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ABSTRACT 

 

In this paper, an analytical method for determining the stress-deformation 

condition of thin-walled box beam subjected to bending condition was 

developed. Solution by Vlasov method from a stationary condition 

complementary energy in Stress-form was developed and its adaptation and 

application through computer software MAPLE was demonstrated. Quick 

results can be obtained for various geometries, material properties and 

loading conditions enhancing parametric studies in design. Distortion effect 

(or shear lag effect) due to flexural bending was also included. 

 

Keywords:  Cross-Section Distortion, Thin-Walled Beam Bending, Shear 

Lag, Analytical Method  

 
Nomenclatures 

 
E, G  = modulus of elasticity and rigidity of thin walled panel, 

respectively 

Μ  = poisson ratio 
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x, y, z  = dimensional coordinates with respect to width, height and 

length of the thin panel beam 

s  = curvilinear coordinates with respect to contour of the thin 

panel 

wy  = distributed load in y-direction 

Vy  = transversal shear force in the y-direction 

Mx  = flexural bending about axis x 

Mz  = torsional twisting about axis z 

Nz, Ns, Nzs  = stress resultants in thin panel, force per unit length 

r  = r-th panel 

hr  = total thickness of the skin of the corresponding   r-th panel 

lr  = length along contour of the r-th panel 

ρ  = moment-arm of the shear flow q about axis z 

ω  = double of area of the analyzed contour 

 
  

Introduction 
 

In the preliminary design of thin-walled box beam it is desirable to have a 

reliable and simple analytical method for determining the stress-deformation 

condition, allowing direct link between parameters of design and the influence 

of these parameters on the stressed condition.  

Engineering stress solutions of thin walled box beam have been 

developed by many researchers before. However, in this paper, solution by 

Vlasov method from a stationary condition complementary energy in Stress-

form instead of Displacement-form was developed and its adaptation and 

application through computer software MAPLE was demonstrated. With the 

use of computer program, quick results can be obtained for various geometries, 

material properties and loading conditions enhancing parametric studies in the 

design. Distortion effect (or shear lag effect) due to flexural bending was also 

included. 

 

Literature background 
 

The theoretical formulation of linear elastic thin-walled beams was derived by 

Vlasov [1]. Many contemporary researchers are currently working to improve 

or apply this theory in their works to suit their applications. Some researchers 

developed fully closed form analytical method solutions while others mixed 

them with finite element method. In [3], [4] various complex calculation 

models of materials were described in detail.  

Back and Will [5] presented a new finite element for the analysis of 

thin-walled open beams with an arbitrary cross section based on Timoshenko 
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beam theory and Vlasov theory which included both flexural shear 

deformations and warping deformations. 

Pavazza and Blagojevic [6] considered analytical approach to the 

problem of the cross-sectional distortion of prismatic beams with closed 

rectangular thin-walled cross-sections subjected to bending with influence of 

shear effect.  

Obraztsov [2] presented analytical solution of prismatic moment-free 

(membrane) linear elastic homogeneous closed thin panel caisson using Vlasov 

method solved in term of displacement. The solution was derived from 

Lagrange variational principle using potential strain energy.  Effects of 

warping due to torsion and flexural bending were accounted and also the 

caisson was subjected to variable transversal shear, flexural bending and 

torsional moment. 

In this paper, an analytical method of prismatic closed section beam box 

made of thin isotropic materials was developed allowing analytical solution 

approach which is convenient for design analysis in engineering. The problem 

was solved in stress form like in [3] using Vlasov method from a condition of 

stationary complementary energy. Distortion effect (or shear lag effect as 

shown in Figure 1) due to flexural bending was also included. The beam box 

analytical model can be subjected to variable transversal distributed loads (wy) 

with their consequential effects of shear load (Vy) and flexural bending moment 

(Mx) typical of many engineering loads on beam structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Shear lag effect of box beam after bend-up by load, contraction dside 

differs from dctr 

 

Before After 

dside dctr 
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Analytical Method Formulation 
 

Let consider a doubly-symmetric prismatic thin-walled box beam made of 4 

membrane structural panels and on it operate only normal stress resultants Nz, 

Ns and shear stress resultant Nzs (Figure 2). Origin of coordinate axes x, y and 

z is at the centroid of the section and also x and y axes are parallel to the sides 

of the box section. Curvilinear coordinate s is also introduced for use with the 

contour integral as applied in [11, 12]. Note that s can be defined as a function 

of x and y. 

Then the equations of equilibrium can be written like equations 3.90a 

and 3.90b in [7] as Equation 1. 

 

 
∂Nz

∂z
+

∂Nzs

∂s
= 0       ,       

∂Nzs

∂z
+

∂Ns

∂s
= 0                      (1) 

 

All stresses will be the result of loads due to, wy with its 

consequential effects of shear Vy and flexural bending Mx (Figure 2).   

 
Figure 2: Box beam under transversal distributed load 

Using equation (1), it is possible to express stress resultants Nzs and Ns 

in term of longitudinal stress resultant Nz as Equation 2. 

 

Nzs = − ∫
∂Nz

∂z
ds + q0(z) 

 

Ns = ∬
∂2Nz

∂z2 ds2 − [q0
′ (z) ∫ ds] + n(z)                        (2) 

L 

s 

H 

 

x

y

z

B 

Mx 

wy(z) 
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 Herein after the symbol prime means a derivative with respect to 

coordinate z from the functions which depend only on z; q0(z) and n(z) are 

functions of integration with respect to shear flow and contour stress resultants 

and provide displacement compatibility in the contour of the prismatic thin 

panel. 

The longitudinal stress resultant Nz 
is defined as the products of 

functions Xi(z) and φ
i
(s) to determine the stress distribution in the prismatic 

thin membrane panel. The first three functions X1(z), X2(z)and X3(z) take 

into account the simple beam theory components of the elastic stress, i.e. 

Nz,SB = (X1 + X2y + X3x) hi. They are assigned as multipliers for obtaining 

the traditional geometrical parameters of the section and an additional function 

X4(z) takes into account of distortion section in the clamping area of the 

structure due to bending about axis x. Then the general representation of Nz 

and Nzs can be written down as Equation 3. 

 

Nz = Nz,SB + X4φ
4

  

 

Nzs = − ∫(Nz,SB
′ + X4

′ φ
4

) ds + q0(z)                              (3)                                                     

 

where             

 

φ
4

= φ
4

̅̅ ̅ + C1Nz,SB        ,        φ
4

̅̅ ̅ = x2y  

 

C1 ≡  orthogonaliztion coefficient 
 

Interesting to note that in case of simple beam (denoted by subscript 

‘,SB’) where distortion is disregarded then Equation 3 becomes: 

 

Nzs,SB = − ∫ Nz,SB
′ ds + q0(z)  

 

The values of the first three functions X1(z), X2(z) and  X3(z) of Nz,SB, 

have the usual appearance of the solution of simple beam theory problem. As 

in [3] the normal resultant stresses (Nz, Ns), and shear resultant stress (Nzs) are 

derived based on transversal shear  Vy and bending moment Mx.  

 

Vy = ∫ wy dz       &     Mx = ∫ Vy dz 

 

From simple thin-walled closed section panel beam subjected to 

transverse shear and torsion, normal and shear stress resultant from [2], [4] 

give Equation 4 and 5. 
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Nz,SB = −
Mx

Ix
yhi                                                                                                       (4) 

 

Nzs,SB = qV(z) + q0(z)                                                                       (5)                  

where                                  

Mx = ∫ Vy(z)dz

z

0

        ,         Vy = ∫ wy(z)dz

z

0

 

qV =
VyQx

rel

Ix

               ,        Qx
rel = ∫ y̅ds

s

0

 

 

Ix = area moment of inertia taken at the centroid 

 

and comparing with Equation 3 also note that  

qV(z) = − ∫ Nz,SB
′ ds 

 

Substitute into Equation 3 become 

 

Nzs = qV(z) + q0(z) − ∫(X4
′ φ

4
) ds 

 

Furthermore, by using Equation 5 yields 

 

Nzs = Nzs,SB − ∫(X4
′ φ

4
) ds 

 

Any two nontrivial functions u(x) and v(x) are said to be orthogonal if [8]. 

 

<u,v> =∫ 𝑢 ∙ 𝑣 𝑑𝑥 = 0 

 

As was done in [2], orthogonalization of function φ
4

̅̅ ̅ with expression 

Nz,SB, is carried out such that the function is self-equilibrium (self-balanced) 

in the section of the thin panel and only influenced by redistribution of stress 

resultants due to distortional constraints of the contour in the clamped (or built-

in) area. Then new functions can be written down as Equation 6. 

 

φ
4

= φ
4

̅̅ ̅ + C1Nz,SB                                                          (6)                                          

 

Coefficient of orthogonalization, C1 is obtained by satisfying the condition: 
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∮    Nz,SBφ
4

ds = 0 

 

In the closed section thin membrane panel that is loaded with the given 

moment and force, stress resultant Ns is one order less than the other stress 

resultants. Therefore in the calculations only stress resultants Nz and Nzs are 

considered. Next the unknown function X4(z) is found using the Variational 

Principle of the Least Work. In this case Potential Energy is written down in 

the form:  

U = ∫ [∮ (
Nz

2

2Ezh
+

Nzs
2

2Gzsh
) ds] dz

𝐿

0

 

U =
1

2
∫ [∮ (

Nz
2

Ezh
+

Nzs
2

Gzsh
) ds] dz

𝐿

0

 

Let   

C11 = 1
Ezh⁄           and      C33 = 1

Gzsh⁄  

U =
1

2
∫ ∮(C11Nz

2 + C33Nzs
2 )dsdz

L

0

 

 

Let stress function, 

 

Φ =
1

2
∮[C11Nz

2 + C33Nzs
2 ]ds 

U = ∫ Φdz

L

0

 

 

Recalling 

 

Nz = Nz,SB + X4φ
4
 

Nzs = qV − X4
′ ∫ φ

4
ds + q0(z) 

 

q0(z) is written using the following familiar torsional moment equilibrium 

relationship, 

Mz = ∮ Nzsρds 

 

But, since torsional moment Mz is not considered, therefore: 
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0 = ∮ Nzsρds 

0 = ∮ (qV − X4
′ ∫ φ

4
ds + q0(z)) ρds 

0 = ∮ qVρds − X4
′ ∮ (∫ φ

4
ds) ρds + ∮ q0(z)ρds 

∮ q0(z)ρds = − ∮ qVρds + X4
′ ∮ (∫ φ

4
ds) ρds 

 q0(z)ω = ∮ q0(z)ρds 

 q0(z) =
1

ω
[− ∮ qVρds + X4

′ ∮ (∫ φ
4

ds) ρds] 

 q0(z) = −
1

ω
∮ qVρds + X4

′
1

ω
∮ (∫ φ

4
ds) ρds 

and let  

qMzv = qV −
1

ω
∮ qVρds 

𝑏4 = ∫ φ
4

ds −
1

ω
∮ (∫ φ

4
ds) ρds 

therefore 

𝑁𝑧𝑠 = qM𝑧v − X4
′ b4 

 

As a result,  

 

U =
1

2
∫ ∮ {C11[Nz,SB + X4φ

4
]

2
+ C33[qM𝑧v − X4

′ b4]2} dsdz

L

0

 

Φ =
1

2
∮ {C11[Nz,SB + X4φ

4
]

2
+ C33[qM𝑧v − X4

′ b4]2} ds 

 

A necessary condition that X4 minimize U(X4) is that the Euler equation: 

 
d

dz

∂Φ

∂X4
′

−
∂Φ

∂X4

= 0 

 

is satisfied.  So differentiate Φ accordingly and substitute into the necessary 

condition, 

 
d

dz
{∮[−C33(qM𝑧v − X4

′ b4)b4]ds} − ∮[C11(Nz,SB + X4φ
4

)φ
4

]ds = 0  
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Continue to differentiate with respect to z, 

 

∮[−C33(b4qM𝑧v
′ − b4

2X4
" − 2b4b4

′ X4
′ + b4

′ qM𝑧v)]ds

− ∮[C11(Nz,SB + X4(z)φ
4

)φ
4

]ds = 0 

 

And expanding 

 

∮ C33b4
2X4

" ds + ∮ C332b4b4
′ X4

′ ds + ∮ C11X4φ
4
2ds −

= ∮ C11Nz,SBφ
4

ds + ∮ C33b4qM𝑧v
′ ds

+ ∮ C33b4
′ qM𝑧vds 

As b4 is independent of z, therefore b4
′ = 0 and also since X4and X4

"  are 

independent of s, they can be taken out of the integrations. 

 

X4
" ∮ C33b4

2ds − X4 ∮ C11φ
4
2ds = ∮ C11Nz,SBφ

4
ds + ∮ C33b4qM𝑧v

′ ds 

 

And simplifying, 

 

A11X4
" − A12X4 = B1 + B2 

 

where 

A11 = ∮ C33b4
2ds                 ,        A12 = ∮ C11φ

4
2ds, 

 B1 = ∮ C11Nz,SBφ
4

ds        ,         B2 = ∮ C33b4qM𝑧v
′ ds 

 

In short, after substitution in the expression of energy the stresses as in 

Equation 3 and performing integration on the contour, the energy function is 

obtained as U = ∫ Φ(X4,  X4
′ , z)dz

L

0
 and minimization of this function 

produces a differential equation of displacement compatibility for 

determination of unknown function X4(z). And the natural boundary condition 

(condition of clamping) for determining constants of the solution at z = L 

derived from calculus of variations is as Equation 7. 

 
∂Φ

∂X4
′

= 0   →       ∮ C33 qM𝑧vb4ds − X4
′ ∮ C33b4

2ds = 0                  (7) 
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And at z = 0, static equilibrium boundary condition is imposed. 

 

∮ Nzyds = Mx
′ = 0 

 

Thus after solving the differential equation and applying the boundary 

conditions the solution for Nz and Nzs can be obtained. 

 

Illustrative examples 
 
To demonstrate the validity of the analytical Stress-form method developed, 

an exemplary structure was analyzed using it and was compared to two other 

methods, i.e. Displacement-form Method and Finite Element Method. 

Consider a rectangular prismatic box beam loaded by transversal shear 

and flexural bending as follows: w0 = 0.01 N/m,  Vy = 0.01z N, Mx =

0.005z2 N ∙ m. The dimensions of the rectangular prismatic beam box are 

equal to: length = 5.0 m, width = 1.0 m, height = 0.2 m. The panels have 

uniform thickness of, therefore let hi = h = 0.01 m.  

Characteristics of material: elastic modulus, E = 200.0 GPa, shear 

modulus G = 79.3 GPa and Poisson ratio, μ = 0.3. 

 

Currently developed method using MAPLE  
For analytical solution in finding constants of the problem, at 𝑧 = 0 static 

equilibrium boundary conditions are imposed and at z = L natural boundary 

conditions in the form (7) are used.  
Solving using MAPLE the following stress along z –coordinate is 

obtained at 𝑥 = 0.5 and 𝑦 = −0.1. 

 

σz =
Nz

h⁄ = 2.3437 z2  + 1.1526 ∙ 10−7  e3.7693 z

−  0.76769 e−3.7693 z − 0.93663                    
 

 This equation is plotted in Figure 4.The solution of the stress at the 

clamped end (at 𝑧 = 5) and along the horizontal (x-coordinate) of the bottom 

panel (at 𝑦 = −0.1) is: 

 

σz =
Nz

h⁄ = 48.564 + 106.98 x2 

 

and its related curve is shown in Figure 5.  Furthermore, solution of the stress 

at the clamped end (at 𝑧 = 5) and along vertical (y-coordinate) of on the side 

panel (at 𝑥 = 0.5) is: 
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σz =
Nz

h⁄ = −753.10 𝑦 

 

and its related curve is shown in Figure 6. For verification of these results, two 

methods were used, which are Displacement-form Method as in [2] and Finite 

Element Method. 

 

Displacement-form Method 
The following Equation 8 was derived by method of Displacement-form 

shown in [2].  

 

σz = −
w0z2

2Ix
φ

2
+  

cw0

k1
2I1φ

[1 − cosh(k1z) + (
tanh(k1L)

−
k1L

cosh(k1L)

) sinh(k1z)] φ
3

   (8) 

 

where 

Ix = H2 (
A1

6
−

A2

2
)      ,      A1 = Hh       ,       A2 = Bh 

c =
HB2A2

6Ix

                    ,      I1φ =
1

15
A2B4 − c2Ix  

k1
2 =

2B2GA2

3EI1φ

     

     φ
2

= −
H

2
                 ,        φ

3
=

B

4

2

− (
B

2
)

2

− c
H

2
 

 

The curve representing this Displacement-form equation is shown in 

Figure 4. 

 

Finite Element Method 
The Finite Element (FE) model as shown in Figure 3a was developed and 

analyzed using SOLIDWORKS software [10]. The results of FE analysis are 

as shown in Figure 4, 5 and 6. 
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Figure 3a: Finite element model 

 

 
 

Figure 3b: Finite element analysis result 
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Figure 3c: Finite element analysis result 

 

Discussion 
 
From the results of calculation presented in Figure 4, it is visible that the 

suggested Stress-form analytical approach developed here gives good 

agreement with respect to the values of stress in the thin panel in comparison 

with established Displacement-form analytical approach from [2]. However, 

when compared to the FE method approach in Figure 4, 5 and 6, the Stress-

form approach shows slightly conservative results at the intermediate stress 

area but are very close matching at the high stress area.  
 

 

Figure 4: Stress distribution along z vs. distance z 
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Figure 5: Stress distribution along bottom panel vs. distance x at clamping 

area 

 

Figure 6: Stress distribution alongside panel versus distance y at the clamping 

area 

Conclusion 
 
Analytical method of prismatic closed section box beam that is made of thin-

walled isotropic material panels subjected to transverse load was developed. 

This paper uses convenient approach to determine the stresses involved in 

engineering design analysis. Distortion effect (or shear lag effect) due to 
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flexural bending was also included. The problem was solved in Stress-form 

using Vlasov method from a condition of stationary complementary energy. 

Sample calculation performed using the developed method here and method of 

Displacement-form shown in [2] shows that the results of both methods 

coincided well but slightly conservative in comparison to Finite Element 

Method. 
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