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ABSTRACT 

The paper deals with model-based control of robots with parallel kinematical 
structure (PKM). At first, an approach for the identification of friction and 
rigid-body dynamics of complex parallel kinematical structures is presented. 
The approach is based on optimal excitation trajectories. The trajectories are 
bounded, such they are easy to befit into the small and hard constraint workspace 
of PKM. Secondly, some results are presented using feedforward control in 
order to compensate nonlinear dynamical influences. Thirdly, Iterative Learning 
Control (ILC) is proposed in this paper for tracking accuracy enhancement of 
a parallel direct driven manipulator. It is shown both by means of simulation 
study and experimental results that linear ILC is appropriate for application to 
the considered high nonlinear and coupled systems. 

Keywords: Parallel Kinematical Machines, Inverse Dynamics, Feedforward 
Compensation, Iterative Learning Control 

Introduction 

Due to their precision, stiffness and dynamics parallel kinematical machines 
(PKM) are becoming more and more interesting in the field of machine tools 
and robots. Model-based control algorithms are necessary to take advantage 
of the possibilities offered by such structures. To utilize multibody models for 
control, the dynamical model must be efficiently formulated in order to meet 
real-time requirements. Furthermore, the model parameters like masses and 
moments of inertia as well as friction parameters must be known. If they are 
not given from design data, they have to be experimentally identified. Till 
now, this experimental determination is restricted to simple models and adaptive 
control algorithms (see [1], [2]). 
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In this paper we also propose the application of ILC for the control of 6-
DOF parallel manipulators. This method is an additional one besides classic 
feedforward control. Such application is relatively new in dynamics and control 
of PKM. It is believed, that ILC could help an important breakthrough in the 
control improvement and enhancement of tracking accuracy of parallel robots. 
This paper will focus on the application of ILC on a linear direct driven hexapod 
PaLiDA in terms of simulation and experimental study, see [6]. As recommended 
in [12], linear first-order learning formulations and algorithms are chosen to be 
validated. Two approaches are investigated, a heuristic one, that do not need 
any explicit plant model and a second model-based algorithm. 

It will be very interesting to investigate if ILC could be applied for direct 
driven parallel manipulators like it has been proven for classic industrial robot 
in [15], [16], [19]. Industrial robots are characterized by high gear ratios, such 
that decentralized single-joint consideration is possible. From this point of 
view, the studied PKM system is very different due to its mechanical coupling 
and the use of gearless direct drives. First, the methods are implemented in 
accurate simulation that enables the study of different factors, such the influence 
of measurement noise, log term stability, etc. The experimental evaluation on 
the real system follows and both approaches are compared in terms of control 
improvement and convergence. 

Examples for Parallel Kinematical Machines: 

Hydraulic Hexapod (HSP) 

The hexapod HSP is a test stand to simulate vibrations and movements appearing 
in vehicles. The actuators are hydraulic cylinders with a maximum force of 15 kN 
each. To reduce forces acting in the joints the platform is a lightweight 
construction. Therefore, the maximal acceleration of HSP is larger than 50 g. The 
valves are able to realize frequencies of more than 50 Hz. The maximal speed is 
limited to 1 m/s by the size of the valves. Figure 1 shows the test stand both as 
a multibody system (MBS) model and as a physical realization. The table left to 
the platform is used to fix the test samples. The platform is shown in centred 
position. Some necessary hydraulic components like pipes and accumulators 
are not included in the MBS model. 

Contrary to most hydraulic test beds the workspace is not limited by the 
hydraulic actuators. Therefore, each TCP-platform position must be checked 
with respect to the workspace. That means, the control unit includes some 
safety features, like path tracing errors and other safety functions. 

The platform is used in a standard regime as a test bed for frequencies of 
about 10 Hz and amplitudes of about 25 mm. In applications with only small 
forces compared to the power of the actuators the dynamic forces have only 
limited influence due to the resulting low accelerations. It follows that the accuracy 
of the platform is mainly appointed by the accuracy of one single actuator. In 
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Figure 1: Hydraulic Stewart-Gough-platform: 
HSP Model and Test Bed 

order to reduce the path error the model of the hydraulic actuator has to be 
improved. Therefore, the hydraulic actuator model is more important than the 
dynamical ones of the parallel mechanism. That means, the control of the HSP 
can be reduced to a non-linear decoupled single axis controller. The actuator 
speed is used for a feedforward control. 

Hexapod with Linear Direct Drives (PaLiDA) 

The studied prototype PaLiDA is a hexapod machine that is equipped with 6 
linear direct drives, see Figure 2. A commercial electromagnetic linear motor, 
originally designed for fast lifting movements, is the basic element for the 
developed actuator. To use this motor as a PKM actuator, several modifications 
were necessary. It had to be enhanced guidance of the slider with minimized 
radial backlash. 

The main advantage of such drives for parallel kinematics results from the 
high control dynamics which cannot be achieved by conventional actuation 
systems. In contrast to the ball screw drive, additional mechanical wear parts are 
not needed, such that there is no backlash and lower inertia is guaranteed. One 
example for such linear drives is the LinMot-P from Sulzer, see Figure 3. 

Figure 2: Hexapod PaLiDA: MBS Model and Test Bed. 
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It is a high dynamical electro-magnetic linear drive with acceleration up to 
150m/s2 and with fully integrated position sensors. Since this product has been 
designed for a different application it was necessary to enhance its performance 
for robotic applications. The motor creates high magnetic fields to move the 
slider, which influences the quality of the Hall sensors. 

Statorhousing 

Position sensor Coils Miaerwitn 
Electron ( H a l l s e n s o r s ) ( t w o . p h a s e Neodym-Magnets 

motor) 

Figure 3: Linear Direct Drive (Source: Sulzer NTI) 

In order to pass on additional external sensors, it was necessary to develop 
appropriate compensation strategies to keep adequate measurement quality, 
see ([6], [8]). The motor control unit was modified to allow direct force control 
for the actuator. 

The first prototype was designed after an evaluation of different 
construction alternatives, see [17]. The favoured solution is a cardan joint, 
which encloses the motor. Its platform has to be lightweight to reduce dynamical 
forces.The motors are integrated in length-variable struts, see Figure 4. The 
motor is mounted in the centre of the upper cardan-ring which is connected to 
the base platform. 

The joint between the slider and the moveable platform is a small 
universal joint. The size of the ring allows the supporting of the motor. Such 
concept enhances the dynamic capabilities of the machine by reducing the 
movable elements. 

The challenging construction of a stiff connection between a long tube and 
the motor was another aspect. A motor housing with an integrated bearing system 
has been developed such it allows the integration of water cooling system. 

The electronic control hardware was modified to realise a direct force control 
of the motor (current control), which is a necessary condition for the 
implementation of model-based feedforward control. Except the current control, 
the drive control is implemented on a DSP card including the calculation of the 
actuator position from the position signal of the Hall-sensors. Using a simple 
PID-controller and the developed compensation strategies, the positioning 
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Figure 4: Single Strut with Integrated Linear Drive and Cardan Joint 

accuracy of the actuator could be improved by factor 10. However, it has to be 
mentioned that the amount of information of the Hall-sensor is limited. An 
accuracy of about 20 jum can be achieved for the repeating accuracy for PTP 
(point-to-point) motions. Nevertheless, an external position measuring system 
has still to be chosen for applications that require absolute accuracy less than 
100 urn. The maximum force of a single actuator is 200 N. 

Modeling 

Newton - Euler equations in combination with d' Alembert's or Jourdain's principle 
of virtual work or power are known to be highly efficient for the solution of the 
inverse dynamics of parallel robots, see [7]. Therefore, an approach is utilized 
which combines Jourdain's principle in parameter-linear form with analytical 
rules for the determination of the minimal parameter set, see [3]. 

The approach leads to very efficient C-code. It yields a formulation of the 
rigid-body dynamics, which is linear with respect to the base parameter 
vector Prb,min that consists of unknown and minimal inertial parameters of 
the mechanism 

rb = Ab(*,0/6)prb 
,min 

where Qa,rb is the vector of the actuator forces caused by rigid-body dynamics. 
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The matrix A\X, 0,0) comprises all kinematical quantities and is a function of 

the generalized coordinates, velocities and accelerations. These are chosen as position 

and orientation of the TCP-platform x and its velocity 0 = I(O)^E ( 0 ) W E 

Besides rigid-body dynamics, the losses in actuators, gears and bearings 
are taken into account by friction models. The losses are normally modeled as a 
force characteristic which is only a function of the joint velocity qi, e. g. by a 
sum of viscous damping and dry friction: 

= rl,iQi + r2,/sign(<7/) (2) 

These single joint friction models are not restricted to actuated joints. 
Friction models of passive joints can simply be taken into account by using 
Jourdain's principle of virtual power. With the variables of all considered 
joints q and the corresponding friction forces Qf , the effective actuator 
friction forces Qa,f result in 

' * ]TQ< - J ^ ^ T Q < , 3 ) f = 
[sq 

where qa are the velocities of the actuated joints. Thus, the effective 
actuator friction forces depend directly on the actual configuration x because 
the JACOBIAN(ac7 / dqa )T is a function of x. By taking into account 
previous equations, it is easy to formulate the effective friction forces in a 
parameter-linear form: 

= J T ( | | ) T [ q s i g n ( q ) f M = A f ( x , e , e K , (4) 

AI Pf.mm 

Combining equations (1) and (4) yields the final form of the integral dynamics 

= Arb(x, e, e)>rb,min + A f (x, e, e)>f>min = A ( X , e, e ) P © 

Identification Approach for the Dynamic Parameters 

The main advantage of applying linear estimators is their computational efficiency. 
This explains their wide reputation in the identification of the dynamics for serial 
robotic manipulators, see [2]. 

For parallel structures, linear estimators have also proven their efficiency in 
recursive [4] as well as in the general form [10]. 
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Linear Parameter Estimation 

The formulation of the estimation problem can be derived from (5) as 

A ( x ( 1 ) , e ( 1 ) , e ( I ) ) " 

p + 

(1) 

<N ) 
(6) 

"F 

with the measurement vector /", the information or regression matrix tp and the 
error vector #7 that accounts for disturbances. The formulation of PKM dynamics 
in a linear form reduces the system complexity to a simple LP model structure 
(linear in its parameter). The solution of the over-determined equations system 
(6) in a Least-Squares sense yields the estimation p of the parameter vector 

= min(#7Ti7) => p = ( v T v ) ~ V T r 

This corresponds to an upper bound for estimation uncertainty, see [8]: 

- P cond OF ) 

(7) 

(8) 

are where K = cond ( V ) = ^ ^ - ^ a n d a m a x ( v ) , o m i n ( v ) 
amin \T ) 

respectively the largest and smallest singular value of the information matrix. 
The condition number K can be used as a criterion for parameter excitation 
([9], [10]), since it is the quotient of the largest and smallest singular values of 
yj . Its minimization yields uniform excitation of all elements of the parameter 
vector p and minimizes therefore the upper bound of the estimation 
uncertainty, equ. (8). Hence, the experiment design is the task to find a N-
dimensional set of configurations (see (6)), such that the corresponding 
information matrix has a minimal condition number. In the case of an indirect 
identification approach, this set is composed of single discrete TV 
configurations that resulted from N different and simple trajectories, see [8]. 
In the direct estimation the N elements of the information matrix correspond 
to one continuous trajectory, which has to be designed to fulfill the optimality 
criterion of minimal condition number. It is also very important to notice that 
this criterion is sensible in the deterministic framework, where the disturbances 
of the information matrix tj# is assumed to be negligible in comparison to the 
measurement noise #7 • 
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Input-Trajectory Optimization, Design of Experiments 

Generally, excitation trajectories are obtained by means of nonlinear 
optimization with motion constraints (e.g. joint limitation, workspace, etc.). 
The mathematical description of the motion is crucial for success and 
computational efficiency of the optimization, because the trajectory parameters 
are the degrees of freedom of the optimization problem. By considering £ as 
the vector regrouping such parameters, a trajectory in the space of minimal 
coordinates can be describes as follows 

3(?)=jxe/?6,ft(x,t,?)=0,Vt} (9) 

The optimal excitation trajectory has to minimize the resulted condition 
number and is associated with the optimal parameter set £Q 

50 = arg min (cond(v(s(f)))), 

with respect to the constraints of workspace as well as the kinematical and 
actuation constraints. For serial manipulators several approaches have been 
presented, which use different trajectory parameterization ([9]). The optimization 
criterion (10) in case of PKM is very challenging, see [10], [21] which is mainly 
due to the strong workspace constraints. Minimal slopes and tilting of the tool 
platform yield important reduction of the workspace. Using polynomial approach 
for optimal input design, such it is known from serial manipulators leads to 
huge computational effort and do not guarantee convergence or satisfying 
minimization of the condition number K . However, the approach presented in 
[10] has been successfully adapted for the dynamics of parallel kinematics. The 
excitation trajectories consist of a finite sum of harmonic sine and cosine 
functions in a form of a finite Fourier series. They can be expressed in cartesian 
frame, since they present the minimal or general coordinates 

*/W-*o "I?\-^sm(kco ft)-^^cos(k(O ft)\ 0°) 
m {kcof kcof I 

Each general coordinate x. corresponds to an appropriate trajectory 
parameter vector: 

? ' = [x'QI |x(, - ti'n, v[, ••• v ^ J T . (11) 

The fundamental pulsation oof of the Fourier series is the same for all degrees 
of freedom. Thus the trajectory is periodic with a period of Tf = 2JI / (Of. The 
vector of all trajectory parameters I; groups £ ' a n d the fundamental 
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pulsation oof Its dimension is equal to 6(2« + l)+l=12w + 7 and depends only 
on n, which can be chosen arbitrarily. Figure 5 depicts exemplarily one period of 
an optimized trajectory. 

Indications on the Kinematical Computation 

A further challenging point about the dynamical identification of complex 
parallel manipulators is the computation of minimal kinematical variables 
x, 0, §. The minimal coordinates are generally obtained by numerically 
solving the direct kinematics, see [11]. 

tls] 

Figure 5: Example of An Optimized Excitation Trajectory in Cartesian 
Displacements (above) and Tilting Angles (below) 

Conventionally, the computation of velocities and accelerations is done 
by numerical differentiation ([8], [9]). This yields in most of cases to important 
accumulation and amplification of numerical and measurement errors ([10]). 
The assumption of noise poor yj is not maintainable any more. Thus, it is 
recommended to apply the methods suggested in [9] and [10]. Since the 
trajectory is available analytically, see equ. (11), the time derivatives can be 
determined. By means of the forward kinematics, the obtained data x is 
approximated by a finite Fourier series with the same form as the desired 
motion given by equ. (11). The parameters of the measured trajectory % are 
estimated by applying LS-estimation and inserted in the time derivatives in 
order to obtain Q as well as § . The efficiency and precision of the approach 
were demonstrated using experimental data in [18]. 
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Application to the Hexapod PaLiDA 

The presented algorithms are applied to the Hexapod PaLiDA, an innovative 
Stewart-Gough- platform which was developed by the Institute of Production 
Engineering and Machine Tools at the Leibniz University of Hannover, see [6]. 
The identified models are validated by a lot of different trajectories. The close 
agreement of measured and modeled actuator forces proves the capacity of the 
presented approach. The application to model-based feedforward control yields 
significant reductions of tracking errors. Figure 6 shows the tracking errors of 
actuator 4 during a circular trajectory with a diameter of 0.3 m and endeffector 
path velocity of 1 m/s. The largest tracking errors are already reduced by the 
rigid-body model without friction. These deviations occur at the beginning and 
the end during acceleration and deceleration phases. However, the deviations 
during constant velocity phase still remain. These errors are reduced after 
incorporation of the friction model. For the same trajectory, Cartesian path errors 
are also investigated by computing numerically the direct kinematics. As an 
example the results are also shown in Figure 6 for strut 4. 

In analogy to the actuator errors, the implementation of the identified model 
yields excellent reductions of path errors, see Figure 7. 

2 

B ° 
E 

-4 

" \ [ original 
\ 1 rigid-body model 
\ I — with friction 

0.6 0.8 1 1.2 
/[s] 

Figure 6: Reduction of Control Errors By Model-Based Feedforward Control 
for a Circular Trajectory (for example: strut 4 of PaLiDA). 

Figure 7: Improvement of Positioning Accuracy by Model-Based Feedforward 
Control for a Circular Trajectory. 
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Iterative Learning Control (ILC) 

It was noticed that despite the feedforward compensation of nonlinear dynamics 
and the accurate identification of its parameters, some tracking errors still remain, 
see [19]. This is due to non-modelled effects and electromagnetic actuator 
disturbances, primarily. To further increase the control quality, it is opted for 
applying ILC on the parallel highly coupled mechanism, which is rather a new 
application in parallel robotics. 

Furthermore, it is questionable that the use of direct drives does allow a 
simple formal decoupling of the complex MIMO-system into multiple SISO-
systems. This is demonstrated to be acceptable only in the case of conventional 
industrial robots or mechanisms, where high gear ratios are used ([ 16], [ 17], [21 ]). 

In order to implement linear iterative learning approaches on parallel and 
therefore highly coupled systems a centralized control architecture has to be 
provided, i.e. feedforward or feedback computed force control. The consideration 
of time-variable inertia effects of the actuator can be also used for further 
decoupling-control of the system, see [22]. 

The actuators are equipped with conventional PD-controllers, whereas an 
additional feedforward-compensation of the nonlinear dynamics takes place. 
Therefore, the ILC is used to decrease the tracking errors of the closed-loop 
feedback controlled system. 

Basics and Design of ILC 

The practicability and appropriateness of two ILC methods for PKM have been 
compared. Approach 1 is based on filtered and phase-lead compensated integral 
learning ([16], [19]). This algorithm is called sometimes heuristic, since it is not 
based on an explicit plant model, see [15]. Its implementation is very practical 
and its design is intuitive and exploits experimentally collected information. In 
contrast, approach 2 is designed based on explicit knowledge on the system 
and its transfer dynamics, see [12]. Hereby, the contraction-mapping is chosen. 
It is interesting to compare both algorithms, in order to find out, if explicit 
modelling has benefits as suggested in [15]. Firstly, preliminaries on ILC are 
introduced in the following. 

A system is supposed that achieve the same repetitive task over and over. 
A general SISO or MIMO linear discrete-time system can be described by the 
state space notation 

x(k +1)= A(k)x(k)+ B(k)u(k)+ cox{k) 

y(k)=C(k)x(k)+co2(k\ 
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with u being the input and.y the output. It is assumed that H>U represents some 
deterministic disturbances that appear every repetition as well as measurement 
disturbances. The system is supposed to be under feedback control, such that 
equ. (12) describes the closed-loop dynamics. 

The aim of ILC is to change the command input every trial j using the 
learning control law 

«yi (*)-/* (uj {k \ yj(k), y d (k ft (13) 
such that the desired trajectory >>d is tracked as follows 

^\\yj(k)- yAk)\\-o. d4) 

Iterative Learning Control is called linear, when the learning \awfL makes an 
iterative change in the input that is a linear combination of the error e. =y.-yd 

measured in the previous repetition and the last input sequence «.: 

Uj+t-Uj+Lej. (15) 

The matrix of learning gains L has to be designed in a further step to achieve 
desired convergence properties or stability. It is simple to derive the iterative 
error dynamics as 

eM = {l-PL)ep (16) 
where / is the identity matrix and 

P = 

CB 0 0 
CAB CB 0 

CAniB CA"ZB CB 
(17) 

with N being the length of the desired trajectory or input. Most important 
design criteria of ILC are stability conditions and convergence behaviour of the 
controller presented by the entries of the matrix L. Given the error dynamics in 
the iteration domain (16), it is obvious that asymptotic stability is achieved, 
when all eigenvalues of I* PL are less then 1. More relevant from the application 
point of view and practice is the monotonic decay of error e over the trials. 
Longman proposed very popular and practical criteria for monotonic 
convergence of tracking errors, see [16]. It is based on a frequency domain 
analysis of the system. Assuming that the matrix L is lower triangular, so that it 
is generated by a causal difference equation (16) can be transformed to 

2 ? / + 1 ( z ) = ( / - z * ( z ) c ( z ) ) £ y ( z ) 08) 
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where G(z) = C (zIA) *B denotes the transfer function corresponding to L. The 
substitution of z = exp{j(x)T} yields the frequency transfer function. The condition 

1 - eJmT^(eJmT)c(eJaT)\< 1 (19) 

V a) = 0 ... a) Nyquist 

assures monotonous decay of the amplitude of all frequencies up to the 
Nyquist-frequency ([16], [19]). The simplest design of ILC is achieved by 
selecting the learning matrix to be a diagonal matrix: L = 4>/(i.e. for MIMO-
Systems). It is well-known and proven, that such approach is characterized 
by bad learning transients at high frequencies ([12], [13], [16]). Even if 
mathematical convergence is guaranteed, the control error increases remarkably 
before decreasing to zero, see [16]. To cope with this problem, following two 
approaches are presented for ILC. 

A. Design of Phase-Lead Compensated IL C 

The use of a low-pass zero-phase non causal filter / to cutoff the high 
frequencies improves the performance of the ILC. Additional phase-lead 
compensation increases the learning bandwidth of the algorithm. The learning 
control law (15) becomes 

uJ+l{k)= Uj(k)+ 0,f{ej(k +1 + /ft (20) 

where L characterizes the linear phase-lead compensation. 
Obviously, zero-error convergence is not possible any more, even in the noise-
free case due to the information filtering. This approach needs the adjustment of 
three parameters: the learning gain <Pr the cutoff frequency of the low-pass 
filter co and the phase-lead /. This adjustment can be achieved experimentally 
([ 16], [ 19]) by investigation of the closed loop system dynamics in the frequency 
domain. In our case a 10th order Butterworth filter was used. The learning 
parameters are adjusted according to the investigated frequency-response of 
the closed-loop feedback control system that can be done by simulation or the 
real system. The error evolution according to the control law (20) in the frequency 
domain can be derived as 

Ej+x{z)= (i - ZM0IF(Z)G{Z))EJ{Z\ (21) 

that modifies the condition of monotonic error decay (19) to 

|l _ 0ie^
+l^TF (ejwT )G (ej(oT ) < 1, (22) 

where F is the filter-transfer function. 
For seek of clarity we consider now a single axis of the robot as a SISO 

system with a measured frequency response G(eJ(o7) and the case of zero-phase-
lead (/ = 0). The tuning of coc and 4>7 by examining Nyquist-plots of G9 = <Pye 
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i(1+l){aTGW\\h arbitrarily chosen amplification <Pp e.g. 4>7 = G'l((0=0) and G being 
an estimate or measurement of the real frequency response (see Figure 8). It is 
obvious that the monotonic error decay condition (22) is valid for all frequencies 
for which the plot remains within the unit-circle (centered at +1). The maximal 
possible cut-off frequency corresponds to the frequency when the Nyquist-plot 
leaves the unit circle the first time. 

The described approach based on conditions (19) and (22) is based on the 
approximation of the closed-loop dynamics by the linear presentation of the 
frequency response. The parallel manipulator is characterized by its nonlinear 
and coupled dynamics, even by the presence of feedforward compensating 
controller, see [21]. Furthermore, the frequency response based on transient 
condition (19) assumed that the system reaches steady-state frequency 
response after the transients [16]. To account for these approximations, as well 
as for errors while investigating the frequency response, the cutoff frequency 
is chosen as co c = 1/2 CO max, which has been proven for the application in our 
case to be reasonable (see Figure 8). The linear phase lead helps to increase the 
learning bandwidth. 

It is very simple to deduce from equ. (22), for the same gain &x and in the 
case of / > 0 the Nyquist-plot leaves the unit circle at a higher frequency. One 
makes Nyquist-plots of G for a range of integer phase leads and picks the value 
that keeps the plot less than 1 up to the highest frequency. 

J d 

Figure 8: Nyquist-plot for the Tuning of Learning Bandwidth, left: F{ =1.6 or 
w = 2 Hz; right: F. = 1 Hz or wr = 0.5 w =20 Hz. 

max ' ° 1 C max 

B. Design of Contraction-Mapping Based ILC 

Contraction mapping ILC defines the learning matrix L = <P{P
T, where P is the 

Toeplitz matrix defined by (17). In contrast to the first approach, explicit and 
parametric system knowledge is required here in form of the matrix P. Again, the 
asymptotic stable feedback controlled MIMO-system is approximated by 
decoupled linear time invariant LTI-SISO systems. In such case, P contains the 
values of the impulse response g(k) 
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P = 1(2) g(l) 

g(N) g(N-l) ••'• g ( l ) 

(23) 

Experimental investigations determine an optimal ARMAX-structure of the 
actuators model. The respective model parameters can be identified using standard 
procedures, see [22]. Hence, the impulse response can be computed and inserted 
in equ. (23). A filtering is not necessary for the contraction-mapping ILC. Therefore, 
a zero-error convergence can be achieved theoretically. A further difference to 
approach 1 is that the condition on monotonic error decay can be derived in the 
iteration domain by claiming an exact Euclidean norm decay condition 

(24) 

It yields by regarding (16) 

\\(l-PL)*j\\2<\\ej\ 
\29 

or 

K*-«0L<i. 

(25) 

(26) 

Since L = ^P7 and the spectral norm of the symmetric matrix PP* is equal to its 
maximal eigenvalue a one obtains 

||(/ - PL | 2 = max |/ - 0iOi (PP T ] < 1 

(PPT)<1 

(27) 

- 1 < \-4>l0n 

and therefore a rule for the learning gain <f> that allows monotonic error decay 

O < 0 i < (28) 

In analogy to the first approach it is aware about the restrictive assumption 
of the LTI-SISO modeling that provides advantageous, since it makes the 
application of efficient linear ILC possible ([12], [15]). It is reminded here, that 
the feedback-controlled parallel manipulator is equipped with a feedforward 
control that compensates the time-variant nonlinear and coupled dynamics 
([17], [18], [21]). 

The resulting closed-loop error dynamics remains nonlinear, of course. 
However, their amplitudes are much smaller, that legitimates a linear and 
decoupled approach. To account for remaining model uncertainties it is 
convenient to choose a significant smaller gain than the allowed upper bound 
given by (28). 
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Simulation Study 

The proposed approaches are studies on an accurate model simulation of the 
parallel robot, which includes rigid-body, friction dynamics, exogenous 
disturbance forces and parametric and measurement uncertainties. Two 
trajectories are chosen to be evaluated. The first one is a horizontal quadratic 
trajectory in the middle of the workspace (z = 0.65 m, length of side d = 0.28 m). 
The second trajectory is a circular one with a radius of 0.2 m and is also situated 
at the same height. For both trajectories convergence has been investigated. 

The evaluation of the tracking error can be done by the means of a weighted 
Root-Mean-Square- or RMS-Criteria defined for the complete system and not 
for single actuators as 

eRMS = (29) 

The results are illustrated in Figure 9. 

S3 It-

long term simulation 

- phase-lead compensated 
• contraction mapping 

100 200 300 400 500 600 700 800 900 1000 
trajectory 1 

— phase-lead compensated 
- - contraction mapping 

10 15 
trajectory 2 

20 25 

phase-lead compensated 
contraction mapping 

10 15 
Iteration 

20 25 

Figure 9: Convergence of the RMS-error: Simulation Study of the Two 
Investigated Approaches 
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Both ILC-algorithms show similar performance. The RMS-error converges 
after a few iterations to a fix value. The long term study did not reveal any 
divergence which is very satisfactory. The influence of measurement noise is 
also investigated. For the first trajectory, the ILC procedure was repeated with 
different measurement white noise level wr The normal noise case corresponds 
to the estimated disturbances of the real system. 

The results illustrated in Figure 10 show that convergence rate remains 
for different disturbance levels equal, whereas the magnitude of the final error 
increases at higher noise level. As theoretically expected even in the noise-
free case, zero-tracking can not be achieved for zero-filtered ILC due to the 
loss of information. 

The contraction mapping did not reach zero-tracking either, but this is 
due to the structural and parametric uncertainties of the used ARMAX-model. 
Next result investigated in the simulation is the study on the influence of the 
compensation of the nonlinear coupled dynamics. Both approaches can deal 
with coupled dynamics. The used SISO-assumption is therefore admissible. 
As it is depicted in Figure 11 the same RMS-error level is reached in the case 
when no inverse model of the robot is compensated (decentralized control 
case). Of course, the convergence speed is inferior to the case of compensated 
dynamics (centralized control case). Minor difference remains when using 
contraction mapping. 

This can be explained, that the ARMAX-model is a less accurate 
approximation of the dynamics in the case, when no compensation of 
nonlinearities is used. 
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normal noise 
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15 20 

>ping ILC 

zero-noise J 
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Figure 10: Convergence of the RMS-error in Presence of Different 
Measurement Noise Levels (Simulation Results). 
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Figure 11: Influence of the Control Architecture on Learning Performance 

Finally, periodograms have been used to illustrate the remaining tracking 
error after the 20th ILC-trial. The spectral density of the tracking errors of one 
arbitrarily chosen actuator are compared with the related initial errors. Figure 12 
demonstrates clearly the success of ILC for the attenuation of the tracking errors 
about at least 30dB at low frequencies (< 50Hz). Both validated approaches were 
successful and are comparable in their performance. 

-50 

-60 

without ILC 
phase-lead compensated 
contraction mapping 

60 80 
f[Hz] 

120 140 

Figure 12: Spectral Densities of Tracking Errors in Simulation: Without ILC, 
After 20 Iterations of Phase-lead Compensated ILC and After 20 Iterations of 

Contraction Mapping 
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Experimental Results 

After the simulation study ILC was performed on the real system. The parallel 
robot is controlled with a commercial board which is a dSPACE Power-PC 604e 
(333 MHz). Only internal Hall-sensors are used for measuring the actuator lengths. 
Unfortunately, these sensors are reputed by being very noisy, see [17]. Figure 13 
shows a comparison of the RMS error over the trials for the two approaches and 
for the two investigated trajectories. 

phase-lead compensation 
contraction mapping 

3 6 9 12 15 
Iteration 

phase-lead compensation 
contraction mapping 

3 6 9 12 15 
Iteration 

Figure 13: RMS-error Convergence for the Parallel Robot, Up:Quadratic 
Motion, Down:Circular Motion. 

Besides similar convergence behaviour, the contraction-mapping approach 
seems to be more advantageous on the real system. This can be explained, that 
the approximation of the nonlinear dynamics of the real manipulator with the 
linear frequency response is less accurate than the dynamics modelling using 
ARMAX equations. 

It demonstrates the improvement of the tracking performance, achieved by 
both tested approaches. The examination of the corresponding spectral densities 
of the control errors (see Figure 14) affirms that in the practical case, contraction 
mapping ILC yields more improvement of control accuracy. This is observed 
especially for low (< 10Hz) and high frequencies (> 50Hz). 

The time histories of the tracking errors are depicted for an exemplarily 
chosen actuator 4 in Figure 15. 
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Figure 14: Spectral Density of Tracking Errors in Experiments: Without ILC, 
After 20 Iterations of Phase-lead Compensated ILC and Contraction 

Mapping Method ILC 

Figure 15: Remaining Tracking Error of Actuator 4 by Using Feedforward 
Control (up), After Phase-lead Compensated ILC (middle) and After 

Contraction-mapping ILC (Down) 

Conclusions 

In this paper an approach is presented that makes the identification of the 
dynamics of complex parallel mechanisms possible. The presented identification 
method of the dynamical parameters for parallel manipulators is based on a 
direct approach. Hereby, only single optimised trajectories are needed for well 
conditioned measurements and therefore good estimation results. This paper 
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also proposed iterative learning control (ILC) for enhancing tracking performance 
of a parallel direct driven manipulator. The promising results have shown that 
simple linear ILC approaches were sufficiently applied to achieve important 
improvement despite the nonlinear coupled dynamics of the system. A phase-
lead compensated algorithm and a contraction-mapping based approach were 
compared first in a simulation study, than by experiment on the real system. 
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