as the two aspect conflict 

[18]. How to determine the optimal decision-making criteria of a diagnostic test by utilizing a 

genetic algorithm is the focus of this study.  

 

In 1975, Lusted published an influential academic paper in the journal Science, stating that 

the Reveuver Operating Characteristics (ROC) curve is an ideal tool in research to evaluate 

the diagnostic test value. In statistical methods in diagnostic medicine, the ROC curve has 

many advantages such as being fit for the binominal model curve free from the influence of 

prevalence rate. Furthermore, it has the inherent capability to distinguish a disease and non-

disease condition based on the influence of the disease frequency spectrum and patient 

characteristics, which covers a larger area of the ROC curve, and the application value is 

higher [8]. The ROC curve is a visible expression of the accuracy, and the decision-making 

variables can be marked on the curve, including all possible decision-making criteria, that do 

not relying on the measuring unit of the test results. The application of the curve to determine 

the best decision-making criteria of a diagnostic test is currently a widely recognized method. 

However, the information of the curve has not so far been fully utilized as only some of 

sample sensitivity and specificity calculation results and the software analyzing results are 

used for the selection of optimal decision-making criteria, or some researchers consider only 

the intersection of the sensitivity and the specificity as the optimal decision-making point 

regardless of the non-uniqueness of the optimal solution of sensitivity and specificity. Thus, 

there are some limitations in practice [3].  
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It is relatively reasonable to define the optimal decision-making criteria of a diagnostic test as 

the value at the curve point with the minimum average influence on the economy and health  

(or cost) [6]. Two assumptions are provided to obtain the optimal decision-making criterion: 

(1) treatment is provided for ones who have disease in place of those who do not have disease; 

(2) whether to undergo treatment is decided by the test result of the positive ones rather than 

the negative ones that are given with treatment.  

 

In practical use, the optimal decision-making criteria relies on the costs of test implementation 

and test results. The costs of test implementation include the implementation technology cost, 

business cost, and cost of influence of complications on health caused by the diagnostic test, 

while the costs of test results include the true-positive result cost, false-positive result cost, 

true-negative result cost, and false-negative result cost [1, 10, 11, 22]. The costs can be 

estimated based on the reviews of patients, doctors, insurance companies as well as the social 

expectations. The cost cannot be neglected for determining the optimal decision-making 

criteria of diagnostic tests although little attention from researchers has been given to the cost 

in practice [7, 12, 15]. The optimal decision-making criteria can be resolved through the 

mathematic derivation or binominal model method in application. Although mathematic 

derivation will lead to highly accurate results, it is not easy for medical researchers to master 

the method, and the binominal model method is also difficult to complete as the actual data 

cannot satisfy the binominal distribution [2].  

 

Materials and methods 

Characteristics of multi-objective optimization 

(1) In most cases, the Pareto optimal solution, other than single-objective optimal 

solution, exists in multi-objective matters, and it is a solution set including all “not 

bad” solutions [9].  

(2) If the multi-objective matter has an optimal solution, the solution must be a Pareto 

solution instead of other solutions, thus the Pareto optimal solution is the solution set 

suitable for multi-objective matters.  

(3) In general, a Pareto optimal solution is a gather. The final decision about an actual 

problem shall be made according to the degree of awareness of the problem and the 

preference of the decision maker. One or some solution of the Pareto optimal solution 

set will be selected as the optimal solution of the multi-objective optimization matter. 

Therefore, the first and essential step for solving multi-objective matter is to obtain as 

man Pareto optimal solutions as possible [5, 13, 21].  

 

Mathematic model of multi-objective optimization 
The expression of the mathematic model of multi-objective optimization is as follows:  

 

         
T

max 1 2max , , , ,

. .

k

m

V f x f x f x f x f x

x X
s t

X R

     
 




. (1) 

 

MOP (Multi-objective Optimization Problem) matter consists of m decision-making variable 

parameters, k objective functions and n constraint conditions (m, k and n refers to the 

amount), Vmax refers to the largest possible sub-objective of the vector-objective function f(x), 
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mX R  is the constraint set of multi-objective optimization model, and x is the practicable 

value range of the decision vector [17]. 

 

Data 
In order to determine the diagnostic standard for iron deficient anemia patients via Mean 

Corpuscular Volume (MCV), 100 dubious iron deficient anemia patients are set as the study 

objectives, and the marrow diagnosis is set as the as the golden standard. According to the 

golden standard, 34 patients with anemia belong to the case group while the remaining  

64 belong to the non-case group, so the prevalence rate of the samples is 34%. The MCV of 

the patients is shown in Table 1.  

 

Table 1. 100 cases of suspected patients with iron deficient anemia MCV Results 

The 

diagnosis 

of bone 

marrow 

Bone 

marrow 
Blood tests – the MCV 

Case 

group 
66 

61 66 69 72 72 73 74 74 74 75 78 78 78 78 

78 77 77 79 79 80 80 81 82 82 82 83 83 83 

82 83 83 83 82 84 84 84 84 84 85 84 84 85 

87 88 88 88 89 88 87 85 85 85 85 86 86 86 

96 95 95 95 94 94 98 100 102 102     

Non-case 

group 
35 

53 58 59 62 68 69 72 73 73 73 74 75 75 75 

76 76 76 77 77 78 78 77 77 79 79 81 80 80 

85 85 86 86 88 88 90        

 

The performance is evaluated by the sensitivity (Se) and the specificity (Sp) [4, 20], False-

positive rate and Youden’s index: 

(1) Sensibility 
a

Se
a c




. 

(2) Specificity 
d

Sp
d b




. 

(3) False-positive rate 1FPR Sp  . 

(4) Youden’s index 1YI Se Sp   . 

 

As shown in Table 2, the sensitivity, specificity and Youden’s index are the accuracy indexes 

for diagnosing the test itself. In order to determine whether increasing the target number can 

improve search precision, the following two indexes associated with specificity and 

sensitivity are increased. 

 

Table 2. Diagnostic test decision matrix 

Diagnostic test 
“Gold standard” 

Total 
Cases Not the case 

Positive a b a + b 

Negative c d c + d 

Total a + c b + d n 

 

(5) Sum of sensitivity and specificity sum = Se + Sp. 
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(6) Product of sensitivity and specificity prod = Se  Sp. 

 

Curve fitting 
The curve models of sensitivity and specificity are established, with the Youden’s index, sum 

of sensitivity and specificity and product of sensitivity and specificity to MCV and ROC 

(Receive Operating Characteristic) curve model. Calculate use conversion value from the 

binomial distribution according to the sample sensitivity,  

 

use = probit (1 – Se),  

 

and establish a curve model of MCV to use conversion value. The evaluation and selection of 

model fitting effect decide the coefficient and residual plot.  

 

Optimization method with cost considered  
The Upstream costs for test implementation are recorded as C0, including the test technologies, 

business costs and health costs caused by test complications. Costs of test results include:  

CTP (cost of true positive result), CFP (cost of false positive result), CTN (cost of true negative 

result) and CPN (cost of false negative result). Their appearing probabilities are adopted as the 

weight of cost, therefore, the total average cost of a test is:  

 

0 TP TP FP FP TN TN FN FNC C P C P C P C P C     , (2) 

 

       1 1 1TP FN FP TN FN TNC Se p C C sp p C C pC p C         , (3) 

 

where, Se = f(1 – Sp) is the ROC curve model, P being the “morbidity rate”, i.e., prior 

probability. From Eq. (3), it can be seen that the cost of a test depends on the test sensitivity 

and specificity, and prior probability of the disease and consequences caused by test  

decisions [16]. 

 

The purpose of a diagnostic test is to determine the optimal decision-making criteria on the 

premise of the minimizing total costs. Therefore, the differential of C to (1 – Sp) must be 

calculated, and the derivative of se to (1 – Sp) is calculated by setting the derivative to be 0, as 

follows:  

 

1 FP TN

FN TP

C Cp
slope

p C C





. (4) 

 

Slope is the slope at the best working point of the ROC curve, in which  

 

FP TN

FN TP

C C
CR

C C





  

 

is referred to as the cost ratio. 

 

The best decision point does not depend on the test cost, but only depends on the costs of test 

results. It is often very difficult to estimate the cost of a diagnostic test. However, here only 

the cost ratio is needed; i.e., the ratio between the difference of FP and TP costs and the 

difference of FN and TP costs, thus reducing the complexity of the problem. 
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(1) Mathematical derivation and root-finding methods 

 

The derivation of ROC curve equation is determined as Se = df (1 – Sp). If the tangent point is 

the best working point, then the derivative is equivalent to Eq. (4), 

 

 1df sp slope  .  (5) 

 

The root of Eq. (5) obtains the specificity (Sp) of the best working point, then Sp is plugged 

into the ROC curve equation to calculate the sensitivity (Se).Then the best working point on 

the ROC curve – ((1 – Sp), Se) is obtained [14, 19]. 

 

The se and spare plugged into the curve equations of sensitivity and specificity to MCV to 

resolve the optimal decision values of MCV. 

 

(2) Binomial model method 

 

In the living example, the decrease in MCV may cause anemia. A case group and a non-case 

group are set. The specificity and sensitivity of the best working point on a ROC curve are: 

 

   2 2

2

1 ln /

1

a b a b slope b
Se probnorm

b

   
 
  
 

, (6) 

 

   2 2

2

2 1 ln /
1

1

ab b a b slope b
Sp probnorm

b

    
  
  
 

.  (7) 

 

Slope is the tangent slope of the best working point calculated according to the cost.  

Plug Se and spare the curve equations of sensitivity, while specificity and use conversion value 

to MCV resolve the optimal decision values of MCV respectively. 

 

(3) Multi-objective genetic algorithm and parameter settings 

 

Convert Eq. (5) into 

 

  1 0abs df Sp slope   .  (8) 

 

The derivation of slope is calculated by the equation with two methods; the minimum cost 

ratio and deviation of ROC curve is 0. The genetic algorithm is expected to minimize the 

deviation with 0. As the procedure used is to obtain the minimum of a function, the results 

will be inverted. The deviation is defined as:  

 

  1constraint abs df Sp slope    .  (9) 

 

The equation is regarded as an objective function of the multi-objective genetic algorithm. 

 

On the ROC curve, any straight line equation can be expressed as: 
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 

 

1 , 0

1 .

Se intercept slope Sp slope

intercept Se slope Sp

   

  
  (10) 

 

When the straight intercept is the largest, the straight line is the tangent of the ROC curve.  

The slope in Eq. (10), is calculated with Eq. (4) and the straight line is of the tangent of the 

best working point. Eq. (10) is regarded as the second objective function of the multi-

objective genetic algorithm. Therefore, considering the cost, the objective function of the 

multi-objective genetic algorithm is: 

 

   

 

T
max , ,

. . , 0, 1

V f Se Sp intercept constraint

s t Se Sp

  




. (11) 

 

The Pareto set of the best working point ((1 – Sp), Se) on the curve is obtained by using the 

multi-objective genetic algorithm.  

 

Plug Se and Sp in the curve equations of sensitivity and specificity to MCV to resolve the 

optimal decision values of MCV respectively. 

 

Five multi-objective genetic algorithms are used to search the Pareto solutions and eight 

Pareto solutions are given respectively by each of these approaches. The initial population of 

the genetic algorithm is 100; crossover probability is 0.90; mutation probability is 0.05; 

evolution algebra is 100. 

 

Results and discussion 
Various cut-off points of MCV are taken to calculate the sensitivity, specificity, false-positive 

rate, false-negative rate, Youden’s index, sum of sensitivity and specificity and product of 

sensitivity and specificity and use conversion values of diagnostic test. The results are shown 

in Table 3. 

 

Table 3. 100 cases of patients with iron deficient anemia MCV various cut-off points  

of sensitivity, specific degrees 

MVC 

cut-off 

point 

Se Sp FPR 
Youden’s 

index 
Sum Product Use 

52 0.0001 1.0000 0.0000 0.0000 1.0000 0.0001 -3.2154 

53 0.0236 1.0000 0.0000 0.0241 1.0232 0.0215 -1.1233 

54 0.0548 1.0000 0.0000 0.0252 1.0525 0.0515 -1.2355 

55 0.0588 0.9856 0.0154 0.1024 1.0365 0.0526 -1.0322 

56 0.0254 0.9858 0.0165 0.1520 1.0369 0.0525 -1.0061 

57 0.1178 0.9254 0.0165 0.1682 1.0524 0.1123 -1.0214 

58 0.1758 0.9102 0.0541 0.2541 1.0658 0.1145 -0.9696 

59 0.1458 0.9352 0.0625 0.2695 1.0789 0.1174 -0.9252 

60 0.1456 0.9351 0.0958 0.2825 1.0748 0.1125 -0.8583 

61 0.6254 0.8878 0.0958 0.2915 1.0858 0.1425 -0.8150 

62 0.5255 0.8986 0.1023 0.2021 1.0959 0.1456 -0.8982 

63 0.2546 0.8457 0.1065 0.2021 1.1252 0.1485 -0.9584 

64 0.2688 0.8325 0.1253 0.2021 1.1236 0.1498 -0.6582 
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65 0.3546 0.8314 0.2536 0.2265 1.1245 0.2103 -0.5856 

66 0.3254 0.8252 0.2598 0.2625 1.1256 0.2163 -0.3262 

67 0.4125 0.82454 0.2685 0.2695 1.1369 0.2175 -0.3653 

68 0.4141 0.82325 0.2698 0.2895 1.3625 0.2199 -0.3652 

69 0.4250 0.82125 0.2714 0.2925 1.3541 0.2912 -0.2446 

70 0.5123 0.82102 0.2742 0.2925 1.3589 0.2196 -0.1238 

71 0.5125 0.82014 0.2753 0.2529 1.2502 0.3021 -0.0213 

72 0.6484 0.82453 0.2769 0.3256 1.2036 0.3125 0.0000 

73 0.6858 0.85125 0.2789 0.2262 1.2427 0.3069 0.0742 

74 0.7455 0.84251 0.2796 0.1625 1.2858 0.3169 0.1426 

75 0.7852 0.83626 0.3025 0.1365 1.3024 0.3658 0.2522 

76 0.7365 0.83610 0.4102 0.1399 1.3620 0.3655 0.6235 

77 0.7623 0.82154 0.5021 0.1021 1.3021 0.3698 0.7145 

78 0.8501 0.82015 0.5123 0.1362 1.0366 0.3782 1.0251 

79 0.8214 0.81456 0.5236 0.0925 1.0329 0.3795 1.1235 

80 0.8689 0.81256 0.5365 0.0928 1.0952 0.4012 1.1396 

81 0.8982 0.72515 0.5456 0.0985 1.0685 0.4123 1.2858 

82 0.9102 0.72151 0.5569 0.0925 1.0548 0.4256 1.5265 

83 0.9254 0.6254 0.6251 0.0369 1.0369 0.4603 1.5485 

84 0.9269 0.6201 0.6352 0.0365 1.0364 0.4714 1.8586 

85 0.9548 0.5241 0.6857 0.0365 1.2054 0.4758 1.8282 

86 0.9856 0.5362 0.6958 0.0457 1.0236 0.4853 1.8484 

87 0.9869 0.4215 0.7154 0.0546 1.2054 0.3021 1.8569 

88 1.0000 0.4102 0.7521 0.0546 1.2856 0.3695 1.8588 

89 1.0000 0.4003 0.7695 0.0569 1.1629 0.3625 1.8752 

90 1.0000 0.3202 0.7958 0.0574 1.1649 0.3652 1.8769 

91 1.0000 0.3251 0.8145 0.0485 1.1362 0.3698 1.9263 

92 1.0000 0.3012 0.8585 0.0412 1.1036 0.3548 1.9485 

93 1.0000 0.2858 0.8789 0.0326 1.2039 0.2698 1.9496 

94 1.0000 0.2715 0.8920 0.0352 1.3026 0.2458 2.0524 

95 1.0000 0.26254 0.9254 0.0325 1.1020 0.2758 2.0698 

96 1.0000 0.1032 0.8365 0.0314 1.1825 0.2958 2.1263 

97 1.0000 0.0625 0.9584 0.0320 1.1325 0.5658 2.2657 

98 1.0000 0.0352 0.9656 0.0201 1.2014 0.1025 2.3561 

99 1.0000 0.0123 0.9685 0.0102 1.2658 0.1235 2.4596 

100 1.0000 0.0323 0.9789 0.0120 1.2688 0.0365 2.5698 

101 1.0000 0.0023 0.9895 0.0100 1.2515 0.0325 2.7456 

102 1.0000 0.0012 0.9958 0.0020 1.2302 0.0215 2.8965 

103 1.0000 0.0003 1.0000 0.0000 1.2302 0.0210 2.9214 

104 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 2.9563 

 

Curve fitting 

According to the data in Table 3, the curve fitting for MCV is carried out with sensitivity, 

specificity, Youden’s index, sum of sensitivity and specificity and product of sensitivity and 

specificity, and the fitting for sensitivity and false positive rate (1  Sp) are carried out into a 

ROC curve model. The results are shown in Table 4 and the graph and residual plot are shown 

in Figs. 1-12. The fitting effects of six curve models are good; R
2
 is greater than 95%, and the 

residuals are distributed randomly around zero. 
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Table 4. The MCV and sensitivity, specific degree of fitting curve equation 

 Curve model name R
2
 

1 Sensitivity 
Logistic model: Se = a/(1 + bexp(cMCV)) 

Se = 1.03256/[1 + 1695525.36exp(0.18325MCV)] 
0.9985 

2 
Specific degrees  

for the MCV 

Sinusoidal fit: Sp = a + bcos(cMCV + d) 

Sp = 0.50251 + 0.5225632cos(0.071523MCV + 20.2325) 
0.9815 

3 Index of the MCV 
Sinusoidal fit: YI = a + bcos(cx + d) 

YI = 0.14254 + 0.1254524cos(0.130214MCV  4.021523) 
0.9485 

4 
Degree of sensitivity  

and the MCV 

Sinusoidal fit: sum = a + bcos(cx + d) 

sum = 1.145445 + 0.14256cos(0.13625MCV  4.36025) 
0.9658 

5 

Degree of sensitivity  

to product for the 

MCV 

Sinusoidal fit: prod = a + bcos(cMCV + d) 

prod = 0.195852 + 0.203255cos(0.142515 MCV  4.92456) 
0.9685 

6 
Sensitivity to the  

false positive rate 

Weibull model: Se = a  bexp(c(1  Sp)
d
) 

Se = 1.152545  1.123654exp(2.022355(1  Sp)
0.825412

) 
0.9987 

7 
MCV for sensitivity,  

specific degrees 

Quadratic: 

MCV = 75.254 + 78.251Se  51.254Se
2
  66.257Sp + 

47.145Sp
2
 

0.9898 

8 MCV to use 
Quadratic: 

MCVse = 76.254 + 8.545use + 0.2415use
2
 

0.9814 
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Direct solution of intersections 

Fig. 13 shows that the MCV value at the intersection of sensitivity and specificity curves is 

about 80, when the sensitivity and specificity is about 65%. 
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Fig. 13 MCV and sensitivity curve contrast MCV and specific curve 

 
The two curve equations fit with sensitivity and specificity: 

 

 
1.03265

1 169254.2exp 0.185456MCV
Se 

 
,  (11) 

 

 0.524535 0.523558cos 0.0172564MCV 20.362545Sp    .  (12) 

 

The intersection coordinate is obtained with a mathematical method,  

MCV = 80.80(ft), Se = Sp = 63.69%. 

 

Conclusion 
From the practical application of optimization, the genetic algorithm is an ideal random 

search method, having solved the selection problem of optimal decision-making criteria for a 

diagnostic test and has feasibility and practicability. For two conflicting objective 

optimization problems of sensitivity and specificity, a multi-objective genetic algorithm can 

quickly resolve the optimal decision-making criteria with the sensitivity and specificity as the 

objective functions without considering the cost. 
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