Algorithms for finding optimal paths in network games with p players

R. Boliac D. Lozovanu

Abstract

We study the problem of finding optimal paths in network games with p players. Some polynomial-time algorithms for finding optimal paths and optimal by Nash strategies of the players in network games with p players are proposed.

1 Introduction

We study the problem of finding optimal paths in network games with p players, which generalizes the well-known combinatorial problem on the shortest paths in a weighted directed graph and the min-max paths problem in network games with two players [1-3]. This problem arose as an auxiliary one when studying cyclic games $[2-4]$ and solving some of network transport problems [5]. We propose polynomial-time algorithms for finding optimal paths in network games and optimal by Nash strategies of players [6].

2 Problem formulation

Let $G=(V, E)$ be a directed graph with the vertex set $V,|V|=n$, and the edge set $E,|E|=m$, where p cost functions

$$
c_{1}: E \rightarrow R^{1} ; c_{2}: E \rightarrow R^{1} ; \ldots c_{p}: E \rightarrow R^{1}
$$

are defined on the edge set. Assume that a vertex $v_{0} \in V$ is chosen so that for any vertex $v \in V$ there exists a directed path $P_{G}\left(v, v_{0}\right)$ from

[^0]v to v_{0}. Moreover, we divide the vertex set V into p disjoint subsets $V_{1}, V_{2}, \ldots, V_{p}\left(V=\cup_{i=1}^{p} V_{i}, V_{i} \cap V_{j}=\emptyset, i \neq j\right)$.

Let $s_{1}, s_{2}, \ldots, s_{p}$ be p maps defined on $V_{1}, V_{2}, \ldots, V_{p}$, respectively:

$$
\begin{gathered}
s_{1}: v \rightarrow V_{G}(v) \quad \text { for } v \in V_{1} \\
s_{2}: v \rightarrow V_{G}(v) \quad \text { for } v \in V_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
s_{p}: v \rightarrow V_{G}(v) \quad \text { for } v \in V_{p}
\end{gathered}
$$

where $V_{G}(v)$ is the set of extremities of edges $e=(v, u)$, originating in v, i.e. $V_{G}(v)=\{u \in V \mid e=(v, u) \in E\}$. Denote by $T_{s}=\left(V, E_{s}\right)$ the subgraph generated by the edges $e=\left(v, s_{i}(v)\right)$ for $v \in V \backslash\left\{v_{0}\right\}$ and $i=\overline{1, p}$. Obviously, for an arbitrary vertex $w \in V$ either a unique directed path $P_{T}\left(w, v_{0}\right)$ exists in T_{s}, or such a path does not exist in T_{s}. In the second case, if we pass through the edges from w, we get a unique directed cycle C_{s}.

For arbitrary $s_{1}, s_{2}, \ldots, s_{p}$ and $w \in V$ we define the quantities

$$
H_{w}^{1}\left(s_{1}, s_{2}, \ldots, s_{p}\right), H_{w}^{2}\left(s_{1}, s_{2}, \ldots, s_{p}\right), \ldots, H_{w}^{p}\left(s_{1}, s_{2}, \ldots, s_{p}\right)
$$

in the following way. If the path $P_{T}\left(w, v_{0}\right)$ exists in T_{s}, then put

$$
H_{w}^{i}\left(s_{1}, s_{2}, \ldots, s_{p}\right)=\sum_{e \in P_{T}\left(w, v_{0}\right)} c_{i}(e), \quad i=\overline{1, p}
$$

If the directed path $P_{T}\left(w, v_{0}\right)$ from w to v_{0} does not exist in T_{s} and $\sum_{e \in C_{s}} c_{i}(e)>0$, then we put $H_{w}^{i}\left(s_{1}, s_{2}, \ldots, s_{p}\right)=\infty$; if $\sum_{e \in C_{s}} c_{i}(e)<0$ we put $H_{w}^{i}\left(s_{1}, s_{2}, \ldots, s_{p}\right)=-\infty$. In the case when $\sum_{e \in C_{s}} c_{i}(e)=0$ we consider that $H_{w}^{i}\left(s_{1}, s_{2}, \ldots, s_{p}\right)=\sum_{i \in P_{s}^{\prime}} c_{i}(e)$, where P_{s}^{\prime} is the directed path connecting w and the cycle C_{s}.

We consider the problem of finding the maps $s_{1}^{*}, s_{2}^{*}, \ldots, s_{p}^{*}$ for which

$$
\begin{gathered}
H_{w}^{i}\left(s_{1}^{*}, s_{2}^{*}, \ldots, s_{i-1}^{*}, s_{i}^{*}, s_{i+1}^{*}, \ldots, s_{p}^{*}\right) \leq \\
\leq H_{w}^{i}\left(s_{1}^{*}, s_{2}^{*}, \ldots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \ldots, s_{p}^{*}\right), \quad \forall s_{i}, i=\overline{1, p}
\end{gathered}
$$

So we study the problem of finding optimal by Nash solutions $s_{1}^{*}, s_{2}^{*}, \ldots, s_{p}^{*}$.

This problem can be interpreted as a dynamical game of p players with integral-time cost function, where $w=v(0)$ is the starting position of the game at the moment $t=0$, and $v(1), v(2), \ldots \in V$ are the corresponding positions of players at the moments $t=1,2, \ldots$ If $w \in V_{i}$ then the move is done by the player i. The moves of players mean the passage from the position w to the position $v(1)=v_{1}$, so that $\left(w, v_{1}\right)=e \in E$. In the general case, at the moment t the move is done by the player i if $v(t) \in V_{i}$. The game can be finite or infinite. If the position v_{0} was reached at the finite moment t, i.e. $v(t)=v_{0}$, then the game is finite and the cost of the position w for the player i is $p_{i}(w)=$ $\sum_{\tau=1}^{t} c_{i}(v(\tau-1), v(\tau))$. If the position v_{0} cannot be reached, then the cost of the position w for the player i is $p_{i}(w)=\lim _{t \rightarrow \infty} \sum_{\tau=1}^{t} c_{i}(v(\tau-1), v(\tau))$. Each player has the aim to minimize the cost of the position w.

So the functions

$$
H_{w}^{1}\left(s_{1}, s_{2}, \ldots, s_{p}\right), H_{w}^{2}\left(s_{1}, s_{2}, \ldots, s_{p}\right), \ldots H_{w}^{p}\left(s_{1}, s_{2}, \ldots, s_{p}\right)
$$

define a game in the normal form with p players. We name this game a c-game of p players on the network game $\left(G, V_{1}, V_{2}, \ldots, V_{p}, c_{1}, c_{2}, \ldots\right.$, $\left.c_{p}, w\right)$. If the c-game is given by the network game ($G, V_{1}, V_{2}, \ldots, V_{p}, c_{1}$, $\left.c_{2}, \ldots, c_{p}, w\right)$, then we have a game in the positional form.

Note that if $V=V_{1}$ then we have the shortest path problem [9]. If $V=V_{1} \cup V_{2}$ and $c_{2}=-c_{1}$, then we have the min-max path problem on the network $[4,8]$.

3 The main results

The maps $s_{1}, s_{2}, \ldots, s_{p}$ are named the strategies of players $1,2, \ldots, p$, respectively. Let us show that if in the network game ($G, V_{1}, V_{2}, \ldots, V_{p}$, $\left.c_{1}, c_{2}, \ldots, c_{p}, w\right)$ with the starting position w the functions $c_{1}, c_{2}, \ldots, c_{p}$
are positive then there exist the optimal strategies $s_{1}^{*}, s_{2}^{*}, \ldots, s_{p}^{*}$ of players $1,2, \ldots, p$.

Theorem $1 \operatorname{Let}\left(G, V_{1}, V_{2}, \ldots, V_{p}, c_{1}, c_{2}, \ldots, c_{p}, w\right)$ be a network game for which the vertex v_{0} is attainable from any vertex $w \in V$ and the functions $c_{1}, c_{2}, \ldots, c_{p}$ are positive. Then for the players $1,2, \ldots, p$ there exist optimal by Nash strategies $s_{1}^{*}, s_{2}^{*}, \ldots, s_{p}^{*}$, and the graph $G_{s^{*}}=$ $\left(V, E_{s^{*}}\right)$ corresponding to these strategies has the structure of a directed tree with the root vertex v_{0}.

Proof. We prove this theorem by using the induction on the number p of players in the c-game. The problem of finding the optimal by Nash strategies in the c-game in the case when $p=1$ becomes the problem of finding the minimum path tree from the vertices $w \in V$ to the vertex v_{0} in G with positive edge lengths $c_{1}(e), e \in E$. For this problem, as it is well known, there exists the optimal solution, hence the theorem holds for $p=1$.

Let us assume that the theorem holds for any $p \leq k, k \geq 1$, and let us show that it is true for $p=k+1$.

Let us have the network game with $p=k+1$ players. We shall consider the problem of finding the optimal by Nash strategies of players $2,3, \ldots, p$, fixing the possible admissible strategies $s_{1}^{1}, s_{1}^{2}, \ldots, s_{1}^{q}$ of the first player.

Let us note, that if the first player fixes his first possible strategy, i.e. $s_{1}=s_{1}^{1}$, and if we consider the problem of finding the optimal by Nash strategies for the rest of the players, then in the positional form the obtained game will represent a c-game for $p-1$ players, since the positions of the first player can be considered as the positions of any other player (we consider them as the positions of the second player).

So for $s_{1}=s_{1}^{1}$ we obtain a new c-game with $p-1$ players on the network game $\left(G^{1}, V_{2}^{1}, V_{3}, \ldots, V_{p}, c_{2}^{1}, c_{3}^{1}, \ldots, c_{p}^{1}, w\right)$ where $V_{2}^{1}=V_{1} \cup V_{2}$ and $G^{1}=\left(V, E^{1}\right)$ is the digraph, obtained from G by deleting the edges $e=(u, v) \in E$ for which $u \in V_{1}$ and $v \neq s_{1}^{1}(u) ; c_{i}^{1}: E^{1} \rightarrow R^{1}$ are the functions obtained respectively from the functions c_{i} as a result of the contraction of the set E to the set E^{1}, i.e. $c_{i}^{1}(e)=c_{i}(e), \forall e \in$ $E^{1}, i=\overline{2, p}$. If we consider this game in the normal form, then
it is a game with $p-1$ players, determined by the cost functions $H_{w}^{2}\left(s_{1}^{1}, s_{2}, s_{3}, \ldots, s_{p}\right), H_{w}^{3}\left(s_{1}^{1}, s_{2}, s_{3}, \ldots, s_{p}\right), \ldots, H_{w}^{p}\left(s_{1}^{1}, s_{2}, s_{3}, \ldots, s_{p}\right)$, $s_{2} \in S_{2}, s_{3} \in S_{3}, \ldots, s_{p} \in S_{p}$, where $S_{2}, S_{3}, \ldots, S_{p}$ are the sets of admissible strategies of players $2,3, \ldots, p$, respectively. According to the induction assumption, for this game with $p-1=k$ players there exist optimal by Nash strategies $s_{2}^{1^{*}}, s_{3}^{1^{*}}, \ldots, s_{p}^{1^{*}}$ and the digraph $G_{s_{1}^{*}}=\left(V, E_{s_{1}^{*}}\right)$ which corresponds to the strategies $s_{1}^{1}, s_{2}^{1^{*}}, s_{3}^{1^{*}}, \ldots, s_{p}^{1^{*}}$ has the structure of a directed tree with the root vertex v_{0}.

In an anologous way we consider the case when the first player fixes his second possible strategy s_{1}^{2}, i.e. $s_{1}=s_{1}^{2}$. Then, according to the induction assumption, we find the optimal by Nash strategies $s_{2}^{2^{*}}, s_{3}^{2^{*}}, \ldots, s_{p}^{2^{*}}$ of players $2,3, \ldots, p$ in the c-game given in the normal form, which is determined by the cost functions $H_{w}^{2}\left(s_{1}^{2}, s_{2}, s_{3}, \ldots, s_{p}\right)$, $H_{w}^{3}\left(s_{1}^{2}, s_{2}, s_{3}, \ldots, s_{p}\right), \ldots, H_{w}^{p}\left(s_{1}^{2}, s_{2}, s_{3}, \ldots, s_{p}\right)$ and the digraph $G_{s_{2}^{*}}=$ $\left(V, E_{s_{2}^{*}}\right)$, corresponding to the strategies $s_{1}^{2}, s_{2}^{2^{*}}, s_{3}^{2^{*}}, \ldots, s_{p}^{2^{*}}$, has the structure of a directed tree with the root vertex v_{0}.

Further we consider the case when the first player fixes his third possible strategy and we find the optimal strategies $s_{2}^{3^{*}}, s_{3}^{3^{*}}, \ldots, s_{p}^{3^{*}}$ and the directed tree $G_{s_{3}^{*}}=\left(V, E_{s_{3}^{*}}\right)$, which corresponds to the strategies $s_{1}^{3}, s_{2}^{3^{*}}, s_{3}^{3^{*}}, \ldots, s_{p}^{3^{*}}$.

Continuing this process we find the following sets of strategies of players $1,2, \ldots, p$

$$
\begin{aligned}
& \left(s_{1}^{1}, s_{2}^{1^{*}}, s_{3}^{1^{*}}, \ldots, s_{p}^{1^{*}}\right) \\
& \left(s_{1}^{2}, s_{2}^{2^{*}}, s_{3}^{2^{*}}, \ldots, s_{p}^{2^{*}}\right) \\
& \left.\ldots \ldots \ldots \ldots \ldots s_{p}^{q^{*}}\right) \\
& \left(s_{1}^{q}, s_{2}^{q^{*}}, s_{3}^{q^{*}}, \ldots .{ }^{2}, \ldots\right.
\end{aligned}
$$

and the corresponding directed trees $G_{s_{1}^{*}}, G_{s_{2}^{*}}, \ldots, G_{s_{q}^{*}}$ with the root vertex v_{0}.

Among all these sets of players' strategies in the c-game we choose the set $\left(s_{1}^{j^{*}}, s_{2}^{j^{*}}, s_{3}^{j^{*}}, \ldots, s_{p}^{j^{*}}\right)$ for which

$$
\begin{equation*}
H_{w}^{1}\left(s_{1}^{j^{*}}, s_{2}^{j^{*}}, \ldots, s_{p}^{j^{*}}\right)=\min _{1 \leq i \leq q} H_{w}^{1}\left(s_{1}^{i}, s_{2}^{i^{*}}, \ldots, s_{p}^{i^{*}}\right) \tag{1}
\end{equation*}
$$

Let us show that the strategies $s_{1}^{j^{*}}, s_{2}^{j^{*}}, \ldots, s_{p}^{j^{*}}$ are optimal by Nash for players $1,2, \ldots, p$ in the initial c-game.

Indeed,

$$
\begin{gathered}
H_{w}^{i}\left(s_{1}^{j^{*}}, s_{2}^{j^{*}}, \ldots, s_{i-1}^{j^{*}}, s_{i}^{j^{*}}, s_{i+1}^{j^{*}}, \ldots, s_{p}^{j^{*}}\right) \leq \\
\leq H_{w}^{i}\left(s_{1}^{j^{*}}, s_{2}^{j^{*}}, \ldots, s_{i-1}^{j^{*}}, s_{i}, s_{i+1}^{j^{*}}, \ldots, s_{p}^{j^{*}}\right), \\
\forall s_{i} \in S_{i}, 2 \leq i \leq p,
\end{gathered}
$$

since $s_{2}^{j^{*}}, s_{3}^{j^{*}}, \ldots, s_{p}^{j^{*}}$ are the optimal by Nash strategies in the c-game for $s_{1}=s_{1}^{j}$ and moreover, according to (1)

$$
H_{w}^{1}\left(s_{1}^{j^{*}}, s_{2}^{j^{*}}, \ldots, s_{p}^{j^{*}}\right) \leq H_{w}^{1}\left(s_{1}, s_{2}^{j^{*}}, \ldots, s_{p}^{j^{*}}\right), \forall s_{1} \in S_{1} .
$$

The digraph $G_{s_{j}^{*}}=\left(V, E_{s_{j}^{*}}\right)$ corresponding to the strategies $s_{1}^{j^{*}}, s_{2}^{j^{*}}, \ldots, s_{p}^{j^{*}}$ has the structure of a directed tree with the root vertex v_{0}. The theorem is proved.

Theorem 2 Let $\left(G, V_{1}, V_{2}, \ldots, V_{p}, c_{1}, c_{2}, \ldots, c_{p}, w\right)$ be a network game for which the vertex v_{0} is attainable from any vertex $w \in V$ and the functions $c_{1}, c_{2}, \ldots, c_{p}$ are positive. Then on the vertex set V of the network game there exist p real functions

$$
\varepsilon^{1}: V \rightarrow R^{1}, \varepsilon^{2}: V \rightarrow R^{1}, \ldots, \varepsilon^{p}: V \rightarrow R^{1}
$$

which satisfy the conditions:
a) $\varepsilon^{k}(v)-\varepsilon^{k}(u)+c_{k}(u, v) \geq 0, \forall(u, v) \in E_{k}, k=\overline{1, p}$, where $E_{k}=\left\{e=(u, v) \in E \mid u \in V_{k}, v \in V\right\} ;$
b) $\min _{v \in V_{G}(u)}\left\{\varepsilon^{k}(v)-\varepsilon^{k}(u)+c_{k}(u, v)\right\}=0, \quad \forall u \in V_{k}, k=\overline{1, p}$;
c) the subgraph $G^{0}=\left(V, E^{0}\right)$ generated by the edge set $E^{0}=E_{1}^{0} \cup$ $E_{2}^{0} \cup \ldots \cup E_{p}^{0}, E_{k}^{0}=\left\{e=(u, v) \in E_{k} \mid \varepsilon^{k}(v)-\varepsilon^{k}(u)+c_{k}(u, v)=0\right\}$, $k=\overline{1, p}$ has the property that the vertex v_{0} is attainable from any vertex $w \in V$.

The optimal by Nash strategies of players in the c-game with the network ($\left.G, V_{1}, V_{2}, \ldots, V_{p}, c_{1}, c_{2}, \ldots, c_{p}, w\right)$ can be found as follows: in G^{0} an arbitrary directed tree $T=\left(V, E^{*}\right)$ is chosen and in T the maps

$$
\begin{gathered}
s_{1}^{*}: v \rightarrow V_{T}(v) \quad \text { for } v \in V_{1}, \\
s_{2}^{*}: v \rightarrow V_{T}(v) \quad \text { for } v \in V_{2}, \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
s_{p}^{*}: v \rightarrow V_{T}(v) \quad \text { for } v \in V_{p}
\end{gathered}
$$

are fixed.
Proof. By Theorem 1, in the c-game there exist optimal by Nash strategies $s_{1}^{*}, s_{2}^{*}, \ldots, s_{p}^{*}$ of players $1,2, \ldots, p$, and in G these strategies generate a directed tree $T_{s^{*}}=\left(V, E_{s^{*}}\right)$ with the root vertex v_{0}. In this tree we find the functions $\varepsilon^{1}: V \rightarrow R^{1}, \varepsilon^{2}: V \rightarrow R^{1}, \ldots, \varepsilon^{p}: V \rightarrow R^{1}$, where $\varepsilon^{i}(v)$ equals the sum of $\operatorname{costs} c_{i}(e)$ of edges e, which belong to the only directed path in $T_{s^{*}}$, connecting the vertices w and v_{0}. It is easy to verify that these numbers satisfy conditions a) and b).

Note, that the directed tree $T_{s^{*}}$ is a subgraph of the digraph $G^{0}=$ $\left(V, E^{0}\right)$, therefore condition c) holds too. Moreover, if in G^{0} a different from $T_{s^{*}}$ directed tree $T_{s}=\left(V, E_{s}\right)$ with the root vertex v_{0} is chosen, then this tree generates another optimal by Nash strategy of players $1,2, \ldots, p$. The theorem is proved.

4 The algorithm for finding optimal strategies in the case of a network without directed cycles

Let G be a digraph without directed cycles. In this case the vertices of G may be numbered from 1 to n, so that for any two vertices i and $j, i<j$ in G there no directed path from i to j exists. The following algorithm is used to number the vertices of G.

Step 1. Number the vertex v_{0} by 1 . Set $k=2$.
Step $k(k \geq 2)$. Find a vertex $v \in V$ for which the set $V_{G}(v)$ contains only numbered vertices. Number the vertex v by k. Set $k=$ $k+1$. If $k>n$, STOP. Otherwise go to step k.

In the network with the vertices numbered by this algorithm the directed tree $T_{s}=\left(V, E_{s}\right)$ of optimal strategies is easily constructed by the following algorithm.

Algorithm 1

Step 1. Assign to each vertex $i, i=\overline{1, n}$, a set of labels $l_{1}(i), l_{2}(i), \ldots, l_{p}(i)$ as follows:

$$
\begin{gathered}
l_{j}(1)=0, j=\overline{1, p} \\
l_{j}(i)=+\infty, \quad \forall i=\overline{2, n}, \forall j=\overline{1, p}
\end{gathered}
$$

Set $k=1, V_{s}=\emptyset, E_{s}=\emptyset$.
Step 2. Modify the labels of vertices $v \in V_{G}^{-}(k)\left(V_{G}^{-}(k)=\{u \in\right.$ $V \mid(u, k) \in E\})$ by using the formula

$$
l_{j}(v)=\min \left\{l_{j}(v), c_{j}(v, k)+l_{j}(k)\right\}, \quad \text { if } v \in V_{j}, j=\overline{1, p} .
$$

Step 3. Set $V_{s}=V_{s} \cup\{k\}$. If $k>1$, then add to E_{s} the edge (k, v) for which

$$
l_{j}(k)=l_{j}(v)+c_{j}(k, v), \quad \text { if } k \in V_{j}, j=\overline{1, p}
$$

and change the labels $l_{i}(k), i=\overline{1, p}, i \neq j$ using the formula

$$
l_{i}(k)=l_{i}(v)+c_{i}(k, v) .
$$

Set $k=k+1$. If $k=n$ then STOP. Otherwise go to step 2 .
Let us prove that this algorithm gives the optimal by Nash strategies of players $1,2, \ldots, p$. The labels $l_{j}(v), j=\overline{1, p}, v \in V$ satisfay conditions a) and b) of Theorem 2. Indeed, for any vertex $v \in V_{j} \backslash\left\{v_{0}\right\}$ we have

$$
l_{j}(u)-l_{j}(v)+c_{j}(v, u) \geq 0, \quad \forall u \in V_{G}(v),
$$

and at least for a vertex $u \in V_{G}(v)$

$$
l_{j}(u)-l_{j}(v)+c_{j}(v, u)=0 .
$$

The digraph $T_{s}=\left(V, E_{s}\right)$ generated by the edges $(v, u) \in E$, for which the last equality holds, is connected. Hence, in Theorem 2 we can put $\varepsilon^{j}(v)=l_{j}(v), j=\overline{1, p}, \forall v \in V$.

Algorithm 1 gives an optimal solution of the problem. This algorithm has the computational complexity $O(p n m)$.

5 The algorithms for finding optimal strategies in networks with an arbitrary structure

Let us have a c-game with p players and let the digraph G have an arbitrary structure, i.e. G may contain directed cycles. In this case the problem can be reduced to the problem of finding optimal strategies in a network game without directed cycles.

We construct an auxiliary network $\bar{G}=(W, F)$ without directed cycles, where W and F are defined as follows:

$$
\begin{gathered}
W=\cup_{i=1}^{n+1} W^{i}, \quad W^{i} \cap W^{j}=\emptyset \text { for } i \neq j ; \\
W^{i}=\left\{w_{1}^{i}, w_{2}^{i}, \ldots, w_{n}^{i}\right\}, \quad i=\overline{1, n+1} ; \\
F=\left\{\left(w_{k}^{i}, w_{l}^{j}\right) \mid\left(v_{k}, v_{l}\right) \in E, i, j=\overline{1, n+1}, i>j\right\} .
\end{gathered}
$$

The construction of \bar{G} can be interpreted in the following manner: the vertex set W contains the vertex set V, doubled $n+1$ times; in \bar{G} the vertices w_{k}^{i} and w_{l}^{j} are joined by the edge (w_{k}^{i}, w_{k}^{j}) if and only if $i>j$ and in the initial graph G the edge (v_{k}, v_{l}) is present.

Delete from \bar{G} those vertices $w \in W$, for which the oriented path $P_{\bar{G}}\left(w, w_{0}^{n+1}\right)$ from w to w_{0}^{n+1} does not exist. Divide the vertex set W into p subsets $W_{1}, W_{2}, \ldots, W_{p}$ as follows:

$$
\begin{aligned}
& W_{1}=\left\{w_{k}^{i} \in W \mid v_{k} \in V_{1}, i=\overline{1, n+1}\right\} ; \\
& W_{2}=\left\{w_{k}^{i} \in W \mid v_{k} \in V_{2}, i=\overline{1, n+1}\right\} ; \\
& \cdots \\
& W_{p}=\left\{w_{k}^{i} \in W \mid v_{k} \in V_{p}, i=\overline{1, n+1}\right\} .
\end{aligned}
$$

Obviously, $\cup_{i=1}^{n+1} W_{i}=W$ and $W_{i} \cap W_{j}=\emptyset, i, j=\overline{1, n+1}, i \neq j$.
Define on the edge set F the cost functions:

$$
\begin{array}{ll}
c_{1}\left(w_{k}^{i}, w_{l}^{j}\right) c_{1}\left(v_{k}, v_{l}\right), & \forall\left(w_{k}^{i}, w_{l}^{j}\right) \in F ; \\
c_{2}\left(w_{k}^{i}, w_{l}^{j}\right)=c_{2}\left(v_{k}, v_{l}\right), & \forall\left(w_{k}^{i}, w_{l}^{j}\right) \in F ; \\
\ldots \\
c_{p}\left(w_{k}^{i}, w_{l}^{j}\right)=c_{p}\left(v_{k}, v_{l}\right), & \forall\left(w_{k}^{i}, w_{l}^{j}\right) \in F .
\end{array}
$$

In the obtained network the problem of finding the optimal paths from all the vertices $w \in W$ to the vertex w_{0}^{n+1} can be solved by using Algoritm 1.

Let $l_{j}(w)$ be the length of an optimal path from $w \in W_{j}$ to w_{0}^{n+1}.
Since the cost functions both in the initial and the auxiliary networks are positive, then for all vertices $w_{k}^{i} \in W_{j}, i=\overline{1, n+1}$, the lengths of optimal paths are constant and equal the length of the optimal path which connects the vertex v_{k} with v_{0} in the initial graph G, i.e.

$$
l_{j}\left(w_{k}^{i}\right)=l_{j}\left(v_{k}\right) .
$$

This algorithm is inconvenient because of the great number of vertices in the auxiliary network.

Further we present a simpler algorithm for finding the optimal strategies of players.

Algorithm 2

Preliminary step. Assign to every vertex $v \in V$ a set of labels $\varepsilon^{1}(v), \varepsilon^{2}(v), \ldots, \varepsilon^{p}(v)$ as follows:

$$
\begin{gathered}
\varepsilon^{i}\left(v_{0}\right)=0, \quad \forall i=\overline{1, p}, \\
\varepsilon^{i}(v)=\infty, \quad \forall v \in V \backslash\left\{v_{0}\right\}, i=\overline{1, p} .
\end{gathered}
$$

General step. For every vertex $v \in V \backslash\left\{v_{0}\right\}$ change the labels $\varepsilon^{i}(v), i=\overline{1, p}$, in the following way. If $v \in V_{k}$ then find the vertex \bar{v} for which

$$
\varepsilon^{k}(\bar{v})+c_{k}(v, \bar{v})=\min _{u \in V_{G}(v)}\left\{\varepsilon^{k}(u)+c_{k}(v, u)\right\} .
$$

If $\varepsilon^{k}(v)>\varepsilon^{k}(\bar{v})+c_{k}(v, \bar{v})$, then replace $\varepsilon^{k}(v)$ by $\varepsilon^{k}(\bar{v})+c_{k}(v, \bar{v})$ and $\varepsilon^{i}(v)$ by $\varepsilon^{i}(v)+c_{i}(v, \bar{v}), i=\overline{1, p}, i \neq k$. If $\varepsilon^{k}(v) \leq \varepsilon^{k}(\bar{v})+c_{k}(v, \bar{v})$, then the labels are not changing.

Repeat the general step n times. Then the labels $\varepsilon^{i}(v), i=\overline{1, p}, v \in$ V, become constant. Let us note that these labels satisfy the conditions of Theorem 2. Hence, using the labels $\varepsilon^{i}(v), i=\overline{1, p}, v \in V$, and Theorem 2 we construct optimal by Nash strategies of players $1,2, \ldots, p$. Algorithm 2 has the computational complexity $O\left(p n^{2} m\right)$.

References

[1] Moulin H., Prolongement des jeux à deux jouers de somme nulle. Bull. Soc. math., 1976, Mem. 45.
[2] Gurvitch V.A., Karzanov A.V., Khatchiyan L.G, Cyclic games: Finding minimax mean cycles in digraphs. J. Comp. Mathem. and Math. Phys., 28 (1988), 1407-1417 (in Russian).
[3] Lozovanu D.D., Trubin V.A., Minimax path problem in network and the algorithm for its solving. Discrete Mathematics, 6 (1994), 138-144 (in Russian).
[4] Lozovanu D.D., A strongly polynomial time algorithm for finding minimax paths in network and solving cyclic games. Cybernetics and System Analysis, 5 (1993), 145-151 (in Russian).
[5] Lozovanu D.D., Extremal-combinatorial problems and algorithms for their solving. Ştiinţa, Chişinău, 1991 (in Russian).
[6] Nash J.F., Non cooperative games. Annals of Math., 54, 2 (1951), 286-295.
[7] Moulin H., Théorie des jeux pour l'économie et la politique. Paris, 1981.
[8] Boliac R., An algorithm and a program for finding the minimax path tree in weighted digraphs. Comput. Sci. J. of Moldova, V. 5, 1 (1997), 55-63.
[9] Christofides N., Graph Theory: An Algorithmic Approach. Academic Press, London, 1975.

Rodica Boliac, Dumitru Lozovanu,
Institute of Mathematics,
Academy of Sciences of Moldova, 5 Academiei str., Kishinev
2028, Moldova.

[^0]: (c) 1997 by R.Boliac, D.Lozovanu

