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ABSTRACT 

A numerical study on the interference effects between duct and control vanes 
on a Vertical Takeoff and Landing Micro Air Vehicle is presented in this paper. 
The numerical analysis is conducted systematically with the solver first 
validated before it is applied to the full vehicle simulations. Different 
combinations of duct and control vanes are tested to determine the interactions 
between the two components and their effects on the vehicle's aerodynamics. 
The simulations show that the duct influences the local flow around the control 
vanes. The duct redirects the flow before it passes the control vanes, altering 
the aerodynamic forces and moment generated by the vanes as well as the 
vehicle. The control vanes generate lower aerodynamic forces and moments 
under the influences of the duct, compared to when they are simulated as 
isolated (individual) components. The over-predictions of the vehicle's 
aerodynamic forces and moments need to be taken into consideration in 
designing as they will introduce a high error to the design. 

Keywords: micro air vehicle, component buildup, interference effect, duct, 
control vane 

Introduction 

The use of ducted-propeller and control vanes is quite common in a Vertical 
Takeoff Landing Micro Air Vehicle (VTOL MAV). Adding a duct or a shroud to a 
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propeller offers advantages such as higher static thrust, better noise suppression 
and better protection from foreign object damage (FOD) [ 1,2]. A control vane is 
typically used to gain control in the longitudinal, lateral and directional modes 
as well as to counteract the torque generated by the propeller [3,4]. The control 
vane deflection generates forces and moments that affect the aerodynamic 
characteristics of the vehicle. The duct and the control vane, individually and 
independently as a component, may improve the performance and/or the stability 
of the vehicle, but little is known about the interactions between them. In 
predicting the aerodynamic coefficients of ducted fan MAVs, a program named 
AVID OAV takes into consideration the influence of duct on inside-the-duct 
control vanes by including the velocity induced by the ducted-fan in calculating 
the vanes' lift and drag [5, 6]. In another work, a generic modular-simulation-
model of ducted-fan vehicles is built by including the effect of duct on the 
velocity, angle-of-attack and sideslip angle of a vane [7]. These works focus on 
formulating empirical equations to predict the aerodynamic forces and moments 
of ducted-fan MAVs. Unlike previous researches, the current work uses 
computational data to predict the aerodynamic coefficients and gives emphasis 
to flow phenomena around the vehicle. Moreover, this research is specifically 
conducted to analyze the interference effects between the duct and the control 
vane on a VTOL MAV The duct and various configurations of the control vane 
are investigated numerically using a RANS solver (FLUENT) to obtain the 
aerodynamic data and to visualize the flow around the vehicle. 

Numerical Analysis Validations 

Validation is a critical process of any numerical investigation. The complex flow 
around MAVs emphasizes the need of this process. Prior to the analysis of the 
full VTOL MAV configuration, the solver need to be validated numerically. The 
solver (FLUENT) is tested to examine its accuracy in predicting the complex flow 
around a low aspect ratio lifting surface, which is typical for MAVs. The case 
selected for the solver validation is a low aspect ratio annular airfoil/duct with 
Clark Y airfoil section, the experimental data of which are available. The duct was 
one of the five models that was investigated experimentally by Fletcher [8]. 

The duct studied in [8] has a Clark Y airfoil-section and an aspect ratio of 1, 
which means it has an equal length of diameter (d) and chord (c) of 16 in or 0.4064 
m (Figure 1). The airfoil section is Clark Y with a maximum thickness ratio of 
0.117. The area of the duct is 0.165 m2, calculated using the following equation A 
= dxc. The duct is tested at a dynamic pressure of 1192.2 Pa, which corresponds 
to a Mach number of 0.13 and a freestream velocity of 44 m/s. The computation 
is conducted using Spalart-Allmaras turbulence model, SIMPLE scheme and 
second order upwind discretization. 
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Figure 1: Computational Model of Fletcher's Annular Airfoil/Duct 

In the computation, two methods are used to impose the boundary condition 
to simulate angles-of-attack and sideslip-angles in the computation. The first 
method uses the vector components of the velocity to represent the angle. The 
velocity is set as its x, y or z components with respects to the angle simulated. 
The second method to impose the angle of attack or sideslip angle is by rotating 
the object such that it creates an angle with respect to a certain axis (Figure 2). 

The unstructured grid model is built to accommodate the object rotation 
method, while the velocity vector method is simulated using the structured grid 
model (Figure 3). In the next steps, the unstructured and structured grid model 
will be called as fixed duct and rotated duct, respectively. The structured grid 
model is termed as the fixed duct because the duct is held fixed in a position 
while the velocity vectors are used to simulate the angle-of-attack. On the other 

V / 

vx 

U 

vy i J 

Object rotation Velocity vector 

Figure 2: Two Methods to Simulate Angles-of-attack and Sideslip Angles 
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hand, the unstructured grid model is termed as the rotated duct because the duct 
is being rotated in the simulation to represent various ^ngles-of-attack. 

The quality of the computational models is tested using a set of tests called 
the benchmark tests. The objectives of the tests are to study the effect of 
convergence limit, the faraway boundary distance, the grid independency and 
the near wall grid distance (wall y+). The benchmark tests results for both fixed 
and rotated duct models are presented in Table 1. 

Table 1: Benchmark Tests Results 

Fixed duct 

10-3 

1.18 

3c 

within the 
recommended range 

Computational model 

Residual criterion 
10-3 and KT6 

Grid size (in million of cells) 
0.35, 0.72, 1.18 (structured) 
0.5, 1.0, 1,2 (unstructured) 

Boundary distance 
3c and 6c 

Distance to the wall (wall y+) 
wall y+<l or >30 

Rotated duct 

io-6 

1 

3c 

within the 
recommended range 

Validation Results Discussion 

Lift and drag predictions of the fixed and rotated duct models are in a good 
agreement with the experimental results, particularly at low angles-of-attack (0°-
20°). The numerical results are close to the experiment, except at the stall angle-
of-attack. Stall region is very difficult to predict due to its complex flow 
phenomenon. Near the stall angle, the separation point moves rapidly forward 
and a large wake region is created. This region of turbulent and separated flow is 
unstable and thus making it difficult to predict. The small values of moment are 
difficult to be measured accurately in both experiments and computations. 
However, the solver is still capable of providing reasonably accurate predictions. 
The moment results for both fixed and rotated duct models show a similar pattern 
as the experiment (Figure 4). 

Based on the confidence in the data accuracy gained after the validation, 
the solver is used to analyze the interference effects between the duct and the 
control vane on a VTOL MAV. The simulations are limited to low angles-of-
attack (0°-20°) where both models provide the closest agreement with the 
reference data. For simplicity, the velocity vector method as in the fixed duct 
model will be used for the interference effects analysis. 
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Figure 4: Pitching Moment vs. Angle of Attack for Various 
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Computational Model Descriptions 

The investigation of the interference effects between the duct and the control 
vane is piggybacked on the VTOL MAV design that is being developed. The 
main components of the VTOL MAV analyzed in this work are ducted-propeller, 
wing, and control vane, as well as vertical and horizontal tails (Figure 5). The 
duct has an Eppler-180 airfoil section, a chord length (c) of 0.15 m and an inner 
diameter (d) of 0.2 m which correspond to an aspect ratio of 1.33. The wing has 
the same airfoil section as the duct, a span (b) of 0.42 m and an area (S) of 0.076 
m2. The tapered-wing has a low aspect ratio of 2.32, a twist angle -2° and a sweep 
angle of 5°. The control vane and empennage are consisted of a symmetric 
airfoil, NACA 0018, with a rectangular platform, 0.06 m chord and 0.08 m span. 
The control vanes are located exactly at the duct exit. A two-blade propeller is 
mounted inside the duct. In this research, the MAV is simulated without the 
propeller due to the assumption that the vane effects on aerodynamic forces and 
moments are almost independent of thrust coefficient [3]. 

Based on the setting angle (<5), the computational models of the control 
vanes can be divided into three categories: symmetrical, asymmetrical-equal and 
asymmetrical-unequal. Symmetrical control vanes have the same setting angle 
for the left (<5L) and the right (<5R) planes of the vane. The asymmetrical-equal 
models have the same magnitude of 8 but with different sign for the left and right 
planes of the control vane. The last model is the asymmetrical-unequal with 
different setting angle for the two planes of the control vane. A total of six 
configurations are tested for the longitudinal mode analysis, and only five for 
the lateral-directional. Two configurations for the symmetry category are 0° - 0° 
and 10° -10° (<5L- <5R). For the asymmetrical-equal category, two configurations 
with the setting angles of-5° - 5° and -10° - 10°. Only the latter configuration 
is tested for the lateral-directional analysis. The last category, the asymmetrical 
unequal, is represented by two configurations 0° - 5° and 10° - 0°. 

The full computational domain is tube-shaped and has a sphere-shaped 
inner domain which surrounds the object being investigated (Figure 6). The full 
configuration model of the VTOL MAV consists of around 1.4 million tetrahedral 
cells. The individual models of the control vanes are meshed using approximately 
700,000 tetrahedral cells. These cell numbers are used because they give almost 
the same, for all models, wall y+ value of 30, which is within the recommended 
range [9]. 

Numerical Test Procedure 

Individual and full-configuration computational models are simulated in this 
research. In the individual analysis, each component of the VTOL MAV is 
simulated individually and independently without the influence of other 
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Figure 6: Mesh of Full-configuration VTOL MAV and 
Individual Control Vane 

components. The full configuration analysis includes all the components of the 
VTOL MAV, such that the flow around a component is perturbed by others. Only 
the aerodynamic data of the vane are taken from the full configuration analysis. 
These data are compared to the individual simulation results to analyze the 
interference effects between the duct and the control vane. 

The flow-solver, Fluent, is set with Spalart-Allmaras turbulence model, 
SIMPLE scheme, and second order upwind discretization. The models are tested 
for the angles-of-attack (a) of 0°, 10° and 20°. A range of sideslip angles ((3) from 
-10° to 10° with 5° intervals is investigated for the lateral-directional analysis. 
The vehicle is simulated with freestream velocity of 15 m/s, density of 1.225 kg/ 
m3 and temperature of 288.15 K. Aerodynamic coefficients are calculated using 
the wing's span and area as the reference length and area respectively. The 
moment coefficients are computed with respect to the center of gravity (eg) of 
the MAV, which is located 0.3709 m from the duct's lip. 

Aerodynamic Interference Effects between Duct and 
Control Vane 

In the individual analysis, the control vane is simulated as an isolated component. 
For that reason, each component in the individual analysis experiences flows 
with freestream angles-of-attack (a) or freestream sideslip angles (P). The angle-
of-attack or sideslip angle of the flow over a component in the full configuration 
analysis is affected by the interference effects with other components. For 
analysis purpose, the perturbed angle is marked by "local" subscripts as in local 
angles-of-attack (oelocal) or local sideslip angles (Plocal). The influence of the duct-
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vane interference effects to the aerodynamic forces and moments of the control 
vanes are explained next. 

Aerodynamic Forces 

The computational results of the control vanes show that the lift and drag 
predictions for the individual simulations/analysis are significantly higher than 
the full configuration (Figures 7-9). The individual analysis over predicts the lift 
(CL) and drag (CD) coefficients of the control vanes, the asymmetrical-equal -10° 
- 10° at the angle-of-attack of 10° for example, by more than 250% and 17% 
respectively with respect to the full configuration analysis results. At 20°, the 
individual analysis again over predicts CL and CD of the same asymmetrical-
equal,control vane to be more than 200% and 50% higher than the values predicted 
using the full configuration analysis. This deviation of the individual simulation 
results from the full configuration ones is found in the aerodynamics forces 
predictions of the other categories of control vanes. It is also found that the lift 
and drag curves for the full configuration analysis has significantly lower slopes 
compared to the individual one. 

The notably lower lift and drag coefficients of the control vane in the full 
configuration analysis are predicted to be caused by the duct located upstream. 

Figure 7: Lift and Drag of Symmetrical Control Vanes 

106 



Interference Effects between Duct and Control Vane on a Micro Air Vehicle 

cr 

V? 

0.16 

0.14 \ 

0.12 | 

0.1 | 

o.06 : yytr 

0.04 | s t t ^ ^ 

0 0 2 ; S ^ \ ^ - * r ~ ~ ~ ~ 

0 1 

0 5 10 

0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 \ 

0.02 

0 

-0.02 ° 

—4—Individual-5-5 

—<—• Full configuration -5-5 

-•-Individual-10-10 

™»<si~~Full configuration -10-10 

| U = — - « = • * ~~ 

5 10 

ct,deg 

^ 
^ 

15 

15 

^t 
fP 

****** 

20 

20 

25 

25 

Figure 8: Lift and Drag of Asymmetrical-equal Control Vanes 

0.16 

0.14 

0.12 

0.1 

°* °08 ^^P" 
0.06 S S ^ 
004 \ ̂ ^x^L^---^^**"'*^ 
0.02 ^ ' "* 

0 5 10 

0.16 
— • - Individual 0-5 

°-14 —*—Full configuration 0-5 

0.12 ; - « - Individual 10-0 

Q 1 —*—Full configuration 100 

J* 0.08 

0.06 _^-~-*""" 

0.04 gfC " ' i igi I !ggS=g 

0.02 

0 5 10 

^^m00 

15 

15 

a,d«g 

20 

20 

25 

25 

Figure 9: Lift and Drag of Asymmetrical-unequal Control Vanes 

107 



Journal of Mechanical Engineering 

The duct has an aligning effect to the vehicle's x-body axis for the flow that 
passes through it. Therefore, the local flow leaving the duct and entering the 
control vane is straightened in the direction of the x-body axis, despite of the 
angle-of-attack of the freestream flow (Figure 10). The flow passes the control 
vane is subjected to a lower local angle-of-attack compared to the freestream 
one, thus the lift and the drag coefficients are lower than the values provided by 
the individual analysis at the freestream angle-of-attack. 

Figure 10: Flow Passes Duct and Control Vane at a = 20° (y-axis plane) 

Aerodynamic Moments 

Similar to the lift and drag predictions, the rolling and yawing moment predictions 
of the individual analysis are higher than the full configuration ones (Figures 11 
and 12). This over predictions can be clearly seen by comparing the slope of the 
rolling and yawing moment curves for the individual and full configuration 
analysis. The curve-slope of the individual analysis is higher than the full 
configuration, particularly for the yawing moment predictions. The rolling moment 
of the VTOL MAV does not vary considerably with sideslip angles (p). The 
vehicle which includes an annular airfoil/duct in its configuration has the 
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Figure 11: Rolling and Yawing Moments of Symmetrical Control Vanes 

tendency to generate a constant rolling moment under various sideslip angles. 
Nevertheless, the gentler slope of the rolling moment curve for the full 
configuration simulations is still observable. 

The very small aerodynamic moments predicted by the full configuration 
analysis suggest that the flow coming from sideways, under the influence of 
sideslip angles; only have a small influence on the control vanes. It is predicted 
that the vanes are influenced more by the flow coming from the duct outlet. The 
freestream flow (sideway direction) which enters the duct is straightened in the 
x-body axis direction of the vehicle. The control vanes experience a local sideslip 
angle which is much lower than the freestream sideslip angle (Figure 13). As a 
result, the vanes generate much lower rolling and yawing moments compared to 
what is predicted by the individual simulations, where the control vane is simulated 
individually and independently. 
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Figure 12: Rolling and Yawing Moments of Asymmetrical Control Vanes 

Conclusions 

The interference effects between the duct and the control vane have a significant 
influence on the aerodynamic forces and moments of the VTOL MAV The duct 
changes the direction of the freestream flow before it passes the control vane, 
affecting the flow locally. As a result, the vane's behaviors are dictated by the 
local flow instead of the freestream one. The differences in the aerodynamic 
forces and moments of the control vanes, individually and under the influence 
of the duct, need to be taken into consideration in designing the vehicle. As part 
of the VTOL MAV, the vanes generate significantly lower aerodynamic forces 
and moments than as an individual component. If the individual analysis results 
of the control vanes are used in designing the MAV, the over predictions of the 
aerodynamic forces and moments will introduce a high error to the design. 
Furthermore, this error in calculations might lead to a design failure. 
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Figure 13: Flow Passes Duct and Control Vane at a = -10° (x-axis plane) 
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