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Abstract 
Graft-versus-host disease (GVHD) remains a significant potentially life-
threatening complication of allogeneic hematopoietic cell 
transplantation (HCT). Since the discovery of the human leukocyte 
antigen (HLA) system over 50 years ago, significant advances have 
clarified the nature of HLA variation between transplant recipients and 
donors as a chief etiology of GVHD. New information on coding and 
non-coding gene variation and GVHD risk provides clinicians with 
options to consider selected mismatched donors when matched 
donors are not available. These advances have increased the 
availability of unrelated donors for patients in need of a transplant 
and have lowered the overall morbidity and mortality of HCT.
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Introduction
Patients with life-threatening malignant and non-malignant  
blood disorders can be cured through hematopoietic cell trans-
plantation (HCT). Although siblings who share identical parent  
human leukocyte antigen (HLA) haplotypes remain the pre-
ferred donor, the probability that any given patient has a matched  
sibling donor depends on family size. For patients without  
HLA-matched siblings, the development of registries of unrelated 
donors worldwide has greatly facilitated the identification of suit-
able unrelated donors for transplantation1,2. In the half century 
since the discovery of the HLA system3–6, major advances in our  
understanding of the HLA barrier have made possible the use of 
donors with selected HLA mismatches and have provided many 
patients with the opportunity for a life-saving transplant, particu-
larly patients of non-Caucasian ancestry. A complete understand-
ing of the HLA barrier in graft-versus-host disease (GVHD) 
after unrelated donor HCT requires an appreciation of the unique 
features of the classical HLA genes, non-HLA loci resident to 
the human MHC, and the constituents of extended MHC hap-
lotypes. This review describes the current state of the art for  
transplantation from unrelated donors. Significant advances in 
the use of HLA-mismatched haploidentical related donors with  
post-transplantation cyclophosphamide to overcome the effects  
of HLA mismatching on the non-shared haplotype allow success-
ful transplantation for patients without unrelated donors7. The  
reader is referred to some outstanding comprehensive reviews in  
the current practice of haploidentical transplantation8,9.

The major histocompatibility complex
The human major histocompatibility complex (MHC) encodes a 
series of genes on chromosome 6p, of which the best known are 
the classical class I and class II loci. A formal definition of the 
MHC was made possible with complete sequencing of a reference  
haplotype of approximately 3.8 megabases (Mb)10. Today, over 
269 loci are recognized11 and include four major classes of  
variation: protein coding, non-coding RNAs, small nucleolar 
RNAs, and pseudogenes. The HLA region is characterized not  
only by very high gene density but also by extensive sequence  
variation, particularly of the classical HLA loci. MHC loci are  
well known for their high degree of association with over 100  
diseases12. Together with the fundamental role of HLA proteins 
in the transplantation barrier, the MHC region remains one of the  
best-studied regions of the human genome.

HLA alloantigens were first identified in 1952 by way of com-
plement-dependent microcytotoxicity assays that were informa-
tive for anti-HLA antibodies from blood donors and multiparous 
females3–6. Serologic methods were the mainstay of tissue typing 
early in the history of the field but since have been supplanted 
by molecular methods. Today, next-generation sequencing 
(NGS) platforms designed to comprehensively characterize large  
segments of HLA genes and in some cases establish the cis- 
relationship between markers provide investigators with an  
unprecedented view of sequence diversity and the organization of 
variation on haplotypes13–16. Use of molecular tools for HLA genes 
has led to the recognition of over 3,830 HLA-A, 4,647 HLA-B, 
3,382 HLA-C, 2,011 HLA-DRB1, 1,054 HLA-DQB1, and 740 
HLA-DPB1 alleles, just to name the six classical loci currently 

considered in the selection of HCT donors17. The unique HLA  
allotypes are distinguished by substitutions at key residues that 
define the peptide-binding region (PBR) of the molecule. The 
nature of PBR substitutions reflects the antigen-presentation role 
of HLA molecules in host defense. In transplantation, the extraor-
dinary degree of variation can present a major roadblock to the  
identification of donors for transplantation, as described below.

Graft-versus-host disease after unrelated donor 
hematopoietic cell transplantation: the role for 
human leukocyte antigen alloantigens
GVHD is the second most prevalent cause of mortality after  
unrelated donor HCT18. HLA mismatching remains one of the 
strongest risk factors for risk of acute and chronic GVHD and 
therefore upfront efforts to identify matched donors have been 
the mainstay of pre-transplant donor evaluation2,19–21. The prob-
ability of finding HLA-matched donors depends on the race of the  
patient and on the composition of donor registries22. Although 
international registries have high representation of donors of  
European Caucasian ancestry, this does not guarantee that  
Caucasian patients will always have matched donors. In general, 
the probability of finding HLA-A, -B, -C, and -DRB1 (HLA “8/8”)-
matched donors is related to the parental alleles and haplotypes 
and their frequencies in donor registries23,24. An analysis by the  
National Marrow Donor Program (NMDP) of the Be The Match 
Registry demonstrated that the rate of matching all 10 alleles  
at HLA-A, -C, -B, -DRB1, and -DQB1 loci was lower for 
African-, Hispanic-, and Asian-Americans (<50%) than for 
Caucasian-Americans25. To estimate the likelihood that a  
less-than-perfect match could be identified for any given patient, 
a follow-up analysis by the NMDP focused on the probability  
of finding HLA 7/8-matched donors (one mismatch at HLA-A,  
-C, -B, or -DRB1). Compared to Caucasian-Americans with  
98% likelihood, Hispanic-, Asian-, and African-American patients 
had 86%, 88%, and 82% likelihoods, respectively26. When  
matching considered all five loci, the probability of identify-
ing a donor with a single mismatch (HLA 9/10) was 94%, 72%,  
74%, and 61%, respectively. These data suggest that when an  
HLA 7/8- or 10/10-matched unrelated donor is not available, it is 
feasible to identify donors with one HLA mismatch.

Substantial data from transplant centers and transplant regis-
tries confirm the importance of complete and precise donor HLA  
matching to lower the risks of GVHD2,19,20,27; however, data con-
cerning the acceptability of limited HLA mismatching when  
matched donors are not available are still coming into focus. A 
major impetus for understanding which mismatches can be used 
safely (i.e. are not associated with significantly increased risk of 
GVHD) and which mismatches should be avoided is the premise 
that relaxing donor selection criteria will substantially increase 
the odds of identifying donors for all patients. In fact, for patients 
of African-American background, over 80% will have donors  
mismatched for one HLA-A, -B, -C, or -DRB1 allotype26.

To better understand the genetic basis for patient-donor mis-
matches that increase GVHD risk (and which should be avoided if  
possible), investigation has focused on the polymorphic exons that 
define the PBR of class I and II allotypes. For HLA-A, -B, and -C, 
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this includes characterization of exons 2, 3, and 4, which encode 
the α1, α2, and α3 extracellular domains, respectively; whereas  
the α1 and α2 domains fold to form the PBR between two α  
helices on a β-pleated sheet platform, the membrane-proximal  
α3 domain encodes the main binding site for CD8 and contact  
residues for β2 microglobulin28,29. For class II HLA-DR and -DQ 
allotypes, definition of the transplant recipient and donor includes, 
at a minimum, the polymorphic exon 2, which encodes the residues 
that define the PBR.

Qualitative and quantitative factors of human 
leukocyte antigen disparity in graft-versus-host 
disease risk
A role for donor-recipient mismatching at the classical HLA-A,  
-B, -C, -DRB1, and -DQB1 loci in GVHD risk has been amply 
demonstrated2,19,20,27. Investigation into the clinical significance of 
the sixth and last classical HLA gene, HLA-DP, required addi-
tional laboratory tools because traditional typing of HLA-DP gene  
products was performed through a secondary primed lymphocyte 
reaction which did not distinguish between allelic variants.  
Through a variety of different approaches, HLA-DP has been  
confirmed as a classical MHC locus in HCT30–33.

Early clinical experience demonstrated the high-risk nature of  
additive effects of multi-locus mismatching, which led to the prac-
tice of limiting the total number of HLA mismatches between 
the transplant donor and recipient34. The importance of HLA  
mismatch dose was further illustrated with the HLA-C locus35.  
Historically, donor matching included consideration for HLA-A, 
-B, and -DRB1; when retrospective analysis of HLA-C was fea-
sible with molecular tools, many HLA “6/6”-matched transplants  
were retrospectively identified to have one or two HLA-C mis-
matches. The risk of graft failure increased with increasing  
number of HLA-C mismatches35. Similar synergistic effects have 
been shown for HLA-DPB130 and recently for the HLA-DRB1/ 
-DRB3/-DRB4/-DRB5 loci36. Updated analyses by the Japan  
Marrow Donor Program (JMDP)20 and the Center for Interna-
tional Blood and Marrow Transplant Research (CIBMTR)2 both  
confirm the deleterious nature of multi-locus HLA mismatching  
on GVHD and mortality. For this reason, limiting the total number 
of donor HLA mismatches to one will help to lower the risk of 
GVHD and mortality after HCT21.

When matched donors are not available, research suggests 
that the judicious selection of donors with selected HLA  
mismatches may provide patients with a curative transplant  
without substantially increasing transplant-related mortality. These 
research studies have identified selected HLA mismatch com-
binations that differ at specific amino acid residues which define 
the class I PBR37,38. The JMDP experience has identified patient- 
donor mismatching at four key class I residues as risk factors for 
acute GVHD: Tyr9Ser, Tyr99Phe, Leu116Ser, and Arg156Leu  
were each associated with a significantly increased risk of acute 
GVHD among Japanese patients39. Of these positions, mismatch-
ing at residue 116 was associated with increased mortality in a  
large retrospective analysis by the CIBMTR, providing independ-
ent validation of the importance of this epitope40. At the HLA- 
DPB1 locus, in vitro cytotoxicity assays have been developed  

to evaluate the immunogenicity of amino acid residue  
mismatching41–43. Patient-donor mismatching for amino acid 
residues that define the hypervariable regions of DPβ is associ-
ated with GVHD risk and can be used to define combinations of 
patient-donor HLA-DPB1 mismatches that are associated with 
higher risks (“HLA-DPB1 non-permissive mismatches”) and 
those associated with GVHD rates not dissimilar to those observed 
among HLA-DPB1-matched transplants (“HLA-DPB1 permissive  
mismatches”)44,45. A clinically useful tool for evaluating patient-
donor HLA-DPB1 mismatches has been developed with the 
aid of mutational studies46. In an independent study, recipient  
residues encoded by the DPA1*01:03–DPB1*04:01 haplotype that 
define the HLA-DP peptide-binding pocket have been shown to 
correlate with sclerotic GVHD47. These studies collectively sup-
port the hypothesis that motifs of the HLA-DP PBR are involved 
in GVH recognition.

Differences between the transplant donor’s and recipient’s HLA 
molecules at key amino acid residues within the PBR stimulate 
robust GVH alloresponses. In addition to such qualitative meas-
ures of GVH allorecognition are quantitative measures in which 
donor recognition of patient MHC differences is influenced by the  
amount of HLA protein expressed by host cells and tissues.  
Recently, demonstration that the level of expression of HLA-C 
and HLA-DP allotypes in patients with HIV and hepatitis B infec-
tion influence the course of these infections highlights the need for 
more complete information on the extent and nature of non-coding  
region variation within the HLA system48,49. Both the HIV-AIDs 
and hepatitis B models suggest that higher HLA expression  
promotes more effective presentation of virally associated minor 
antigens and enhanced host clearing of infection. Alternatively, 
lower HLA-C expression is protective in Crohn’s disease, sug-
gesting a key role for HLA-C in the presentation of immunogenic  
antigens that participate in autoimmunity48.

In HCT, the level of expression of HLA-C and HLA-DP mis-
matches in the patient is associated with risks of GVHD and  
mortality. HLA-C expression is allotype specific and follows a 
continuous spectrum of mean florescence intensity values, with 
HLA-C*03 and HLA-C*07 expressed at low levels compared to 
HLA-C*14, which is expressed at very high levels48. Among trans-
plants mismatched for one HLA-C antigen, as the level of the 
patient’s mismatched HLA-C allotype increases, the risk of GVHD 
increases50. HLA-DP expression is influenced by the rs9277534 
variant that resides in the gene’s 3’ untranslated region (UTR), 
where possession of the A allele is associated with low HLA-DP  
expression and G with high expression49. Among transplants mis-
matched for one HLA-DP antigen, patients with low-expression 
HLA-DP mismatches had lower risk of GVHD compared to patients 
with high-expression HLA-DP mismatches51.

The same loci that increase GVHD risk are also associated with 
lowered probability of relapse after transplantation. Known as the 
graft-versus-leukemia effect (GVLE)52–55, mismatching at HLA-C 
and HLA-DPB1 are most strongly associated with GVLE com-
pared to mismatching at other classical HLA loci20. The potent 
immunogenicity of HLA-DPB1 has recently been exploited in  
an in vitro model in which CD45RA-selected CD4 cytotoxic  
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lymphocytes (CTLs) were stimulated with autologous dendritic 
cells that expressed HLA-DPB1 mismatched alleles on mRNA 
transfection56. AML blasts that expressed the corresponding  
HLA-DPB1 alleles were directly lysed by the CTLs. These  
novel data provide a platform for the development of AML- 
reactive CTLs that use HLA-DPB1 as a potent target to mediate 
GVL responses.

The role for major histocompatibility complex resident 
non-human leukocyte antigen loci in graft-versus-host 
disease
Candidate gene studies
Genetic variation within the MHC is inherited en bloc in classi-
cal Mendelian fashion as a haplotype of markers on the same  
chromosomal strand. With current donor-matching criteria, less 
than 5% of the total MHC resident gene content is evaluated, and 
this opens up the potential for novel undetected variation as a  
cause of GVHD after HLA-matched transplantation. Together 
with HLA alleles, non-HLA loci in the MHC travel together, 
and their biological effects may synergize with those stemming  
from donor-recipient HLA mismatches. There has been strong 
interest in exploring non-HLA loci as a source of variation  
responsible for GVHD, particularly in the setting of HLA-matched 
transplantation57,58. Studies have approached the search for novel 
transplantation determinants through candidate gene approaches 
or fine mapping with the aid of single nucleotide polymorphisms 
(SNPs) that define blocks of tightly linked markers (tagSNPs). 
In the case of unrelated donors and patients, identity for HLA  
alleles does not guarantee identity for other MHC loci, particularly 
if the patient’s and donor’s haplotypes are different59.

A growing number of studies have taken a candidate gene  
approach to explore the clinical significance of the non-classical 
class I loci including HLA-E, HLA-G, and MHC class I related 
chain A (MICA). Each of these genes is polymorphic and each 
has unique features that make them interesting candidates for  
transplantation determinants. A total of 25 HLA-E alleles that give 
rise to 18 proteins have been recognized; however, two alleles, 
E*01:01 and E*01:03, are the most frequently observed in most 
populations studied thus far17. Given its participation in both the 
innate and the adaptive immune pathways, HLA-E has been an 
attractive candidate gene with the potential to influence the risk 
of GVHD after transplantation; however, the evidence to date is  
heterogeneous60–64. In HLA-matched sibling transplantation, 
homozygosity for HLA-E*01:03 was protective for GVHD and 
associated with improved survival60,62. The presence of E*01:03 
in transplant donors, however, was associated with higher grades 
(II–IV) of acute GVHD61. Two additional studies did not find an 
association of HLA-E with clinical outcome63,64.

HLA-G is a non-classical class I gene best studied for its role in 
tolerance at the maternal-fetal placental interface65,66. HLA-G  
encodes a total of 53 allelic variants giving rise to 18 proteins17. 
However, the most intriguing characteristic of this non-classical 
gene is its ability to form soluble as well as membrane-bound  
protein as a result of alternative splicing. A total of four  
membrane-bound and three soluble isoforms differ with respect 
to their size, structure, and ability to bind β2 microglobulin67,68. 

The transcriptional regulation of HLA-G is complex and includes, 
but is not limited to, genetic variation within the 5’ and the  
3’ UTRs69–71. The 3’ UTR is particularly interesting, as it is char-
acterized by a 14 basepair (bp) insertion/deletion and by haplo-
types of SNPs, of which rs1063320 has been the subject of intense  
investigation as a basis for HLA-G expression and disease  
association71–74. The 14 bp insertion results in the removal of  
92 bases from exon 8 and is correlated with lower expression 
of HLA-G transcript75,76. Its participation in both T and natural  
killer (NK) cell-mediated immune pathways68,77–80 has prompted 
investigation into a role for HLA-G gene products in cancer,  
autoimmunity, and transplantation74,79,81.

In HCT, homozygosity for the 14 bp deletion correlated with  
higher risk of acute GVHD compared to homozygosity for the  
14 bp insertion82. In an independent study, however, the 14 bp  
insertion was found to be a risk factor for acute GVHD83. No  
correlation of the 14 bp insertion was found for acute GVHD,  
but an association with lower overall survival and disease-free  
survival was observed84. Still, other investigations have not  
found associations among 3’ UTR haplotypes, the 14 bp insertion/
deletion, and clinical outcome after HCT85,86.

Although it has classically been considered that HLA-G  
expression is restricted to the maternal-fetal interface, the  
thymus, and the cornea, several recent studies have found increased 
levels of HLA-G in the plasma87–89 and in GVHD target organs 
in patients receiving allogeneic HCTs87. In the first 30 days  
after HCT, levels of the soluble G5, G6 and G7 proteins were  
significantly higher compared to pre-transplant levels; higher  
levels of soluble HLA-G proteins were found in patients  
without GVHD compared to lower levels in patients who developed 
grades II–IV acute GVHD89. Very intriguing data on the recovery 
of CD14+ HLA-G+ cells in the plasma of healthy and transplant 
patients and the ability to antagonize the suppressive function 
of these cells through HLA-G blockade provide new informa-
tion on the contribution of HLA-G-expressing monocytes in the 
immune response87. Transplant recipients were found to have a 
higher frequency of HLA-G+ CD8+ T cells after transplantation.  
Furthermore, neo-expression of HLA-G in the epidermis of  
patients with clinical GVHD, and a direct correlation of  
HLA-G expression with the severity of skin GVHD, suggests that 
up-regulation of HLA-G is involved in the etiology or clinical 
manifestation of this disease. In an independent study of patients 
undergoing HCT for hematologic malignancies, high levels of  
soluble HLA-G proteins within the first month after HCT could  
be recovered in patients who did not develop acute GVHD; the  
level of soluble HLA-G proteins correlated with the frequency  
of T regulatory cells with the CD4+ CD25+ CD152+ phenotype in 
transplant recipients88.

In addition to HLA-E and -G, the MICA gene has been an attrac-
tive candidate to explain GVHD risks in related and unrelated  
donor transplantation. A total of 106 unique alleles giving rise to 
82 proteins are recognized17. Although MICA shows sequence 
homology with HLA-A, -B, and -C, it lacks association with  
β2-microglobulin and does not bind or present peptides. MICA 
is expressed on the epithelium of the gastrointestinal tract (hence  
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the interest in GVHD) and is induced by cellular stress90. The  
MICA CD94/NKG2D activating receptor is expressed on most 
ϒδ T cells, αβ T cells, and NK cells91. Engagement of MICA with 
NKG2D leads to NK-mediated killing of target cells and CD8- 
positive ϒδ T cell-mediated activation of CTLs92–96. It is no  
surprise then that MICA-NKG2D has been implicated in host 
resistance and susceptibility to infection97, tumor surveillance98–100, 
and autoimmunity101–103. Particular attention has been paid  
to the rs1051792 variation that gives rise to methionine or valine 
at residue 129 of the MICA α domain; importantly, this position 
is associated with lower (valine) or higher (methionine) binding  
affinity to NKG2D104 and impacts the strength of NKG2D signal-
ing and co-stimulation of CD8+ T cells95,97.

Early investigation into the HLA-B–HLA-C region of class I  
uncovered donor-recipient mismatching for a series of markers, 
which were identified as MICA and MICB, and their potential 
relevance in HCT outcomes105. Subsequently, a series of studies  
have shed light on the importance of donor-recipient MICA 
mismatching and the Met129Val polymorphism in clinical  
outcome after related and unrelated donor transplantation96,106–110. 
The extensive linkage disequilibrium across the MHC favors  
MICA matching among transplant pairs who are HLA-A, -B,  
-C, -DRB1, and -DQB1-matched. The clinical significance of  
MICA mismatching on GVHD risk has been heterogeneous and 
is likely complicated by a low mismatch rate and population  
differences. Higher risk of acute GVHD, in particular GVHD 
of the gastrointestinal tract, has been observed with donor- 
recipient MICA mismatching in some106,109 but not in other  
studies107. Recently, a large retrospective analysis of unre-
lated donor-matched and -mismatched transplants performed in  
Germany demonstrated higher risks of mortality, lower disease- 
free survival, and higher rates of acute GVHD with donor- 
recipient mismatching for Val129Met108. The presence of 129Met 
in recipients correlated with better overall survival and lower  
risk of death due to GVHD; however, homozygous 129Met/Met 
patients had increased risks96. A retrospective study of MICA  
performed by the CIBMTR found no association of MICA mis-
matching nor Val129Met on clinical outcome110. The reasons for 
these heterogeneous results are unclear but may be the result of 
multifactorial genetic and environmental factors.

Single nucleotide polymorphism mapping
The use of SNPs for fine mapping novel transplantation  
determinants within the MHC is founded on the concept that  
tightly linked markers serve as proxies for one another. The use 
of tagSNPs makes no a priori assumptions for the likely disease- 
causing genes or their associated pathways; for a region that  
contains the most immune-related genes anywhere in the genome, 
tagSNPs provide an efficient and robust way to locate novel  
transplantation determinants. The elucidation of conserved  
extended HLA haplotypes provided the much-needed reference 
sequence(s) for designing SNP arrays for disease mapping111–113. 
The availability of NGS methods has permitted the completion  
of in-depth interrogation of extended haplotypes that are 
homozygous for the classical HLA alleles, providing unprec-
edented annotation of coding and non-coding regions of the  
MHC114. When the classical HLA-A1, -B8, -DR3 and HLA-A2, -B, 

-DR15 haplotypes are aligned, extreme levels of sequence conser-
vation over 3 Mb in length are evident111. Further appreciation of 
the nature and organization of genetic variation on extended HLA 
haplotypes is demonstrated in the analysis of common haplotypes 
in ethnically diverse populations. In Japan, for example, unrelated 
individuals show remarkable sequence conservation for the three 
most common HLA haplotypes, spanning 3.3 Mb in length115.

Demonstration that haplotype-based approaches can facilitate the 
identification of novel transplantation determinants was shown in 
a study of HLA-matched unrelated donor-recipient pairs using a  
long-range phasing method116. The physical linkage of HLA-A, 
HLA-B, and HLA-DR on the same chromosomal strand was per-
formed to identify matched pairs with the same HLA-A, -B, and  
-DR haplotypes and matched pairs with different  haplotypes.  
HLA-matched pairs with different haplotypes had a significantly 
increased risk of grade III–IV acute GVHD, lower relapse, and sim-
ilar overall survival59. These observations suggest that the HLA hap-
lotype can be used as a surrogate marker for GVHD risk and for the 
identification of specific risk loci. To this end, SNP arrays have been 
used to query the MHC in matched and mismatched unrelated donor 
transplants. In HLA-matched transplantation, two SNPs were vali-
dated as determinants of survival and acute GVHD117 and a similar 
strategy is informative for single-locus mismatched unrelated donor  
transplants118. Collectively, the data thus far point to the presence  
of MHC resident variation that may confer risks alongside those 
stemming from HLA mismatching between the donor and the 
recipient. This information will enhance our understanding of 
the MHC as a critical region of the genome in transplantation  
biology and provide potential novel approaches for donor  
selection and for targeted immunotherapy.

The role for non-major histocompatibility complex loci
Differences between the transplant patient’s and donor’s HLA  
class I and II gene products serve as potent antigens that stimu-
late GVH alloresponses, as described above. HLA class I 
genes also serve as the cognate ligands for NK cell receptors119.  
Furthermore, differences in the peptides presented by the patient’s 
HLA class I and II molecules which are recognized by donor  
T cells as minor histocompatibility antigens represent an impor-
tant source of variation that contributes to GVHD120. For these  
reasons, the HLA system is a dynamic interface between the  
innate and adaptive immune systems, each of which has biological 
implications in HCT.

Human leukocyte antigen ligands for natural killer cells
NK cells do not directly cause GVHD after HLA-matched or  
HLA-mismatched transplantation. Unlike T cells, which recognize 
recipient major HLA and minor histocompatibility differences in 
host leukemia and normal tissues, NK cells recognize target cells 
that lack class I ligands (missing self; missing ligand), a situa-
tion that may arise with viral infection or malignant transforma-
tion. Inhibitory KIR receptors interact with their cognate ligands  
during NK development, which induces tolerance to target cells121. 
Target cells that are virally infected or are transformed by malig-
nancy may lose their self-class I ligands; these target cells are 
recognized by licensed NK cells, leading to target cytotoxicity. 
In HLA-matched transplantation, patients who lack KIR ligands 
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(missing ligand) experience lower risk of relapse and improved 
overall survival122, consistent with cytotoxicity of host residual 
leukemia by unlicensed NK cells. In HLA-mismatched trans-
plantation, wherein the patient lacks KIR ligands that are present  
in the donor, licensed NK cells can mediate cytotoxicity against 
the KIR ligand mismatch123. The reduction in relapse in both  
scenarios is not accompanied by increased GVHD. These unique 
properties of NK cells are the basis for the development of NK  
cells in adoptive immunotherapy124.

Inhibitory KIR genes demonstrate a range of allelic variation  
and the alleles may have higher or lower degrees of inhibition that 
add to the diversity of individual immune responses. One exam-
ple illustrates that features of both the receptor, KIR3DL1, and 
the ligand, HLA-Bw4, can be associated with different risks of 
relapse and mortality depending on the strength of inhibition (high  
or low) and the specific residue 80 sequence polymorphism in 
Bw4-positive cells125. An added layer of polymorphism in the  
KIR genetic system is the organization of genes into two major 
haplotype groups defined by the number and nature of genes with 
inhibitory and activating potential126; whereas “A” haplotypes 
encode more inhibitory than activating genes, “B” haplotypes 
tend to encode more activating genes than do “A” haplotypes.  
Haplotype-based analyses of KIR demonstrate the importance 
of the number and nature of inhibitory and activating genes on  
A and B haplotypes on transplant outcomes. The presence of at 
least one B haplotype is associated with improved survival com-
pared to lack of any B haplotype (i.e. only A haplotypes). These 
data support a role for activating KIRs in transplantation127. Among 
the activating genes that have been studied thus far, the KIR2DS2 
receptor and its HLA-C ligands expressing Asn77 and Lys80  
(“C2” ligands) are capable of mediating strong anti-leukemic 
potential128. The unique features of activating and inhibitory recep-
tors together with their ligands provide avenues for lowering 
risk of relapse without an increase of GVHD through KIR-based  
algorithms applied to donor selection129.

Minor histocompatibility antigens
CD8+ and CD4+ T cells play a role in antigen-mediated  
recognition leading to GVHD after allogeneic transplantation. By 
definition, minor histocompatibility antigens are non-self pep-
tides in which one or several polymorphisms within the homolo-
gous proteins between a transplant donor and patient may lead to  
altered binding of peptide to HLA and/or recognition of the  
HLA-peptide complex by T cells130,131. Due to the diversity of  
minor histocompatibility antigens that can be presented by HLA, 
donor T cell-mediated allorecognition of disparities in minor  
histocompatibility antigens presented by patient target cells may 
induce GVHD in both HLA-matched and HLA-mismatched  
transplantation from both related and unrelated donors.

The millions of nucleotide sequence variants within the human 
genome provide a rich source for potential minor histocompat-
ibility antigens132–134. Variation within autosomal genes and genes 

of the Y chromosome contribute minor antigens of importance  
to transplantation135. One of the best-studied minor histocompat-
ibility antigens is the HMHA1 gene-derived “HA-1” nonamer  
peptide presented by HLA-A*02:01 allotypes; for this minor  
antigen, both HLA and T cell receptor binding features contribute 
to the immunogenicity of HA-1136,137.

Since SNPs represent the most common form of genetic variation 
accounting for the generation of minor histocompatibility anti-
gens, the availability of SNP arrays to query whole genomes has  
yielded new insight into the loci that contribute to the pool of  
clinically relevant minor antigens33,47,138. In a Japanese study of 
HLA 10/10-matched unrelated donor transplants, autosomal  
SNPs have been identified that significantly increase the risk 
of GVHD. The identification of the true causative genes awaits  
further investigation in independent cohorts.

To predict the extent to which patient mismatching for minor  
histocompatibility antigens can contribute to GVHD risk, a  
single-center GWAS analysis compared the degree of genome-
wide mismatching of donor anti-host recognition between HLA- 
matched sibling transplants and HLA-matched unrelated donor 
transplants33. On average, 17.3% of unrelated transplants were 
mismatched for coding SNPs compared to 9.4% of HLA- 
identical sibling pairs. HLA-matched unrelated donor transplants 
overall had low GVHD-related outcome risks. The risk was 
higher among HLA-DP mismatched unrelated donor transplants 
compared to HLA-matched sibling transplants. These data sug-
gest that GVHD risk after unrelated donor transplantation is con-
ferred in large part by HLA disparity through direct recognition of  
the mismatched HLA as well as HLA-peptide complexes.  
Future analysis of larger cohorts will be required to fully exam-
ine whether coding SNP variation is a robust proxy for overall  
degree of minor antigen mismatching and whether genome- 
wide patient SNP mismatching can contribute to GVHD after  
unrelated donor transplantation.

Future considerations
The field of HLA continues to push the boundaries of transplan-
tation genetics, from the perspective of basic understanding  
of the nature and organization of human genetic variation to  
genes that participate in the immune response. A greater appre-
ciation for the biological implications of non-coding region  
variation will continue to provide insight into the relationship 
between the structure and function of MHC resident genes.
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