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ABSTRACT: The main aim of the paper is to present graph theory parameters and algorithms as tool to analyze
and to optimise transportation systems. To realize these goals the 0-1 knapsack problem solution by SPEA
algorithm, methods and procedures for finding the minimal spanning tree in graphs and digraphs, domination
parameters problems accurate to analyse the transportation systems are introduced and described. Possibility
of application of graph theory algorithms and parameters to analyze exemplary transportation system are

shown.

1 INTRODUCTION

Nowadays, researchers have two main problems. On

the one hand people are dependent on critical systems

such as transportation, electricity, water supply,

sewage, ICT. According to the official definition, the

critical infrastructure is a term used to describe assets

that are essential for the functioning of a society and

economy. The following facilities are related to this

subject [1]:

— electricity and heating generation, transmission
and distribution;

— gas and oil production, transport and distribution;

— telecommunication;

— water supply;

— agriculture, food production and distribution;

— public health (hospitals, ambulances);

— transportation systems (fuel supply, railway
network, airports, harbours, inland shipping);

— financial services (banking);

— security services (police, military).

There are several regional critical-infrastructure
protection programmes, which main aims are:

— to indentify important assets,

— to analyze a risk based on major threat scenarios
and the vulnerability of each asset,

— to indentify, select and make prioritisation of
counter-measures and procedures.

These goals are common for all facilities presented
above. It is very important to keep these systems in
good conditions [8], [9]. Thus, the risk and reliability
analyses is needed to understand the impact of
threats and hazards [4], [5], [8]. Unfortunately, these
problems are more and more complex, because of
existing strong interdependencies both within and
between infrastructure systems.

The second problem is finding optimal solutions. It
is met in many areas of modern science, technology
and economics. For example, the navigator's main
aim is optimizing the route of the ship due to safety,
time of passage, fuel and costs [16], [21]. The solving
of these real-life problems is looking for a
mathematical model or function that best
approximates or fit to the data collected during the
operation process or experiment [11]. If we can
specify three elements: a model of the phenomenon of
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distinguished decision variables, objective function -
also known as a quality criterion - and limitations,
each of these can be (generally) formulated strictly as
an optimization problem [3]. This approach can be
apply to reliability, safety and risk analysis [3], [4].
But, because of the current complexity of the technical
systems [9] the criteria for their safe and reliable
operations are made important more and more [11],
[12]. This implies that more than one object is taken
into account for solving the optimization problems
([3], [5], [10], [12], [14], [16], [20], [22] - [23]). Some
tools for solving the problems of complex technical
systems operation, reliability, availability, safety and
cost optimization are presented in [10] — [12]. The
methods of the reliability prediction and optimization
of complex technical systems related to their
operation processes are introduced in [10].

The methods of operational research can be
classified as deterministic or non-deterministic [15],
[18], [20], [22]. There are many publications concerns
into deterministic or non-deterministic optimization
methods for engineering and management [20] - [23].
The methods for solving the maritime transportation
optimization problems, ie. weather routing or
minimizing fuel consumption are introduced in [14],
[21], respectively.

In this paper the review of known graph theory
algorithms and parameters [2] - [7], [13], [15], [17] -
[19], [23] which can be applied to design, analyze and
optimize of transportation systems is done.

Whereas, the presented approach can be used to
any of listed above facilities.

2 MULTI-CRITERIA OPTIMIZATION METHODS
REVIEW

In the general words, the single-objected optimization
problem is defined as following mathematical model
(minimizing or maximizing problem):

F(x,) » min or F(x,) - max,

1
1(x)<0, 1(x)<0, x,20, i,j=1,2,..,n @

where
x, - decision variables, i=12,....,n;
F(x,) - goal function;
[;(x;) - limits function (low or high) for decision
variables, i, j=1,2,...,n.

Whereas, the multi-objective (multi-criteria)
optimization model can be described as a vector
function f that maps a tuple of m decision

variables to a tuple of n objectives. The formal
notation is as follows [12]:

y =f(x)= (fl(x),fZ(x),...,fn(x)) — min/ max
m)EX, (2)
y=(y, Y2y, )€Y,

subject to

x:(xl,xz,...,x

where
x - decision variable,

572

X - parameter (variable) space,
Yy - objective vector,
Y - objective space.

The set of multi-objective optimization problem
solutions consists of all decision vectors for which the
corresponding objective vectors cannot be improved
in any dimension without degradation in another.
These vectors are known as Pareto optimal, what is
related to the concept of domination vector by vector.
It is simple to explain after introduce following
definitions.

Definition 1

Let us take into account a maximization problem
and consider two decision vectors a,be X, then a
is said to dominate b if and only if

Vie(l,2,..,n}: f(a)>f(b)
A 3)
Fje{1,2,..,n}: f(a)=£(b).

] ]

Definition 2

All decision vectors which are not dominated by
another decision vector are called non-dominated.

When the decision vectors are non-dominated
within the entire search space, they are denoted as
Pareto optimal (Pareto-optimal front).

These general formulations for single and multi-
objective optimization problem are common for
different types of engineering problems, which can be
related to different optimization problems presented
on Figure 1.

Optimization

problems

|
Nonconvex
|

Convex

Discrete Continuous

Linear Nonlinear

LP Convex Linear Nonlinear Nonconvex

NLP 3 | : NLP

Convex
relaxation

g
MILP
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relaxation

Convex
MINLP

Nonconvex
MINLP

Figure 1. Different types of problem related to optimization
problems [3], [15].

The basic classification of the optimization
methods consists in their division due to the number
of criteria (one or multi-criteria). As it is shown on
Figure 2, there is possibility to distinguish seven most
frequently used methods of  multi-criteria
optimization and three for one-criterion [3].



OPTIMIZATION
METHODS

ONE CRITERION MULTI-CRITERIA

- WEIGHTED OBJECTIVE METHODS

- HIERARCHICAL OPTIMIZATION METHOD
- TRADE-OFF METHOD

- GLOBAL CRITERION METHOD

- METHOD OF DISTANCE FUNCTIONS

- MIN-MAX METHODS

- GOAL PROGRAMMING METHOD

- LINEAR PROGRAMMING;
- NONLINEAR PROGRAMMING
- DYNAMIC PROGRAMMING;

Figure 2. Chosen optimization methods [3].

These methods represent some general approaches
for optimization, i.e.:
— deterministic,
— non-deterministic,
— heuristic,
— evolutionary/genetic.

The above approaches can provide general tools
for solving optimization problems to obtain a global
optimum. In second case the best way is using the
evolutionary or genetic algorithms. The schema of
basic genetic algorithm is presented on Figure 3.

General operation of genetic or evolutionary
algorithms is based on the following steps (see
Figure 3) [3]:

1 Initialization.
2 Calculate fitness.
3 Selection/Recombination/Mutations (parents and

children).
4 Finished.

Population Rank Children
oo (4
Dwwwwys [ [ ) [EREDD
ERERIR 3] o //0/j0) 4 4 4]

Create Initi Calculate Select Create
Population Fitness Parents Children
[) |

Figure 3. Basic genetic algorithm [3], [22].

The each chromosome of the genetic or
evolutionary algorithm is represented as a string of
bits.

In the paper the Strength Pareto Evolutionary
Algorithm (SPEA) is considered [3], [23].

The basic notations for above algorithm are as
follows:
— t-number of generation,

— P -population in generation t,
- 1:3: - external set in generation t,
- P’ -temporary external set,
- P' -temporary population.

Additionally, it is necessary to give following
input parameters:

— N - population size,

— N - maximum size of external set,

— T - maximum number of generations,
— P.- crossing probability,

P,,- mutation probability,

— A" set of non-dominated solutions.

The Strength Pareto Evolutionary Algorithm is as
follows [3], [23]:

Step 1. Initialization:

The initial population P, is generated according
to procedure:
1 To getitemi.
2 Toadd item i to set P, .

Next, the empty external set F,
where #=0.

is generated,

Step 2. The complement of the external set is done.
Let P'=P

1 To copy non-dominated items from population
P to population P". _

To remove dominated items from set P’ .

To reduce the cardinality of the set P’ to value

N, using clustering and the solution give into

W N

t+1°

Step 3. Determination fit function.

The value of the fit function F for items from sets
P i P can be found according to following

procedure:

The real value § €[0,1) is assigned for every item
i € P, (called power). This value is proportional to
number of items je P , which represents the
solutions dominated by item i.

The adaptation of item j is calculated as sum of all
items from external set, represents solution
dominated by item j, increased by 1.

The aim of addition 1 is to ensure that items i€ P,
will have better value of fit function than items from
set P, ie.

n
N+1’

S(i) = 4)

where:
S(i) - power of item i,
n - number of items in population dominated by
item i.

It is assumed that value of fit function for item i is
equal to his power, i.e.

F(i)=S@) o)

Step 4. Selection
Let P' =0O.

Fori=1,2,...kdo .
1 To choose randomly two items i,j € PUP.
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2 If F@@)<F()) then P' =P Ui}
else P' = P' U {j}, under assumption that value of
fit is minimizing.

Step 4. Recombination.
Let P"=0.

Fori=1,2,...N/2 do:

1 To choose two items i, je P' and to remove it
from P’ .

2 Tocreate items: k,/ by crossing the itemsi, j .

3 To add items k,/ toset P" with probability p.,
else add items i, tosetP".

Step 5. Mutation
Let P"=0.

For every item i € P" do:
1 To create item j by mutation the item i with

probability p,,.
2 Toadd item to set P".

Step 6. Finished
Let P, =P"

t+l
If t>T then return A — non-dominated solution
from population P, and finish else back to Step 2.

t

and r=¢+1.

3 REVIEW OF GRAPH THEORY TOPICS

Bellow chapter is showing general definitions,
parameters and algorithms of the domination in
graph theory and other related topics. Let
G =(V,E) be a connected simple graph (Figure 1)
where V - set of n vertices, E - set of m edges. The
set of neighbors of vertex v in G is denoted
by N, (v).

3.1 Basics on domination in undirected graphs

In the following, the different type of domination sets
and numbers’ definitions will be introduced, i.e.
general, connected and independent for undirected

graphs [4], [6], [7].

Definition 1
A set D cV(G) is the dominating set of G if
for any vel either veD or N;(v)ND#D.

The domination number »(G) of a graph G is the
minimum cardinality of a dominating set of G .

Definition 2

A set D, cV(G) is a connected dominating set
of G if every vertex of V'\D_. is adjacent to a
vertex in D, and the subgraph induced by D, is
connected. The minimum cardinality of a connected
dominating set of G is the connected domination
number ¥, (G).
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Definition 3

A set D, cV(G)is an independent dominating
set of G if no two vertices of D, are connected by
any edge of G . The minimum cardinality of an
independent dominating set of G is the
independent domination number y,(G).

1

5
Figure 3. The exemplary undirected graph G .

For the exemplary graph G presented in Figure 3
the particular domination sets and numbers
(Definitions 1 — 3) are as follows:

D ={5,6}, (G)=2;
D={1,2,5}, y.(G)=
D ={2,3}, »,(G)=2.

The above definitions refer to the general concept
of undirected graphs. There are topics related to
weight functions, what allows defined the vertex-
weighted graph ([4], [6], [7]).

Definition 4
A vertex-weighted graph (G,w,) is defined as a

graph G together with a pos1t1ve weight-function
on its vertexset w,: V(G)—> R>0.

According to above definition we get next
definitions.

Definition 5

The weighted domination number y, (G) of
(G,w,) is the minimum weight
w(D) = Z w(v) of a set D CV(G) such that
every vertex "X € V(D) — D has a neighborin D.

Definition 6

The weighted connected domination number
Ve, (G) of (G,w,) is the minimum weight
w(D,. )—Z _, W) ‘of a set D. cV(G) such that
every vertex of V' \ D, is ad]acent to a vertex in D,
and the subgraph induced by D, is connected.

Definition 7

The weighted independent domination number
7,(G) of (G,w,) is the minimum weight
w(D,) = ZveD w(v) of a set D, cV(G) such that if



no two vertices of D, are connected by any edge of
(G,w).

Similarly, it can be done for directed graphs.

Taking into account the complexity of the
minimum dominating set, we should state, that in
general is NP-hard problem. Efficient approximation
algorithms do exist under assumption that any
dominating set problem can be formulated as a set
covering problem. Thus, the greedy algorithm for
finding domination set is an analog of one that has
been presented in [4], [18]. This algorithms is
formulated as follows ([4], [18]):

Algorithm 1:

1 Let V={l,..n},and define D=¢.

2 Greedy add a new node to D in each iteration,
until D forms a dominating set.

3 A node j, is said to be covered if je D or if any
neighbor of j isin D .A node that is not covered
is said to be uncovered.

4 In each iteration, put into D the least indexed
node that covers the maximum number of
uncovered nodes.

5 Stop when all the nodes are covered.

For graph in Figure 1, Greedy will return
D ={1,2}.

In case of the minimum connected domination set,
the Greedy algorithm is also used. However, to define
them some preliminaries are necessary [4], [19].

We consider graph G and subset C of vertices
in G.We can divided all vertices into three classes:
— belong to C are called black v,;
— not belong to C but adjacent to C are called

gray v, ;

— notin C and not adjacentto C are called white
v, .
Under assumption that C is connected

dominating set if and only if there is no white vertex
and the subgraph induced by black vertices is
connected. The sum of the number of white vertices
and the number of connected components of the
subgraph induced by black vertices (black
components) equals 1. The greedy algorithm with
potential function equal to the number of white

vertices plus number of black components is as
follows [4], [19].

Algorithm 2:

Set wi=1;
while w=1 do
If there exists a white or gray vertex such that
coloring it in black and its adjacent white
vertices in gray would reduce the value of
potential function
then choose such a vertex to make the value of
potential function reduce in a maximum amount
else set w:=0;

3.2 Spanning trees

The appropriate tool for the transportation system
analysis in terms of its infrastructure connecting each

node the spanning tree is proposed. It can be done for
both undirected and directed cases.

Definition 8

The spanning tree T of a connected, undirected
graph G is a tree composed of all the vertices and
some (or perhaps all) of the edges of G.

Informally, a spanning tree of G is a selection of
edges of G that form a tree spanning every vertex. It
means, that every vertex lies in the tree, but no cycles
(or loops) are formed [4].

According to Definition 5, the edge-weighted
graph is introduced.

Definition 9

An edge-weighted graph (G,w,) is defined as a
graph graph G together with a positive weight-
function on its edge set w,: E(G)—> R>0.

Furthermore, for edge-weighted graphs it is
possible to find minimum spanning tree, which is
defined as follows.

Definition 10

A minimum spanning tree (MST) of an edge-
weighted graph is a spanning tree whose weight (the
sum of the weights of its edges) is no greater than the
weight of any other spanning tree.

It can be done according to two well-known
algorithms: Kruskal’s and Prim’s. They can be shown
as follows [2], [4]:

Algortihm 3 (Kruskal’s)

1 Find the cheapest edge in the graph (if there is
more than one, pick one at random). Mark it with
any given colour, say red.

2 Find the cheapest unmarked (uncoloured) edge in
the graph that doesn't close a coloured or red
circuit. Mark this edge red.

3 Repeat Step 2 until you reach out to every vertex of
the graph (or you have n-1 coloured edges).

The red edges form the desired minimum

spanning tree.

Algortihm 4 (Prim’s)

1 Pick any vertex as a starting vertex - v
it with any given colour (red).

2 Find the nearest neighbor of v . (call it P).
Mark both P: and the edge v, P1 red. Cheapest
unmarked (uncoloured) edge in the graph that
doesn't close a coloured circuit. Mark this edge
with same colour of Step 2.

3 Find the nearest uncoloured neighbor to the red
subgraph (i.e., the closest vertex to any red vertex).
Mark it and the edge connecting the vertex to the
red subgraph in red.

4 Repeat Step 3 until all vertices are marked red.

. Mark

start

The red subgraph is a minimum spanning tree.
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The above knowledge (Sections 3.1 and 3.2) can be
applied to analyze transportation systems,
particularly its infrastructure (even critical). For
instance it is useful to choose the routes and nodes
classified as critical infrastructures [4], [8]. To show
possible applications of discussed methods, the
academic example is shown bellow.

Example

Let us consider the hypothetic map of road
connections, what is given by schema presented in
Figure 4. We choose eleven nodes and describe them
the consecutive number and the time of red light (in
seconds). The edges between the nodes are described
by the number of kilometers.

1(100
{10} a )

11(75)

10(130) {7} 2(150)

5 3(500)

aC 4(275)
eI s O 5(380)

S
6(180)
Figure 4. The exemplary scheme of road infrastructure.

Our main goal is to choose the minimal spanning

tree and minimal independent domination set, i.e.
finding an independent domination number.

According the Kruskal’s Algorithm, the minimal
spanning tree is given in Figure 5 as the set of double
edges.

{10}

3 (275)
N
6(180)
Figure 5. Minimal spanning tree (Kruskal’s Algortihm)
In this way, the minimal number of kilometers is
equal to 134 [km]. According to Algorithm 1, the time
of red lights is equaled to 430 [seconds]. It is minimal

dominating set, what is marked in Figure 6 with black
nodes (vertices).
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1(100)
Q)

{10}

5(380)

6(180)

Figure 6. Minimal weighted independent domination set.

3.3 Introduction to the knapsack problem

One of the most known problem in graph theory is
the knapsack problem. It has been studied since 1897
and is combinatorial optimization problem. General
description is based on given a set of items, each with
a mass and a value [3]. There is determined the
number of each item to include in a collection so that
the total weight is less than or equal to a given limit
and the total value is as large as possible (according to
(1)). The knapsack problem has many modified forms,
i.e. to form of the 0-1 knapsack problem. In this way is
formulated as  multi-objective  optimization
problem [3].

General assumption about a 0-1 knapsack problem
is it consists of a set of items, weight and profit
associated with each item, and an upper bound for
the capacity of the knapsack. We want find a subset of
items which maximizes the profits and all selected
items fit into the knapsack, i.e., the total weight does
not exceed the given capacity [23].

After assuming an arbitrary number of knapsacks,
the single-objective problem is extended directly to
the multi-objective case. Formally, the multi-objective
0-1 knapsack problem can be defined in the following
way [23]:

Given a set of m
knapsacks, with

items and a set of n

p,,; = profitofitem j according to knapsack i,

w. . =

., = weightofitem j according to knapsack 7,

Cc. =

i

find a vector X = (x1 I S )e {O,l}m , such that

capacity of knapsack i,

Viell,2,..,n}:

™

I
=N

WX ¢ (6)

and for which f(x)=(f1(x),f2(x),...,fn(x)) is

maximum, where
£09-3 b, % ?
j=1

and x; =1 ifand only if when item j is chosen.

Nowadays, the best solutions of knapsack problem
are described in terms of a genetic methods. As it is



shown in [3] it can be very useful tool for multi-
objective optimization of transportation systems.

3.4 Flows in transportation systems

The graph theory is the basis for analyzing a traffic
flow in transportation systems and networks [13],
[17]. In section 3 the definition of undirected graph
was introduced. But, for more detailed analysis of
traffic flows, the digraphs should be defined. Thus,
the graph G = (V, A) is directed graph or digraph
with a set V, whose elements are called vertices or
nodes and set A of ordered pairs of vertices, called
arcs, directed edges, or arrows (Figure 7).

1

5

Figure 7. The exemplary directed graph G .

The main reason for the creation of this Subsection
is fact that transportation engineers need know the
traffic flow theory as a tool that helps understand and
express the problems of evaluating the capacity of
existing roadways or designing new ones. Thus, the
following definitions are important [17].

Definition 11

Let G,=(V,A4,s,t) be a network with
s,t € A being the source and the sink of G,
respectively.

Definition 12

The capacity of an edge of network G, is
mapping c¢:A—>R", which represents the
maximum amount of flow that can pass through an
edge. It is denoted as ¢, ,where u,v e A.

uv?

Definition 13

A flow in network G, is mapping
f.,:A—> R", where u,ve A,which subjects to the
following two constrains:
1V f <c,, (capacity constraint: the flow of
dh'édige cannot exceed its capacity)

\A , f, = § ' £...» (conservation
SF Hows e Sim of The HOWS entering a node
must equal the sum of the flows exiting a node,
except for the source and the sink nodes).

2

Definition 14

The value of flow
is the source of G,,.

f;/V ZZV:(s,v)eAf;"’ where s

Generally, the main problem in traffic flows is
maximize value of | fw|, which is called maximum
flow problem. One of the solutions is using residual
network, which is defined as follows [17].

Definition 15

For given G, and flow f_ , we define the
residual network G as follows:
1 The node set of (i;b{ is the same as that of GS[ ;
2 Each edge e=(u,v) of G{, is with capacity
Ce_ e; :
3 Each edge €' =(v,u) of G/ is with capacity
Furthermore C£ =min{c/ : (u,v) € p} is
residual capacity of path p in network /

st *

According to above definitions, the algorithm of
finding the maximal flow in network is given as
follows [13], [17].

Algorithm 5 (Ford-Fulkerson)

For each edge e =(u,v)do
Begin

S0

Ju=0
End i
While exists path p from s do ¢ in G/ do
Begin

c£ =min{c/ :(u,v) € p}

Foreach e=(u,v)e p do

begin ;
}ZV ~Jut
End vu uv
End
Return f.

Based on algorithm 5, the exemplary residual
network is proposed in Figure 8.

{capacity,flow}

(16,14} (12,10}

{13,13} 20,9}

(44 9.9}

G —>(6

{14,4} {4,3}
Original network
{capacity}
{2}
] -— —3» 3 5
A W o< >

i A T o N
{13} i {4} _________ {9}

Residual network

Figure 8. Exemplary original and residual network, where
s:=1, t:=6.
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4 CONCLUSION

In the paper, the concept of critical infrastructures has
been presented. Some review and classifications of
well-known information about optimization, graph
theory and network flow theory have been done. The
SPEA algorithm has been described step-by-step and
the knapsack problem with its binary modification
has been presented. It has also been used the SPEA
algorithm to solve the 0-1 knapsack problem.
Furthermore, the selected definitions, parameters and
algorithms of graph theory have been introduced and
applied to system transportation analysis. As the
example of possible application, the road
transportation system with the shortest time of red
light in nodes and the shortest kilometers have been
determined. The examples, from Section 3, are only
showing potential applications of methods,
algorithms and parameters, which are described in
the article.
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