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Algorithms for solving discrete control

problems on networks∗

A. Iusiumbeli, D. Lozovanu

Abstract

We consider the discrete optimal problem on networks with
integral-time cost criterion by a trajectory when the starting and
final states of the system are fixed. A polynomial-time algorithm
for solving this problem is proposed.

1 Introduction

In this paper we consider discrete control problems on networks from
[1,2]. The dynamics of the system in such problems is described by
a directed graph of passages [2]. The vertices of the graph in such
problems correspond to the states of system and its edges signify the
possibility of the system passage from one state to another. Moreover,
on the edges of the graph the cost functions are defined, which depend
on time and express the expenditure or the income when the dynamic
system passes from one state to another.

We study the discrete control problem on networks in the case
when the cost functions on edges of the graph are positive and non-
decreasing. A new polynomial-time algorithm for solving the problem
is proposed. The algorithm can be used for checking the optimization
principle for dynamic networks[3].
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2 Problem formulation and dynamical pro-
gramming method

We shall consider the optimal control problem on networks from [3,4].
Let L be a dynamical system with finite set of states X, |X|=N and at
every discrete moment of time t = 0, 1, 2, . . . the state of the system L
is x(t) ∈ X. Note that here we associate x (t) with an abstract element.
Two states xs and xf are chosen in X, where xs is a starting state of the
system L, xs = x(0) and xf is the final state of the system, i.e. xf is the
state into which the system should be brought. The dynamics of the
system is described by a directed graph of passages G=(X,E ), |E| = m,
an edge e=(x,y) which signifies the possibility of passage of the system
L from the state x=x(t) to the state y=x(t+1) at any moment of time
t = 0, 1, 2, . . .. That means that the edges e=(x,y) ∈ E can be regarded
as the possible values of the control parameter u(t) when the state of
the system is x=x(t), t = 0, 1, 2, . . .. The next state y=x(t+1) of the
system L is determined uniquely by x=x(t) at the moment of time t
and an edge e=(x,y) ∈ E(x), where

E(x) = {(x,y) ∈ E | y ∈ X}
So E(x)=E(x(t)) correspond to the admissible set Ut(x(t)) for the con-
trol parameter u(t) at every moment of time t. To each edge e=(x,y)
a function ce(t) is assigned, which reflects the cost of system’s passage
from the state x(t) = x ∈ X to the state x(t + 1) = y ∈ X at any
moment of time t = 0, 1, 2, . . ..

We consider the discrete optimal problem on networks [1,2,3] for
which the sequence of system’s passages

(x(0), x(1)), (x(1), x(2)), . . . , (x(T − 1), x(T )) ∈ E

which transfers the system L from the state xs = x(0) to the state xf =
x(T ) with minimal integral-time cost of the passages by a trajectory
xs = x(0), x(1), . . . , x(T ) = xf must be found.

Here may be two variants of the problem:

• the number of the stages (time T ) is fixed
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• T is unknown and it must be found

Let us consider that T is fixed. Denote by

Fxsxf
(T ) = min

xs=x(0),x(1),...,x(T )=xf

T−1∑

t=0

cx(t),x(t+1)(t)

the minimal integral-time cost of system’s passages from xs to xf . If
the state xf couldn’t be reached by using T stages, i.e. in G there exist
no path P ∗(xs, xf ) from xs to xf which contains exactly T edges, then
we put Fxsxf

(T ) = ∞.
It is easy to observe that using the dynamical programming method

we could tabulate the values Fxsx(t)(t), t = 0, 1, 2, . . . , T (Fxsx(0)(0) =
0) because for Fxsx(t)(t) the following recurrent formula can be written

Fxsx(t)(t) = min
x(t−1)∈X−

G (x(t))
{Fxsx(t)(t− 1) + cx(t−1),x(t)(t− 1)},

where
X−

G (y) = {x ∈ X | e = (x, y) ∈ E}
So, if T is fixed, then problem can be solved in time O(N2T ) (here

we do not take into consideration the number of operations for calcu-
lations the value of functions ce(t) for given t).

In the case when T is unknown we shall consider T ∈ [T1, T2] where
T1 and T2 are given. The problem in this case can be reduced to
T2 − T1 + 1 problems with T = T1, T = T1 + 1, . . . , T = T2 respec-
tively. Obviously, for positive and non-decreasing functions on edges
the problem can be solved in time O(N3).

Further we shall study the problem when T is not fixed. We denote
by T ∗ the optimal time for the following discrete control problem.

3 The main results and algorithm

We have formulated the problem for positive and non-decreasing func-
tions ce(t) on edges e ∈ E which coincides with the discrete optimal
control problem on G with starting state xs and final state xf . In this
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case the optimal trajectory xs = x(0), x(1), . . . , x(T ) = xf corresponds
in G to the directed path P ∗(xs, xf ) from xs to xf . We call this path
the optimal path for the dynamic network. For the path P ∗(xs, xf )
contains no more than N-1 edges, the problem can be solved in finite
time by using dynamical programming techniques.

Here we propose a more simple algorithm for solving this problem.

3.1 An algorithm for solving the problem with given
optimal value of stages T ∗

Algorithm 1

Preliminary step(Step 0)
Set X0 = xf , E0 = ∅. Assign to every vertex x ∈ X two labels t(x)

and R(x) as follows:

R(xf ) = 0, t(xf ) = T,

R(x) = ∞, t(x) = ∞ ∀x ∈ X\{xf}
General step(Step k)
Find the set

Xk = {x ∈ X\Xk−1 | (x, y) ∈ E, y ∈ Xk−1},

E
′
= {(x∗, y∗) ∈ E(Xk−1) | c(x∗,y∗)(t(y

∗)− 1) + R(y∗)} =

min
y∈Xk−1

min
x∈V +(y)\Xk−1

{c(x,y)(t(y)− 1) + R(y)}

where

E(Xk−1) = {(x, y) ∈ E | y ∈ Xk−1, x ∈ X\Xk−1},

V +(y) = {x ∈ X | (x, y) ∈ E}
Find the set of vertices

X
′
= {x ∈ Xk | ∃y , (x, y) ∈ E

′}
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For every x
′ ∈ X

′
select one edge (x

′
, y

′
) ∈ E

′
and build the union E

′
k

of such edges. After that change the labels t(x
′
) and R(x

′
) for every

vertex x
′ ∈ X

′
are as follows

R(x
′
) = R(y

′
) + c(x

′
, y

′
)(t(y

′
)− 1),

t(x
′
) = t(y

′
)− 1, ∀(x′ , y′) ∈ E

′
k

Replace the set Xk by Xk−1
⋃

X
′

and Ek by Ek−1
⋃

E
′
k. Fix sets

Y = Xk, E∗ = Ek and the tree H = (Y, E∗). If (xs ∈ Xk or k = T )
then STOP, otherwise go to the next step k + 1.

Note that the tree H = (Y, E∗) contains paths from every x ∈ Y
to xf . The labels R(x), x ∈ Y , indicate the cost of optimal path from
x ∈ Y to xf of the optimal path P ∗(xs, xf ) which contains x and t(x)
represents the time moment at which this path passes through vertex x.

In [3,4] have been shown that if the optimization principle for
dynamical network is satisfied then a more effective algorithm for
solving the optimal control problem on network can be elaborated.
Note that the optimization principle on dynamic network is satisfied
if the following condition holds: Let us consider that the cost func-
tions ce(t), e ∈ E, in the dynamic network have the property that
if P ∗(xs, x) is an arbitrary optimal path from xs to x which can be
represented as P ∗(xs, x) = P ∗

1 (xs, y)
⋃

P ∗
2 (y, x), where P ∗

1 (xs, y) and
P ∗

2 (y, x) have no common edges, than a leading part P ∗
1 (xs, y) of the

path P ∗(xs, x) is also an optimal path of the problem in G with given
starting state xs and final state y.

Theorem 1 Let (G, c(t), xs, xf ) be a dynamic network, where
the vector-function c(t) = (ce1(t), ce2(t), . . . , cem(t)) has positive and
bounded components for t ∈ [0, N − 1]. If T = T ∗ then k = T ∗ and
t(xs) = 0. Let H∗ = (X, E∗) be the tree obtained by Algorithm 1,
then an arbitrary path P ∗(x, xf ) in the H∗ represents the optimal path
from x to xf for optimal control problem on G.

Proof. We prove the theorem by using the induction principle on
the number of steps k of the algorithm. In the case when k = 0 the
theorem is evident.
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Let us consider the theorem holds for any k ≤ r and let us show
it is true for k = r + 1. If Hr = (Xr, Er) is the tree obtained after r
steps and Hr+1 = (Xr+1, Er+1) is the tree obtained after r + 1 steps
of the algorithm, then X0 = Xr+1\Xr and E0 = Er+1\Er represents
the vertex set and the edge set obtained by the algorithm at the step
r +1. Let us show that if y

′
is an arbitrary vertex of X0, then in Hr+1

the unique directed path P ∗(y′ , xf ) from y
′
to xf is optimal. Indeed,

if this is not the case, then there exists an optimal path Q(y
′
, xf ) from

y
′
to xf , which does not contain the edge e = (y

′
, z
′
) ∈ E0. The path

Q(y
′
, xf ) can be represented as Q(y

′
, xf ) = Q1(y

′
, z
′
) ∪ {(z′ , x′)} ∪

Q2(x
′
, xf ), where x

′
is the first vertex of the path Q(y

′
, xf ) belonging

to Xr when we pass from y
′
to xf . Let us show that

cost(Q(y
′
, xf )) > cost(P ∗(y

′
, xf ))

where

cost(Q(y
′
, xf )) =

T−1∑

t = T−mQ−1

cet(t),

eT−mQ−1, eT−mQ
, . . . , eT−1 are the corresponding edges of the directed

path Q(y
′
, xf ) when we pass from y

′
to xf .

cost(P ∗(y
′
, xf )) =

T−1∑

t = T−mP−1

c
e
′
t
(t),

e
′
T−mP−1, e

′
T−mP

, . . . , e
′
T−1 are the corresponding edges of the directed

path P ∗(y′ , xf ) when we pass from y
′
to xf .

Note by R(x
′
) = cost(Q2(x

′
, xf ))

According to the algorithm, we can state

R(x
′
) + c(y′ , x′ )(t(x

′
)− 1) > R(z

′′
) + c(y′ , z′′ )(t(z

′′
)− 1) = R(y

′
)

where e
′
= (y

′
, z
′′
) is the first edge of the path P ∗(y′ , xf ). Then

cost(Q2(x
′
, xf ) ∪ {(z′ , x′)}) > cost(P ∗(y

′
, xf ))

338



Algorithms for solving discrete control problems on networks

R(x
′
) + c(y′ , x′ )(t(x

′
)− 1) = cost(Q2(x

′
, xf ) ∪ {(y′ , x′)})

R(x
′
) = cost(P ∗(x

′
, xf ))

The cost functions ce(t),∀e ∈ E, are positive, therefore

cost(Q(y
′
, xf )) = cost(Q1(y

′
, z
′
) ∪ {(z′ , x′)} ∪Q2(x

′
, xf )) ≥

cost(Q2(x
′
, xf ) ∪ {(z′ , x′)}) > cost(P ∗(y

′
, xf ))

i.e. Q(y
′
, xf ) is not an optimal path from y

′
to xf . That means that

the tree Hr+1 = (Xr+1, Er+1) contains an optimal path from every
y
′ ∈ Xr+1 to xf .

If k = T ∗ then the fact that t(xs) = 0 is evident (conform algorithm).

3.2 An algorithm for solving the problem when the num-
ber of stages is unknown

Algorithm 2

We study the problem when T is not fixed. In this case when T is
unknown we shall assume T ∈ [1, N − 1]. The problem in this case
can be reduced to N − 1 problems with T = 1, T = 2, . . . , T = N − 1
respectively. For every T i fixed from [1,N-1] we calculate ti(xs) and
Ri(xs), i ∈ [1, N − 1].

Find
R∗(xs) = min

i ∈ [1,N−1]
{Ri(xs) | ti(xs) = 0},

which represented the minimal integral-time cost of system’s passages
from xs to xf and

T ∗ = {T i ∈ [1, N − 1] | ti(xs) = 0 and Ri(xs) = R∗(xs)}
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