
0 and an SD of 1. The resulting regression
therefore has an intercept of zero. Its
slope is r (and must fall somewhere from
–1 to +1).

For the earnings data the regression of
zY on zX gives the best-fitting line as:

earnings = .24 x height

The slope .24 is identical to that value I’d
get from calculating r. The difference lies
in the interpretation of the r and b0. The
latter uses the original units of analysis
and, if the units are meaningful, is widely
regarded as easier to interpret and
understand (e.g. Wilkinson & APA Task
Force on Statistical Inference, 1999). It is
immediately obvious – even to someone
with no statistical training – that a $1256
increase in earnings per inch of height is
potentially important. On the other hand,
a correlation of .24 between height and
earnings is trickier to interpret. Many
students are taught to interpret such a
correlation as a ‘small’ to ‘moderate’ effect
and regard it as relatively uninteresting
(because height explains only .242 ≈ .058
or 5.8 percent of the variance). A better
interpretation is that a 1 SD increase in
height is associated with a .24 SD increase
in earnings. Some psychologists will
realise this represents a surprisingly big
effect, but it is hard to put in context
unless you really know the SD of each
variable.

A common argument in favour of
standardised coefficients such as r is they
make interpreting or comparing variables
on arbitrary scales easier. This position is
questionable. I have recently argued the
opposite: we will generally be better off
using simple, unstandardised effect size
metrics (Baguley, 2009). This applies to
correlation-based measures such as r or R2

or standardised mean differences such as
Cohen’s d. Even with arbitrary scales,
psychologists will typically be better off
using the original units. For a start, even
ad hoc scales (e.g. Likert-style ratings)
convey some useful information about
what is going on. Knowing that two
groups differ on average by two points 

The noted statistician C.P. Winsor
once established a Society for the
Suppression of the Correlation

Coefficient. According to John Tukey it
had as its ‘guiding principle…that most
correlation coefficients should never be
calculated’ (Tukey, 1954, p.38). Nor were
Tukey and Winsor alone:

The idea of regression is usually
introduced in connection with the
theory of correlation, but it is in reality
a more general, and, in some
respects, a simpler idea, and the
regression co-efficients are of interest
and scientific importance in many
classes of data where the correlation
coefficient, if used at all, is an
artificial concept of no real utility.

(Fisher, 1925, p.129)

Some might attribute this stance to
Fisher’s rivalry with Karl Pearson (of the
eponymous product–moment correlation
coefficient r). Yet this would be to miss
the point.

To appreciate the advantages of
regression over correlation the first step 
is to understand how they are related. The
relationship is easiest to explain in terms
of simple linear regression (a bivariate
regression between two variables). In
regression, Y is predicted from X, and 
a linear regression finds the straight line
that predicts most accurately (by
minimising the sums of the squared
vertical distances of observations from the
line). The output of the regression is an
equation of the form:

Y = b0 + b1X1

The intercept of the line is the constant b0
and represents the value of Y when X = 0
(where the regression line crosses the Y
axis when plotted). The slope of the line
is b1 and represents the expected increase
in Y when X increases by 1. What if we
wanted to predict people’s earnings
(measured in US dollars) from their
height (measured in inches)? For a US
sample (adapted from Gelman & Hill,
2007, who also consider more plausible
linear models) a simple linear regression
gives the line:

earnings = –60515 + 1256 x height

Each extra inch in height is associated
with an increase in average earnings of
$1256. This equation can readily be used
to predict the earnings of based on a
person’s height (e.g. $27,405 for a person
who is 70 inches tall).

There are many different ways to view
a correlation coefficient (e.g. see Rodgers
& Nicewander, 1988), but the similarities
and differences with regression are clear if
you consider that r is itself a regression
slope. However, r is the slope in the
bivariate regression of the ‘standardised’
scores of Y on X (i.e. the regression of zY
on zX). To standardise a variable (e.g. X)
first subtract its original mean from every
value, then divide this value by the
original standard deviation (SD). This
preserves the distribution of X and Y but
rescales them so that both have a mean of
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When correlations go bad 
Thom Baguley cautions against the careless and routine application of
standardisation in psychology
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on a five-point scale of agreement tells
you that the difference is enough to shift
someone from a neutral to an extreme
response. Contrast this with a
standardised effect size metric such as
Cohen’s d. If d = 0.5 this would represent
a difference of 0.5 times the SD of the
ratings. If the SD is small (because ratings
are generally very consistent) this could
represent a small fraction of a scale point.
If the SD is large it might represent a shift
of several points. Standardised effects are
not readily interpretable unless you also
know (and appreciate) how large the
relevant SDs are. Even for, say, IQ, where
this information is widely known, it is not
clear that d = .20 is any easier to interpret
than a difference of three IQ points.

If that were the only
problem with standardisation
I’d be fairly relaxed about their
ubiquity in psychology. There
is a deeper issue. Standardised
effect sizes are calculated using
the sample SD, but researchers
nearly always (implicitly or
explicitly) assume that they
can be interpreted in terms of
the population SD. This is one
of the main objections to
correlation coefficients.
Anything that influences 
a sample SD but not the
population SD has the
potential to distort
standardised effect size as
measure of the population
effect. As it happens, there 
is quite a long list of factors
(including sampling error)
that do exactly that. Worse
still, many of these factors
systematically distort the
sample SD relative to the
population SD. In Baguley
(2009) I discuss these factors
under 
three main headings: reliability, range
restriction and study design. 

Firstly, most outcomes that
psychologists are interested in are
unreliable. For example, Schmidt and

Hunter (1999) suggest that measurement
error in psychological research is
frequently of the order of 50 per cent of
the total variance. In the simplest case,
measurement error in an outcome
measure inflates the sample SD, and so
reduces the estimated value of d or r.

Range restriction occurs whenever the
range of values in a sample differs from
those in the population of interest.
Consider the selection of the X variable in
regression. If the range of X in the sample
is restricted relative to the population,
this reduces the SD of X. If X and Y are
correlated (provided the correlation is not
perfect) the SD of Y will also decrease,
but to a lesser degree. This differential
impact on the SD of X and Y in turn

depresses r in the restricted sample.
Range restriction also works in reverse;
sampling the extremes of a population
will inflate r in a sample (Preacher et al.,
2005). The effects of range restriction can
be quite extreme. The figure above shows
the effect of selecting the middle 100 X
values on the X–Y correlation. (Here, X
and Y are sampled from normally
distributed variables with a population
correlation of .80). In the full sample of
500 simulated participants the correlation
is .82, while the correlation in the
restricted sample is only .19. (If the
simulation were repeated these numbers
would change but the general pattern
would be similar.)

In contrast, for simple situations 
such as these neither range restriction 
nor reliability will bias simple effect size

metrics such as the unstandardised
regression slope b1. (In more complicated
situations, e.g. involving unreliability in X
as well as Y or correlated predictors, even
unstandardised effect size estimates can
be distorted: see Hunter & Schmidt,
2004; Ree & Caretta, 2006.) Although
increased sampling error or reduced
sample size makes estimation more
‘noisy’, a statistic such as b1 is not directly
influenced by the SD of X or Y.

Aspects of the design of the study 
can also make it very difficult to compare
standardised effects between otherwise
very similar studies. These factors include
whether independent or repeated
measures are used, the choice of stimuli
and the characteristics of the samples

(Baguley, 2009). In some cases
it is possible to work round
these problems by computing
a standardised effect size
statistic in a particular way or
by employing corrections for
reliability and range
restriction. Hunter and
Schmidt (2004) consider 
many of these corrections in
the context of meta-analysis.
But in a single study with low
n the information needed to
make these corrections may be
unavailable or of insufficient
quality, or the corrections
themselves may be too difficult
to implement. Furthermore,
these corrections or fixes will
often be unnecessary in
uncomplicated studies
(particularly experiments).

There is sometimes a case
to be made for standardising
variables – perhaps as an initial

default in an overall modelling
strategy (Gelman, 2008) or in

psychometrics where correlation
coefficients are convenient ways to
measure reliability and validity (Baguley,
2009). However, the widely held belief
that standardisation necessarily places
variables or effects on a common scale is
false. Careless and routine application of
standardisation in psychology (without
any awareness of the potential pitfalls) is
dangerous. In relation to the Society for
the Suppression of the Correlation
Coefficient, Brillinger may be correct to
conclude:

It is probably more needed now than
it was back in the 1940s. Perhaps
someone will start a website.

(Brillinger, 2001, p.216)
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