Algorithms for finding optimal paths in network games with p players

R. Boliac D. Lozovanu

Abstract

We study the problem of finding optimal paths in network games with p players. Some polynomial-time algorithms for finding optimal paths and optimal by Nash strategies of the players in network games with p players are proposed.

1 Introduction

We study the problem of finding optimal paths in network games with p players, which generalizes the well-known combinatorial problem on the shortest paths in a weighted directed graph and the min-max paths problem in network games with two players [1–3]. This problem arose as an auxiliary one when studying cyclic games [2–4] and solving some of network transport problems [5]. We propose polynomial-time algorithms for finding optimal paths in network games and optimal by Nash strategies of players [6].

2 Problem formulation

Let G = (V, E) be a directed graph with the vertex set V, |V| = n, and the edge set E, |E| = m, where p cost functions

$$c_1: E \to R^1; \ c_2: E \to R^1; \dots \ c_p: E \to R^1$$

are defined on the edge set. Assume that a vertex $v_0 \in V$ is chosen so that for any vertex $v \in V$ there exists a directed path $P_G(v, v_0)$ from

^{©1997} by R.Boliac, D.Lozovanu

v to v_0 . Moreover, we divide the vertex set V into p disjoint subsets V_1, V_2, \ldots, V_p $(V = \bigcup_{i=1}^p V_i, V_i \cap V_j = \emptyset, i \neq j).$

Let s_1, s_2, \ldots, s_p be p maps defined on V_1, V_2, \ldots, V_p , respectively:

$s_1: v \to V_G(v)$	for $v \in V_1$;
$s_2: v \to V_G(v)$	for $v \in V_2$;
$s_p: v \to V_G(v)$	for $v \in V_p$,

where $V_G(v)$ is the set of extremities of edges e = (v, u), originating in v, i.e. $V_G(v) = \{u \in V | e = (v, u) \in E\}$. Denote by $T_s = (V, E_s)$ the subgraph generated by the edges $e = (v, s_i(v))$ for $v \in V \setminus \{v_0\}$ and $i = \overline{1, p}$. Obviously, for an arbitrary vertex $w \in V$ either a unique directed path $P_T(w, v_0)$ exists in T_s , or such a path does not exist in T_s . In the second case, if we pass through the edges from w, we get a unique directed cycle C_s .

For arbitrary s_1, s_2, \ldots, s_p and $w \in V$ we define the quantities

 $H^1_w(s_1, s_2, \dots, s_p), \ H^2_w(s_1, s_2, \dots, s_p), \dots, \ H^p_w(s_1, s_2, \dots, s_p)$

in the following way. If the path $P_T(w, v_0)$ exists in T_s , then put

$$H^i_w(s_1, s_2, \dots, s_p) = \sum_{e \in P_T(w, v_0)} c_i(e), \quad i = \overline{1, p}.$$

If the directed path $P_T(w, v_0)$ from w to v_0 does not exist in T_s and $\sum_{e \in C_s} c_i(e) > 0$, then we put $H^i_w(s_1, s_2, \dots, s_p) = \infty$; if $\sum_{e \in C_s} c_i(e) < 0$ we put $H^i_w(s_1, s_2, \dots, s_p) = -\infty$. In the case when $\sum_{e \in C_s} c_i(e) = 0$ we consider that $H^i_w(s_1, s_2, \dots, s_p) = \sum_{i \in P'_s} c_i(e)$, where P'_s is the directed path connecting w and the cycle C_s .

We consider the problem of finding the maps $s_1^*, s_2^*, \ldots, s_p^*$ for which

$$H^{i}_{w}(s_{1}^{*}, s_{2}^{*}, \dots, s_{i-1}^{*}, s_{i}^{*}, s_{i+1}^{*}, \dots, s_{p}^{*}) \leq \leq H^{i}_{w}(s_{1}^{*}, s_{2}^{*}, \dots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \dots, s_{p}^{*}), \quad \forall s_{i}, \ i = \overline{1, p}.$$

So we study the problem of finding optimal by Nash solutions $s_1^*, s_2^*, \ldots, s_p^*$.

This problem can be interpreted as a dynamical game of p players with integral-time cost function, where w = v(0) is the starting position of the game at the moment t = 0, and $v(1), v(2), \ldots \in V$ are the corresponding positions of players at the moments $t = 1, 2, \ldots$ If $w \in V_i$ then the move is done by the player i. The moves of players mean the passage from the position w to the position $v(1) = v_1$, so that $(w, v_1) = e \in E$. In the general case, at the moment t the move is done by the player i if $v(t) \in V_i$. The game can be finite or infinite. If the position v_0 was reached at the finite moment t, i.e. $v(t) = v_0$, then the game is finite and the cost of the position w for the player i is $p_i(w) =$ $\sum_{i=1}^{t} c_i(v(\tau-1), v(\tau))$. If the position v_0 cannot be reached, then the cost

of the position w for the player i is $p_i(w) = \lim_{t \to \infty} \sum_{\tau=1}^t c_i(v(\tau-1), v(\tau)).$

Each player has the aim to minimize the cost of the position w. So the functions

 $H^1_w(s_1, s_2, \ldots, s_p), H^2_w(s_1, s_2, \ldots, s_p), \ldots H^p_w(s_1, s_2, \ldots, s_p)$

define a game in the normal form with p players. We name this game a c-game of p players on the network game $(G, V_1, V_2, \ldots, V_p, c_1, c_2, \ldots, c_p, w)$. If the c-game is given by the network game $(G, V_1, V_2, \ldots, V_p, c_1, c_2, \ldots, c_p, w)$, then we have a game in the positional form.

Note that if $V = V_1$ then we have the shortest path problem [9]. If $V = V_1 \cup V_2$ and $c_2 = -c_1$, then we have the min-max path problem on the network [4,8].

3 The main results

The maps s_1, s_2, \ldots, s_p are named the strategies of players $1, 2, \ldots, p$, respectively. Let us show that if in the network game $(G, V_1, V_2, \ldots, V_p, c_1, c_2, \ldots, c_p, w)$ with the starting position w the functions c_1, c_2, \ldots, c_p

are positive then there exist the optimal strategies $s_1^*, s_2^*, \ldots, s_p^*$ of players $1, 2, \ldots, p$.

Theorem 1 Let $(G, V_1, V_2, \ldots, V_p, c_1, c_2, \ldots, c_p, w)$ be a network game for which the vertex v_0 is attainable from any vertex $w \in V$ and the functions c_1, c_2, \ldots, c_p are positive. Then for the players $1, 2, \ldots, p$ there exist optimal by Nash strategies $s_1^*, s_2^*, \ldots, s_p^*$, and the graph $G_{s^*} =$ (V, E_{s^*}) corresponding to these strategies has the structure of a directed tree with the root vertex v_0 .

Proof. We prove this theorem by using the induction on the number p of players in the c-game. The problem of finding the optimal by Nash strategies in the c-game in the case when p = 1 becomes the problem of finding the minimum path tree from the vertices $w \in V$ to the vertex v_0 in G with positive edge lengths $c_1(e)$, $e \in E$. For this problem, as it is well known, there exists the optimal solution, hence the theorem holds for p = 1.

Let us assume that the theorem holds for any $p \le k, k \ge 1$, and let us show that it is true for p = k + 1.

Let us have the network game with p = k+1 players. We shall consider the problem of finding the optimal by Nash strategies of players $2, 3, \ldots, p$, fixing the possible admissible strategies $s_1^1, s_1^2, \ldots, s_1^q$ of the first player.

Let us note, that if the first player fixes his first possible strategy, i.e. $s_1 = s_1^1$, and if we consider the problem of finding the optimal by Nash strategies for the rest of the players, then in the positional form the obtained game will represent a *c*-game for p-1 players, since the positions of the first player can be considered as the positions of any other player (we consider them as the positions of the second player).

So for $s_1 = s_1^1$ we obtain a new *c*-game with p-1 players on the network game $(G^1, V_2^1, V_3, \ldots, V_p, c_2^1, c_3^1, \ldots, c_p^1, w)$ where $V_2^1 = V_1 \cup V_2$ and $G^1 = (V, E^1)$ is the digraph, obtained from *G* by deleting the edges $e = (u, v) \in E$ for which $u \in V_1$ and $v \neq s_1^1(u)$; $c_i^1 : E^1 \to R^1$ are the functions obtained respectively from the functions c_i as a result of the contraction of the set *E* to the set E^1 , i.e. $c_i^1(e) = c_i(e), \forall e \in$ $E^1, i = \overline{2, p}$. If we consider this game in the normal form, then

it is a game with p-1 players, determined by the cost functions $H^2_w(s^1_1, s_2, s_3, \ldots, s_p), \quad H^3_w(s^1_1, s_2, s_3, \ldots, s_p), \ldots, \quad H^p_w(s^1_1, s_2, s_3, \ldots, s_p), s_2 \in S_2, s_3 \in S_3, \ldots, s_p \in S_p$, where S_2, S_3, \ldots, S_p are the sets of admissible strategies of players $2, 3, \ldots, p$, respectively. According to the induction assumption, for this game with p-1=k players there exist optimal by Nash strategies $s^{1^*}_2, s^{1^*}_3, \ldots, s^{1^*}_p$ and the digraph $G_{s^*_1} = (V, E_{s^*_1})$ which corresponds to the strategies $s^1_1, s^{1^*}_2, s^{1^*}_3, \ldots, s^{1^*}_p$ has the structure of a directed tree with the root vertex v_0 .

In an anologous way we consider the case when the first player fixes his second possible strategy s_1^2 , i.e. $s_1 = s_1^2$. Then, according to the induction assumption, we find the optimal by Nash strategies $s_2^{2^*}, s_3^{2^*}, \ldots, s_p^{2^*}$ of players $2, 3, \ldots, p$ in the *c*-game given in the normal form, which is determined by the cost functions $H^2_w(s_1^2, s_2, s_3, \ldots, s_p)$, $H^3_w(s_1^2, s_2, s_3, \ldots, s_p), \ldots, H^p_w(s_1^2, s_2, s_3, \ldots, s_p)$ and the digraph $G_{s_2^*} =$ $(V, E_{s_2^*})$, corresponding to the strategies $s_1^2, s_2^{2^*}, s_3^{2^*}, \ldots, s_p^{2^*}$, has the structure of a directed tree with the root vertex v_0 .

Further we consider the case when the first player fixes his third possible strategy and we find the optimal strategies $s_2^{3^*}, s_3^{3^*}, \ldots, s_p^{3^*}$ and the directed tree $G_{s_3^*} = (V, E_{s_3^*})$, which corresponds to the strategies $s_1^3, s_2^{3^*}, s_3^{3^*}, \ldots, s_p^{3^*}$.

Continuing this process we find the following sets of strategies of players $1, 2, \ldots, p$

$$\begin{array}{c} (s_1^1, s_2^{1^*}, s_3^{1^*}, \dots, s_p^{1^*}), \\ (s_1^2, s_2^{2^*}, s_3^{2^*}, \dots, s_p^{2^*}), \\ \dots \\ (s_1^q, s_2^{q^*}, s_3^{q^*}, \dots, s_p^{q^*}) \end{array}$$

and the corresponding directed trees $G_{s_1^*}, G_{s_2^*}, \ldots, G_{s_q^*}$ with the root vertex v_0 .

Among all these sets of players' strategies in the *c*-game we choose the set $(s_1^{j^*}, s_2^{j^*}, s_3^{j^*}, \ldots, s_p^{j^*})$ for which

$$H^{1}_{w}(s_{1}^{j^{*}}, s_{2}^{j^{*}}, \dots, s_{p}^{j^{*}}) = \min_{1 \le i \le q} H^{1}_{w}(s_{1}^{i}, s_{2}^{i^{*}}, \dots, s_{p}^{i^{*}}).$$
(1)

Let us show that the strategies $s_1^{j^*}, s_2^{j^*}, \ldots, s_p^{j^*}$ are optimal by Nash for players $1, 2, \ldots, p$ in the initial *c*-game.

Indeed,

$$\begin{split} H^{i}_{w}(s^{j^{*}}_{1}, s^{j^{*}}_{2}, \dots, s^{j^{*}}_{i-1}, s^{j^{*}}_{i}, s^{j^{*}}_{i+1}, \dots, s^{j^{*}}_{p}) &\leq \\ &\leq H^{i}_{w}(s^{j^{*}}_{1}, s^{j^{*}}_{2}, \dots, s^{j^{*}}_{i-1}, s_{i}, s^{j^{*}}_{i+1}, \dots, s^{j^{*}}_{p}), \\ &\forall s_{i} \in S_{i}, \ 2 \leq i \leq p, \end{split}$$

since $s_2^{j^*}, s_3^{j^*}, \ldots, s_p^{j^*}$ are the optimal by Nash strategies in the *c*-game for $s_1 = s_1^j$ and moreover, according to (1)

$$H^1_w(s_1^{j^*}, s_2^{j^*}, \dots, s_p^{j^*}) \le H^1_w(s_1, s_2^{j^*}, \dots, s_p^{j^*}), \ \forall s_1 \in S_1.$$

The digraph $G_{s_j^*} = (V, E_{s_j^*})$ corresponding to the strategies $s_1^{j^*}, s_2^{j^*}, \ldots, s_p^{j^*}$ has the structure of a directed tree with the root vertex v_0 . The theorem is proved.

Theorem 2 Let $(G, V_1, V_2, \ldots, V_p, c_1, c_2, \ldots, c_p, w)$ be a network game for which the vertex v_0 is attainable from any vertex $w \in V$ and the functions c_1, c_2, \ldots, c_p are positive. Then on the vertex set V of the network game there exist p real functions

$$\varepsilon^1: V \to R^1, \ \varepsilon^2: V \to R^1, \dots, \varepsilon^p: V \to R^1,$$

which satisfy the conditions:

a)
$$\varepsilon^k(v) - \varepsilon^k(u) + c_k(u, v) \ge 0, \ \forall (u, v) \in E_k, \ k = \overline{1, p},$$

where $E_k = \{e = (u, v) \in E \mid u \in V_k, v \in V\};$

b)
$$\min_{v \in V_G(u)} \{ \varepsilon^k(v) - \varepsilon^k(u) + c_k(u,v) \} = 0, \ \forall u \in V_k, \ k = \overline{1,p};$$

c) the subgraph $G^0 = (V, E^0)$ generated by the edge set $E^0 = E_1^0 \cup E_2^0 \cup \ldots \cup E_p^0$, $E_k^0 = \{e = (u, v) \in E_k \mid \varepsilon^k(v) - \varepsilon^k(u) + c_k(u, v) = 0\}$, $k = \overline{1, p}$ has the property that the vertex v_0 is attainable from any vertex $w \in V$.

The optimal by Nash strategies of players in the c-game with the network $(G, V_1, V_2, \ldots, V_p, c_1, c_2, \ldots, c_p, w)$ can be found as follows: in G^0 an arbitrary directed tree $T = (V, E^*)$ is chosen and in T the maps

$s_1^*: v \to V_T(v) s_2^*: v \to V_T(v)$	for $v \in V_1$, for $v \in V_2$,
$s_p^*: v \to V_T(v)$	for $v \in V_p$

are fixed.

Proof. By Theorem 1, in the *c*-game there exist optimal by Nash strategies $s_1^*, s_2^*, \ldots, s_p^*$ of players $1, 2, \ldots, p$, and in *G* these strategies generate a directed tree $T_{s^*} = (V, E_{s^*})$ with the root vertex v_0 . In this tree we find the functions $\varepsilon^1 : V \to R^1, \varepsilon^2 : V \to R^1, \ldots, \varepsilon^p : V \to R^1$, where $\varepsilon^i(v)$ equals the sum of costs $c_i(e)$ of edges e, which belong to the only directed path in T_{s^*} , connecting the vertices w and v_0 . It is easy to verify that these numbers satisfy conditions a) and b).

Note, that the directed tree T_{s^*} is a subgraph of the digraph $G^0 = (V, E^0)$, therefore condition c) holds too. Moreover, if in G^0 a different from T_{s^*} directed tree $T_s = (V, E_s)$ with the root vertex v_0 is chosen, then this tree generates another optimal by Nash strategy of players $1, 2, \ldots, p$. The theorem is proved.

4 The algorithm for finding optimal strategies in the case of a network without directed cycles

Let G be a digraph without directed cycles. In this case the vertices of G may be numbered from 1 to n, so that for any two vertices i and j, i < j in G there no directed path from i to j exists. The following algorithm is used to number the vertices of G.

Step 1. Number the vertex v_0 by 1. Set k = 2.

Step $k \ (k \ge 2)$. Find a vertex $v \in V$ for which the set $V_G(v)$ contains only numbered vertices. Number the vertex v by k. Set k = k + 1. If k > n, STOP. Otherwise go to step k.

In the network with the vertices numbered by this algorithm the directed tree $T_s = (V, E_s)$ of optimal strategies is easily constructed by the following algorithm.

Algorithm 1

Step 1. Assign to each vertex i, $i = \overline{1, n}$, a set of labels $l_1(i), l_2(i), \ldots, l_p(i)$ as follows:

$$l_j(1) = 0, \ j = \overline{1, p},$$
$$l_j(i) = +\infty, \quad \forall i = \overline{2, n}, \ \forall j = \overline{1, p}.$$

Set k = 1, $V_s = \emptyset$, $E_s = \emptyset$.

Step 2. Modify the labels of vertices $v \in V_G^-(k)$ $(V_G^-(k) = \{u \in V \mid (u,k) \in E\})$ by using the formula

$$l_{j}(v) = \min\{l_{j}(v), c_{j}(v, k) + l_{j}(k)\}, \text{ if } v \in V_{j}, j = \overline{1, p}.$$

Step 3. Set $V_s = V_s \cup \{k\}$. If k > 1, then add to E_s the edge (k, v) for which

$$l_j(k) = l_j(v) + c_j(k, v), \text{ if } k \in V_j, \ j = \overline{1, p}$$

and change the labels $l_i(k)$, $i = \overline{1, p}$, $i \neq j$ using the formula

$$l_i(k) = l_i(v) + c_i(k, v).$$

Set k = k + 1. If k = n then STOP. Otherwise go to step 2.

Let us prove that this algorithm gives the optimal by Nash strategies of players 1, 2, ..., p. The labels $l_j(v)$, $j = \overline{1, p}$, $v \in V$ satisfay conditions a) and b) of Theorem 2. Indeed, for any vertex $v \in V_j \setminus \{v_0\}$ we have

$$l_j(u) - l_j(v) + c_j(v, u) \ge 0, \quad \forall u \in V_G(v),$$

and at least for a vertex $u \in V_G(v)$

$$l_{i}(u) - l_{i}(v) + c_{i}(v, u) = 0$$

The digraph $T_s = (V, E_s)$ generated by the edges $(v, u) \in E$, for which the last equality holds, is connected. Hence, in Theorem 2 we can put $\varepsilon^j(v) = l_j(v), \ j = \overline{1, p}, \ \forall v \in V.$

Algorithm 1 gives an optimal solution of the problem. This algorithm has the computational complexity O(pnm).

5 The algorithms for finding optimal strategies in networks with an arbitrary structure

Let us have a c-game with p players and let the digraph G have an arbitrary structure, i.e. G may contain directed cycles. In this case the problem can be reduced to the problem of finding optimal strategies in a network game without directed cycles.

We construct an auxiliary network $\overline{G} = (W, F)$ without directed cycles, where W and F are defined as follows:

$$W = \bigcup_{i=1}^{n+1} W^{i}, \quad W^{i} \cap W^{j} = \emptyset \text{ for } i \neq j;$$
$$W^{i} = \{w_{1}^{i}, w_{2}^{i}, \dots, w_{n}^{i}\}, \quad i = \overline{1, n+1};$$
$$F = \{(w_{k}^{i}, w_{l}^{j}) \mid (v_{k}, v_{l}) \in E, \ i, j = \overline{1, n+1}, \ i > j\}.$$

The construction of \overline{G} can be interpreted in the following manner: the vertex set W contains the vertex set V, doubled n + 1 times; in \overline{G} the vertices w_k^i and w_l^j are joined by the edge (w_k^i, w_k^j) if and only if i > j and in the initial graph G the edge (v_k, v_l) is present.

Delete from \overline{G} those vertices $w \in W$, for which the oriented path $P_{\overline{G}}(w, w_0^{n+1})$ from w to w_0^{n+1} does not exist. Divide the vertex set W into p subsets W_1, W_2, \ldots, W_p as follows:

$$W_{1} = \{w_{k}^{i} \in W \mid v_{k} \in V_{1}, i = \overline{1, n+1}\}; \\ W_{2} = \{w_{k}^{i} \in W \mid v_{k} \in V_{2}, i = \overline{1, n+1}\}; \\ \dots \\ W_{p} = \{w_{k}^{i} \in W \mid v_{k} \in V_{p}, i = \overline{1, n+1}\}.$$

Obviously, $\bigcup_{i=1}^{n+1} W_i = W$ and $W_i \cap W_j = \emptyset$, $i, j = \overline{1, n+1}, i \neq j$. Define on the edge set F the cost functions:

$$\begin{array}{ll} c_1(w_k^i,w_l^j) = c_1(v_k,v_l), & \forall (w_k^i,w_l^j) \in F; \\ c_2(w_k^i,w_l^j) = c_2(v_k,v_l), & \forall (w_k^i,w_l^j) \in F; \\ \dots \\ c_p(w_k^i,w_l^j) = c_p(v_k,v_l), & \forall (w_k^i,w_l^j) \in F. \end{array}$$

In the obtained network the problem of finding the optimal paths from all the vertices $w \in W$ to the vertex w_0^{n+1} can be solved by using Algoritm 1.

Let $l_j(w)$ be the length of an optimal path from $w \in W_j$ to w_0^{n+1} .

Since the cost functions both in the initial and the auxiliary networks are positive, then for all vertices $w_k^i \in W_j$, $i = \overline{1, n+1}$, the lengths of optimal paths are constant and equal the length of the optimal path which connects the vertex v_k with v_0 in the initial graph G, i.e.

$$l_j(w_k^i) = l_j(v_k).$$

This algorithm is inconvenient because of the great number of vertices in the auxiliary network.

Further we present a simpler algorithm for finding the optimal strategies of players.

Algorithm 2

Preliminary step. Assign to every vertex $v \in V$ a set of labels $\varepsilon^1(v), \varepsilon^2(v), \ldots, \varepsilon^p(v)$ as follows:

$$\varepsilon^{i}(v_{0}) = 0, \quad \forall i = \overline{1, p},$$
$$\varepsilon^{i}(v) = \infty, \quad \forall v \in V \setminus \{v_{0}\}, \ i = \overline{1, p}.$$

General step. For every vertex $v \in V \setminus \{v_0\}$ change the labels $\varepsilon^i(v), i = \overline{1, p}$, in the following way. If $v \in V_k$ then find the vertex \overline{v} for which

$$\varepsilon^k(\bar{v}) + c_k(v,\bar{v}) = \min_{u \in V_G(v)} \{\varepsilon^k(u) + c_k(v,u)\}.$$

If $\varepsilon^k(v) > \varepsilon^k(\bar{v}) + c_k(v,\bar{v})$, then replace $\varepsilon^k(v)$ by $\varepsilon^k(\bar{v}) + c_k(v,\bar{v})$ and $\varepsilon^i(v)$ by $\varepsilon^i(v) + c_i(v,\bar{v})$, $i = \overline{1,p}$, $i \neq k$. If $\varepsilon^k(v) \leq \varepsilon^k(\bar{v}) + c_k(v,\bar{v})$, then the labels are not changing.

Repeat the general step n times. Then the labels $\varepsilon^i(v)$, $i = \overline{1, p}$, $v \in V$, become constant. Let us note that these labels satisfy the conditions of Theorem 2. Hence, using the labels $\varepsilon^i(v)$, $i = \overline{1, p}$, $v \in V$, and Theorem 2 we construct optimal by Nash strategies of players $1, 2, \ldots, p$. Algorithm 2 has the computational complexity $O(pn^2m)$.

References

- Moulin H., Prolongement des jeux à deux jouers de somme nulle. Bull. Soc. math., 1976, Mem. 45.
- [2] Gurvitch V.A., Karzanov A.V., Khatchiyan L.G, Cyclic games: Finding minimax mean cycles in digraphs. J. Comp. Mathem. and Math. Phys., 28 (1988), 1407–1417 (in Russian).
- [3] Lozovanu D.D., Trubin V.A., Minimax path problem in network and the algorithm for its solving. *Discrete Mathematics*, 6 (1994), 138–144 (in Russian).
- [4] Lozovanu D.D., A strongly polynomial time algorithm for finding minimax paths in network and solving cyclic games. *Cybernetics* and System Analysis, 5 (1993), 145–151 (in Russian).
- [5] Lozovanu D.D., Extremal-combinatorial problems and algorithms for their solving. Ştiinţa, Chişinău, 1991 (in Russian).
- [6] Nash J.F., Non cooperative games. Annals of Math., 54, 2 (1951), 286–295.
- [7] Moulin H., Théorie des jeux pour l'économie et la politique. Paris, 1981.

- [8] Boliac R., An algorithm and a program for finding the minimax path tree in weighted digraphs. *Comput. Sci. J. of Moldova*, V. 5, 1 (1997), 55–63.
- [9] Christofides N., *Graph Theory: An Algorithmic Approach.* Academic Press, London, 1975.

Received June 13, 1997

Rodica Boliac, Dumitru Lozovanu, Institute of Mathematics, Academy of Sciences of Moldova, 5 Academiei str., Kishinev 2028, Moldova.