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Algorithms for finding optimal paths in

network games with p players

R. Boliac D. Lozovanu

Abstract

We study the problem of finding optimal paths in network
games with p players. Some polynomial-time algorithms for find-
ing optimal paths and optimal by Nash strategies of the players
in network games with p players are proposed.

1 Introduction

We study the problem of finding optimal paths in network games with
p players, which generalizes the well-known combinatorial problem on
the shortest paths in a weighted directed graph and the min-max paths
problem in network games with two players [1–3]. This problem arose
as an auxiliary one when studying cyclic games [2–4] and solving some
of network transport problems [5]. We propose polynomial-time al-
gorithms for finding optimal paths in network games and optimal by
Nash strategies of players [6].

2 Problem formulation

Let G = (V,E) be a directed graph with the vertex set V , |V | = n,
and the edge set E, |E| = m, where p cost functions

c1 : E → R1; c2 : E → R1; . . . cp : E → R1

are defined on the edge set. Assume that a vertex v0 ∈ V is chosen so
that for any vertex v ∈ V there exists a directed path PG(v, v0) from

c©1997 by R.Boliac, D.Lozovanu

236



Algorithms for finding optimal paths. . .

v to v0. Moreover, we divide the vertex set V into p disjoint subsets
V1, V2, . . . , Vp (V = ∪p

i=1Vi, Vi ∩ Vj = ∅, i 6= j).
Let s1, s2, . . . , sp be p maps defined on V1, V2, . . . , Vp, respectively:

s1 : v → VG(v) for v ∈ V1;
s2 : v → VG(v) for v ∈ V2;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sp : v → VG(v) for v ∈ Vp,

where VG(v) is the set of extremities of edges e = (v, u), originating
in v, i.e. VG(v) = {u ∈ V | e = (v, u) ∈ E}. Denote by Ts = (V, Es)
the subgraph generated by the edges e = (v, si(v)) for v ∈ V \ {v0}
and i = 1, p. Obviously, for an arbitrary vertex w ∈ V either a unique
directed path PT (w, v0) exists in Ts, or such a path does not exist in
Ts. In the second case, if we pass through the edges from w, we get a
unique directed cycle Cs.

For arbitrary s1, s2, . . . , sp and w ∈ V we define the quantities

H1
w(s1, s2, . . . , sp), H2

w(s1, s2, . . . , sp), . . . , Hp
w(s1, s2, . . . , sp)

in the following way. If the path PT (w, v0) exists in Ts, then put

H i
w(s1, s2, . . . , sp) =

∑

e∈PT (w,v0)

ci(e), i = 1, p.

If the directed path PT (w, v0) from w to v0 does not exist in Ts and∑

e∈Cs

ci(e) > 0, then we put H i
w(s1, s2, . . . , sp) = ∞; if

∑

e∈Cs

ci(e) < 0

we put H i
w(s1, s2, . . . , sp) = −∞. In the case when

∑

e∈Cs

ci(e) = 0 we

consider that H i
w(s1, s2, . . . , sp) =

∑

i∈P ′s

ci(e), where P ′
s is the directed

path connecting w and the cycle Cs.
We consider the problem of finding the maps s∗1, s∗2, . . . , s∗p for which

H i
w(s∗1, s∗2, . . . , s∗i−1, s

∗
i , s

∗
i+1, . . . , s

∗
p) ≤

≤ H i
w(s∗1, s∗2, . . . , s∗i−1, si, s

∗
i+1, . . . , s

∗
p), ∀si, i = 1, p.

237



R.Boliac, D.Lozovanu

So we study the problem of finding optimal by Nash solutions
s∗1, s∗2, . . . , s∗p.

This problem can be interpreted as a dynamical game of p players
with integral-time cost function, where w = v(0) is the starting position
of the game at the moment t = 0, and v(1), v(2), . . . ∈ V are the
corresponding positions of players at the moments t = 1, 2, . . . If w ∈ Vi

then the move is done by the player i. The moves of players mean
the passage from the position w to the position v(1) = v1, so that
(w, v1) = e ∈ E. In the general case, at the moment t the move is done
by the player i if v(t) ∈ Vi. The game can be finite or infinite. If the
position v0 was reached at the finite moment t, i.e. v(t) = v0, then the
game is finite and the cost of the position w for the player i is pi(w) =

t∑

τ=1

ci(v(τ−1), v(τ)). If the position v0 cannot be reached, then the cost

of the position w for the player i is pi(w) = lim
t→∞

t∑

τ=1

ci(v(τ − 1), v(τ)).

Each player has the aim to minimize the cost of the position w.
So the functions

H1
w(s1, s2, . . . , sp),H2

w(s1, s2, . . . , sp), . . . Hp
w(s1, s2, . . . , sp)

define a game in the normal form with p players. We name this game
a c-game of p players on the network game (G,V1, V2, . . . , Vp, c1, c2,. . . ,
cp, w). If the c-game is given by the network game (G, V1, V2, . . . , Vp, c1,
c2, . . . , cp, w), then we have a game in the positional form.

Note that if V = V1 then we have the shortest path problem [9]. If
V = V1 ∪ V2 and c2 = −c1, then we have the min-max path problem
on the network [4,8].

3 The main results

The maps s1, s2, . . . , sp are named the strategies of players 1, 2, . . . , p,
respectively. Let us show that if in the network game (G,V1, V2, . . . , Vp,
c1, c2, . . . , cp, w) with the starting position w the functions c1, c2, . . . , cp
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are positive then there exist the optimal strategies s∗1, s∗2, . . . , s∗p of play-
ers 1, 2, . . . , p.

Theorem 1 Let (G, V1, V2, . . . , Vp, c1, c2, . . . , cp, w) be a network game
for which the vertex v0 is attainable from any vertex w ∈ V and the
functions c1, c2, . . . , cp are positive. Then for the players 1, 2, . . . , p
there exist optimal by Nash strategies s∗1, s∗2, . . . , s∗p, and the graph Gs∗ =
(V, Es∗) corresponding to these strategies has the structure of a directed
tree with the root vertex v0.

Proof. We prove this theorem by using the induction on the number
p of players in the c-game. The problem of finding the optimal by Nash
strategies in the c-game in the case when p = 1 becomes the problem of
finding the minimum path tree from the vertices w ∈ V to the vertex
v0 in G with positive edge lengths c1(e), e ∈ E. For this problem, as
it is well known, there exists the optimal solution, hence the theorem
holds for p = 1.

Let us assume that the theorem holds for any p ≤ k, k ≥ 1, and let
us show that it is true for p = k + 1.

Let us have the network game with p = k+1 players. We shall con-
sider the problem of finding the optimal by Nash strategies of players
2, 3, . . . , p, fixing the possible admissible strategies s1

1, s
2
1, . . . , s

q
1 of the

first player.
Let us note, that if the first player fixes his first possible strategy,

i.e. s1 = s1
1, and if we consider the problem of finding the optimal by

Nash strategies for the rest of the players, then in the positional form
the obtained game will represent a c-game for p − 1 players, since the
positions of the first player can be considered as the positions of any
other player (we consider them as the positions of the second player).

So for s1 = s1
1 we obtain a new c-game with p − 1 players on the

network game (G1, V 1
2 , V3, . . . , Vp, c

1
2, c

1
3, . . . , c

1
p, w) where V 1

2 = V1 ∪ V2

and G1 = (V, E1) is the digraph, obtained from G by deleting the
edges e = (u, v) ∈ E for which u ∈ V1 and v 6= s1

1(u); c1
i : E1 → R1 are

the functions obtained respectively from the functions ci as a result of
the contraction of the set E to the set E1, i.e. c1

i (e) = ci(e), ∀e ∈
E1, i = 2, p. If we consider this game in the normal form, then
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it is a game with p − 1 players, determined by the cost functions
H2

w(s1
1, s2, s3, . . . , sp), H3

w(s1
1, s2, s3, . . . , sp), . . ., Hp

w(s1
1, s2, s3, . . . , sp),

s2 ∈ S2, s3 ∈ S3, . . . , sp ∈ Sp, where S2, S3, . . . , Sp are the sets of admis-
sible strategies of players 2, 3, . . . , p, respectively. According to the in-
duction assumption, for this game with p−1 = k players there exist op-
timal by Nash strategies s1∗

2 , s1∗
3 , . . . , s1∗

p and the digraph Gs∗1 = (V,Es∗1)
which corresponds to the strategies s1

1, s
1∗
2 , s1∗

3 , . . . , s1∗
p has the structure

of a directed tree with the root vertex v0.
In an anologous way we consider the case when the first player

fixes his second possible strategy s2
1, i.e. s1 = s2

1. Then, according
to the induction assumption, we find the optimal by Nash strategies
s2∗
2 , s2∗

3 , . . . , s2∗
p of players 2, 3, . . . , p in the c-game given in the normal

form, which is determined by the cost functions H2
w(s2

1, s2, s3, . . . , sp),
H3

w(s2
1, s2, s3, . . . , sp), . . ., Hp

w(s2
1, s2, s3, . . . , sp) and the digraph Gs∗2 =

(V, Es∗2), corresponding to the strategies s2
1, s

2∗
2 , s2∗

3 , . . . , s2∗
p , has the

structure of a directed tree with the root vertex v0.
Further we consider the case when the first player fixes his third

possible strategy and we find the optimal strategies s3∗
2 , s3∗

3 , . . . , s3∗
p and

the directed tree Gs∗3 = (V, Es∗3), which corresponds to the strategies
s3
1, s

3∗
2 , s3∗

3 , . . . , s3∗
p .

Continuing this process we find the following sets of strategies of
players 1, 2, . . . , p

(s1
1, s

1∗
2 , s1∗

3 , . . . , s1∗
p ),

(s2
1, s

2∗
2 , s2∗

3 , . . . , s2∗
p ),

. . . . . . . . . . . . . . . . . . . .
(sq

1, s
q∗
2 , sq∗

3 , . . . , sq∗
p )

and the corresponding directed trees Gs∗1 , Gs∗2 , . . . , Gs∗q with the root
vertex v0.

Among all these sets of players’ strategies in the c-game we choose
the set (sj∗

1 , sj∗
2 , sj∗

3 , . . . , sj∗
p ) for which

H1
w(sj∗

1 , sj∗
2 , . . . , sj∗

p ) = min
1≤i≤q

H1
w(si

1, s
i∗
2 , . . . , si∗

p ). (1)

Let us show that the strategies sj∗
1 , sj∗

2 , . . . , sj∗
p are optimal by Nash

for players 1, 2, . . . , p in the initial c-game.
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Indeed,

H i
w(sj∗

1 , sj∗
2 , . . . , sj∗

i−1, s
j∗
i , sj∗

i+1, . . . , s
j∗
p ) ≤

≤ H i
w(sj∗

1 , sj∗
2 , . . . , sj∗

i−1, si, s
j∗
i+1, . . . , s

j∗
p ),

∀si ∈ Si, 2 ≤ i ≤ p,

since sj∗
2 , sj∗

3 , . . . , sj∗
p are the optimal by Nash strategies in the c-game

for s1 = sj
1 and moreover, according to (1)

H1
w(sj∗

1 , sj∗
2 , . . . , sj∗

p ) ≤ H1
w(s1, s

j∗
2 , . . . , sj∗

p ), ∀s1 ∈ S1.

The digraph Gs∗j = (V,Es∗j ) corresponding to the strategies

sj∗
1 , sj∗

2 , . . . , sj∗
p has the structure of a directed tree with the root vertex

v0. The theorem is proved.

Theorem 2 Let (G, V1, V2, . . . , Vp, c1, c2, . . . , cp, w) be a network game
for which the vertex v0 is attainable from any vertex w ∈ V and the
functions c1, c2, . . . , cp are positive. Then on the vertex set V of the
network game there exist p real functions

ε1 : V → R1, ε2 : V → R1, . . . , εp : V → R1,

which satisfy the conditions:

a) εk(v)− εk(u) + ck(u, v) ≥ 0, ∀(u, v) ∈ Ek, k = 1, p,
where Ek = {e = (u, v) ∈ E | u ∈ Vk, v ∈ V };

b) min
v∈VG(u)

{εk(v)− εk(u) + ck(u, v)} = 0, ∀u ∈ Vk, k = 1, p;

c) the subgraph G0 = (V, E0) generated by the edge set E0 = E0
1 ∪

E0
2 ∪ . . .∪E0

p , E0
k ={e=(u, v)∈Ek | εk(v)− εk(u) + ck(u, v)=0},

k = 1, p has the property that the vertex v0 is attainable from any
vertex w ∈ V .
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The optimal by Nash strategies of players in the c-game with the
network (G,V1, V2, . . . , Vp, c1, c2, . . . , cp, w) can be found as follows: in
G0 an arbitrary directed tree T = (V, E∗) is chosen and in T the maps

s∗1 : v → VT (v) for v ∈ V1,
s∗2 : v → VT (v) for v ∈ V2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
s∗p : v → VT (v) for v ∈ Vp

are fixed.

Proof. By Theorem 1, in the c-game there exist optimal by Nash
strategies s∗1, s∗2, . . . , s∗p of players 1, 2, . . . , p, and in G these strategies
generate a directed tree Ts∗ = (V,Es∗) with the root vertex v0. In this
tree we find the functions ε1 : V → R1, ε2 : V → R1, . . ., εp : V → R1,
where εi(v) equals the sum of costs ci(e) of edges e, which belong to
the only directed path in Ts∗ , connecting the vertices w and v0. It is
easy to verify that these numbers satisfy conditions a) and b).

Note, that the directed tree Ts∗ is a subgraph of the digraph G0 =
(V, E0), therefore condition c) holds too. Moreover, if in G0 a different
from Ts∗ directed tree Ts = (V, Es) with the root vertex v0 is chosen,
then this tree generates another optimal by Nash strategy of players
1, 2, . . . , p. The theorem is proved.

4 The algorithm for finding optimal strategies
in the case of a network without directed
cycles

Let G be a digraph without directed cycles. In this case the vertices
of G may be numbered from 1 to n, so that for any two vertices i and
j, i < j in G there no directed path from i to j exists. The following
algorithm is used to number the vertices of G.
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Step 1. Number the vertex v0 by 1. Set k = 2.
Step k (k ≥ 2). Find a vertex v ∈ V for which the set VG(v)

contains only numbered vertices. Number the vertex v by k. Set k =
k + 1. If k > n, STOP. Otherwise go to step k.

In the network with the vertices numbered by this algorithm the
directed tree Ts = (V, Es) of optimal strategies is easily constructed by
the following algorithm.

Algorithm 1
Step 1. Assign to each vertex i, i = 1, n, a set of labels

l1(i), l2(i), . . . , lp(i) as follows:

lj(1) = 0, j = 1, p,

lj(i) = +∞, ∀i = 2, n, ∀j = 1, p.

Set k = 1, Vs = ∅, Es = ∅.
Step 2. Modify the labels of vertices v ∈ V −

G (k) (V −
G (k) = {u ∈

V | (u, k) ∈ E}) by using the formula

lj(v) = min{lj(v), cj(v, k) + lj(k)}, if v ∈ Vj , j = 1, p.

Step 3. Set Vs = Vs ∪{k}. If k > 1, then add to Es the edge (k, v)
for which

lj(k) = lj(v) + cj(k, v), if k ∈ Vj , j = 1, p

and change the labels li(k), i = 1, p, i 6= j using the formula

li(k) = li(v) + ci(k, v).

Set k = k + 1. If k = n then STOP. Otherwise go to step 2.

Let us prove that this algorithm gives the optimal by Nash strate-
gies of players 1, 2, . . . , p. The labels lj(v), j = 1, p, v ∈ V satisfay
conditions a) and b) of Theorem 2. Indeed, for any vertex v ∈ Vj \{v0}
we have

lj(u)− lj(v) + cj(v, u) ≥ 0, ∀u ∈ VG(v),
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and at least for a vertex u ∈ VG(v)

lj(u)− lj(v) + cj(v, u) = 0.

The digraph Ts = (V,Es) generated by the edges (v, u) ∈ E, for which
the last equality holds, is connected. Hence, in Theorem 2 we can put
εj(v) = lj(v), j = 1, p, ∀v ∈ V .

Algorithm 1 gives an optimal solution of the problem. This algo-
rithm has the computational complexity O(pnm).

5 The algorithms for finding optimal strategies
in networks with an arbitrary structure

Let us have a c-game with p players and let the digraph G have an
arbitrary structure, i.e. G may contain directed cycles. In this case the
problem can be reduced to the problem of finding optimal strategies in
a network game without directed cycles.

We construct an auxiliary network Ḡ = (W,F ) without directed
cycles, where W and F are defined as follows:

W = ∪n+1
i=1 W i, W i ∩W j = ∅ for i 6= j;

W i = {wi
1, w

i
2, . . . , w

i
n}, i = 1, n + 1;

F = {(wi
k, w

j
l ) | (vk, vl) ∈ E, i, j = 1, n + 1, i > j}.

The construction of Ḡ can be interpreted in the following manner:
the vertex set W contains the vertex set V , doubled n + 1 times; in Ḡ
the vertices wi

k and wj
l are joined by the edge (wi

k, w
j
k) if and only if

i > j and in the initial graph G the edge (vk, vl) is present.
Delete from Ḡ those vertices w ∈ W , for which the oriented path

PḠ(w, wn+1
0 ) from w to wn+1

0 does not exist. Divide the vertex set W
into p subsets W1,W2, . . . , Wp as follows:

W1 = {wi
k ∈ W | vk ∈ V1, i = 1, n + 1};

W2 = {wi
k ∈ W | vk ∈ V2, i = 1, n + 1};

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wp = {wi

k ∈ W | vk ∈ Vp, i = 1, n + 1}.
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Obviously, ∪n+1
i=1 Wi = W and Wi ∩Wj = ∅, i, j = 1, n + 1, i 6= j.

Define on the edge set F the cost functions:

c1(wi
k, w

j
l ) = c1(vk, vl), ∀(wi

k, w
j
l ) ∈ F ;

c2(wi
k, w

j
l ) = c2(vk, vl), ∀(wi

k, w
j
l ) ∈ F ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cp(wi

k, w
j
l ) = cp(vk, vl), ∀(wi

k, w
j
l ) ∈ F.

In the obtained network the problem of finding the optimal paths
from all the vertices w ∈ W to the vertex wn+1

0 can be solved by using
Algoritm 1.

Let lj(w) be the length of an optimal path from w ∈ Wj to wn+1
0 .

Since the cost functions both in the initial and the auxiliary net-
works are positive, then for all vertices wi

k ∈ Wj , i = 1, n + 1, the
lengths of optimal paths are constant and equal the length of the opti-
mal path which connects the vertex vk with v0 in the initial graph G,
i.e.

lj(wi
k) = lj(vk).

This algorithm is inconvenient because of the great number of ver-
tices in the auxiliary network.

Further we present a simpler algorithm for finding the optimal
strategies of players.

Algorithm 2
Preliminary step. Assign to every vertex v ∈ V a set of labels

ε1(v), ε2(v), . . . , εp(v) as follows:

εi(v0) = 0, ∀i = 1, p,

εi(v) = ∞, ∀v ∈ V \ {v0}, i = 1, p.

General step. For every vertex v ∈ V \ {v0} change the labels
εi(v), i = 1, p, in the following way. If v ∈ Vk then find the vertex v̄ for
which

εk(v̄) + ck(v, v̄) = min
u∈VG(v)

{εk(u) + ck(v, u)}.
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If εk(v) > εk(v̄) + ck(v, v̄), then replace εk(v) by εk(v̄) + ck(v, v̄) and
εi(v) by εi(v)+ci(v, v̄), i = 1, p, i 6= k. If εk(v) ≤ εk(v̄)+ck(v, v̄), then
the labels are not changing.

Repeat the general step n times. Then the labels εi(v), i = 1, p, v ∈
V , become constant. Let us note that these labels satisfy the conditions
of Theorem 2. Hence, using the labels εi(v), i = 1, p, v ∈ V , and The-
orem 2 we construct optimal by Nash strategies of players 1, 2, . . . , p.
Algorithm 2 has the computational complexity O(pn2m).
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Bull. Soc. math., 1976, Mem. 45.

[2] Gurvitch V.A., Karzanov A.V., Khatchiyan L.G, Cyclic games:
Finding minimax mean cycles in digraphs. J. Comp. Mathem. and
Math. Phys., 28 (1988), 1407–1417 (in Russian).

[3] Lozovanu D.D., Trubin V.A., Minimax path problem in network
and the algorithm for its solving. Discrete Mathematics, 6 (1994),
138–144 (in Russian).

[4] Lozovanu D.D., A strongly polynomial time algorithm for finding
minimax paths in network and solving cyclic games. Cybernetics
and System Analysis, 5 (1993), 145–151 (in Russian).

[5] Lozovanu D.D., Extremal-combinatorial problems and algorithms
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