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ABSTRACT:  

This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without 
prior camera pose information.  These approaches are commonly referred to as tracking-by-detection.  Previous tracking-by-detection 
techniques used either fiducials (i.e. landmarks or markers) or the object’s texture. The main contribution of this work is the 
development of a tracking-by-detection algorithm that is based solely on natural geometric features.  A variant of geometric hashing, 
a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic 
panoramic images captured in a 3D virtual environment.  The approach identifies corresponding features between the matched 
panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose.  The 
experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the 
building. 

1 INTRODUCTION TO MODEL-BASED TRACKING 

Model-based visual tracking is typically used to obtain the 
position and the orientation (pose) of the camera when a 
complete or partial model of the environment pre-exists.  
Common applications of model-based tracking include indoor 
positioning, augmented reality (AR), robot navigation (e.g. 
automotive), and robotic object manipulation. Lepetit et al. 
(2005) reviewed the status of model-based rigid body tracking 
from 1990 to 2005.  Lahdenoja et al. (2015) reviewed the 
advances of model-based tracking from 2005 to 2014. Treiber 
(2010), Chin and Dyer (1986), and Besl and Jain (1985) provide 
comprehensive surveys of model-to-image matching and 
registration.  A typical workflow of model-based tracking is: 
1) In the initialization phase, the initial camera pose is

estimated without knowledge of the previous pose. 
Corresponding features (e.g. points or lines) between a 
camera’s image and the 3D model are found either 
manually or automatically. The pose is resolved from the 
correspondences, for example using photogrammetric 
space resection via the collinearity equations. 

2) In the frame-to-frame tracking phase, the camera pose is
constantly updated by maintaining the model-to-image
correspondences when the camera moves.   As in the
initialization phase, the pose is resolved from the
correspondences.

Li-Chee-Ming and Armenakis (2016) provide an application of 
a model-based tracker called ViSP (Visual Servoing Platform) 
(Comport et al., 2003), for pose estimation in indoor 
environments.  ViSP uses the camera pose from the previous 
epoch to back-project a 3D model onto the current epoch’s 
image.  Edges are matched between the image and the back-
projected model.  Corresponding edges are used to estimate the 
camera pose of the current frame. Figure 1 shows experimental 
results.  As ViSP is a sequential algorithm, requiring the camera 
pose from the previous epoch, a user must manually input the 
camera pose at the initialization and recovery phases.  This 
work proposed a solution that automats these processes. 

 Initialization and Recovery 1.1

Initialization is performed when the tracking starts; the initial 
pose of the system is estimated without knowledge of the 

previous camera pose. Pose recovery refers to estimating the 
pose when tracking is lost.   

Figure 1. Sample frames demonstrating the ViSP model-based 
tracker. The second floor of York University’s Bergeron 
Building is being observed, the 3D building model is projected 
onto the image plane (red lines) using the previous epoch’s 
camera pose, matching is performed and the current camera 
pose is estimated (Li-Chee-Ming and Armenakis, 2016). 

Both Lepetit et al. (2005) and Lahdenoja et al. (2015) mention 
that initialization and recovery is often done manually.  
Automated techniques, referred to as tracking-by-detection, are 
divided into two categories: 
1) View-based, are edge-based techniques, where edges

extracted from current frame are matched with 2D views of
the 3D model previously obtained from different positions
and orientations (Wiedemann et al. (2008), Petit (2013)).

2) Keypoint-based, where keypoints (i.e. image features
invariant to scale, viewpoint and illumination changes)
extracted from the current frame are matched against a
database of keypoints extracted from images of the object
taken at different positions and orientations (Skrypnyk and
Lowe, 2004).

In both cases, the matches provide the 2D to 3D 
correspondences needed for camera pose estimation.  The 
difficulty in implementing such approaches comes from the fact 
that the database of model images and the incoming images may 
have been acquired from very different viewpoints.  The wide 
baseline matching problem becomes a critical issue that must be 
addressed.  A more comprehensive survey of model-based 
initialization can be found in Euranto et al. (2014). 

Lahdenoja et al. (2015) suggest that the current state-of-the-art, 
and most widely used methods, of model-based tracking are the 
edge-based methods.  Edge-based methods are both 
computationally efficient, and relatively easy to implement. 
They are also naturally stable to lighting changes, even for 
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specular materials, which is not necessarily true of texture-
based methods.  Lahdenoja et al. (2015) also identified that 
tracking-by-detection techniques commonly use either fiducials 
(i.e. landmarks or markers) or the object’s texture is used.  The 
main contribution of this work is the development of a tracking-
by-detection algorithm that is based solely on natural geometric 
features.   
 

2 METHODOLOGY 
 
The proposed strategy to finding correspondence between the 
3D indoor model and an image is as follows: 
1) In the pre-processing phase, generate a database of features 

extracted from panoramic images of the 3D indoor model, 
referred to in this work as synthetic panoramic images, 
captured from various vantage points in the 3D model. 

2) In the model-based tracker’s initialization phase: 
a. Capture a set of images by rotating an RGB camera 

360 degrees about its vertical axis.   
b. Generate a panoramic image (e.g. using OpenCV).   
c. Extract features from the panoramic image and match 

them with the model features in the database of 
synthetic panoramic images using geometric hashing.  

d. Determine the camera pose through photogrammetric 
space resection using the retrieved model features as 
ground control.   

 
It was decided to extract features from panoramic images 
instead of individual images because geometric hashing 
searches the database for a group of features extracted from an 
image; a larger field of view allows for each group to contain a 
larger number of features.  This increases the distinctiveness of 
the group of features, and in turn increases the probability of 
retrieving the correct model from the database. 
 
Geometric hashing (Wolfson and Rigoutsos, 1997) has been 
widely used to identify feature correspondences between an 
image and a 3D model.  It is a simple, efficient, and robust 
feature pattern matching method between two datasets.  
Matching is possible even when features have undergone 
geometric transformations (scale, rotation, and translation) or 
are partially occluded.  Further, this method has low 
computational complexity as it is inherently parallel.  
Performing the search using multiple cooperating processors 
has been implemented (Lamdan et al., 1990).  Cham et al. 
(2010) demonstrate an increase in search speed, at the expense 
of accuracy, when geometric hashing is used in the matching 
stage of their 2D pose estimation framework.  This suggested 
that a step is required to refine the pose estimate provided by 
geometric hashing. Recently, Jung et al. (2016) enhanced 
geometric hashing using context features and an additional 
similarity function to improve approximate registration 
parameters between aerial images and 3D building models. 
 
Geometric hashing provides only the search engine portion of 
an object recognition system; the representation and extraction 
of the features are crucial inputs to geometric hashing.  The 
following section explains the choice of features as they depend 
on the available models and collected data. Subsequent sections 
explain the general geometric hashing algorithm, and the 
modifications made to suit the specific application of navigation 
in GPS-denied indoor environments.  
 

3 FEATURE SELECTION 
 
The textures of the building models often have little correlation 
with the imagery captured at a different time because of changes 

in illumination, along with the presence of shadows. Further, 
the colours of environment may change with time, for example 
when walls are painted.  However, the shape of the building 
remains constant in time and is more suitable for matching. 
Thus, this work focuses on matching geometric features (points, 
lines, polygons, etc.), as opposed to intensity-based features 
such as SIFT (Lowe, 1999).  This is convenient as 3D models 
generally provide a database of georeferenced vertices (points), 
edges (lines), and faces (polygons). 
 
Extracting feature points with a corner detector, such as Harris 
corners (Harris and Stephens, 1988), from an incoming image 
would yield many unwanted points from objects in the 
environment which are not included in the model, for example 
chairs and other furniture. To consider matching polygons, a 
robust solution is required that could handle a variety of noise, 
occlusions, and incomplete or unclosed figures.  Such a method 
would increase the complexity and run-time of the system. Line 
matching approaches are divided into algorithms that match 
individual line segments and algorithms that match groups of 
line segments.  Matching single lines is based on geometric 
properties, such as orientation, length, and extent of overlap. 
Matching groups of lines takes away the ambiguity involved by 
providing both pattern associations and geometric information. 
Graph-matching is a common approach, as graphs capture 
relationships such as left of and right of, and topological 
connectedness (Baillard et al., 1999). 
 

 Feature Extraction 3.1
 
Linear features were chosen to establish correspondence 
between the 3D model and the image.  The chosen linear 
feature, referred to in this work as the Vertical Line Feature, 
consists of two end points connected by a vertical line.  In 
agreement with Cham et al. (2010), Vertical Line Features were 
chosen because vertical lines commonly appear in structured 
environments.  Further, vertical lines in the environment remain 
vertical in a cylindrical panoramic image, while horizontal lines 
in the environment become curved. 
 
Various approaches may be used to extract vertical lines from 
the images.  Leung et al. (2008) use vanishing point analysis to 
extract horizontal and vertical lines from an image; however 
they demonstrate that this requires a lot of processing power to 
realize a real-time system.  Other line extraction techniques may 
also be used, such as the Hough Line Transform (Duda and 
Hart, 1972), the Progressive Probabilistic Hough Transform 
(Matas et al., 2000), or the Line Segment Detector (Von Gioi et 
al., 2010). 
 

 
Figure 2. Equally spaced grid of simulated Kinect sensors 
capturing 360° synthetic panoramic images in the 3D CAD 
model of the Bergeron Centre Building. 
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Figure 3. A) Synthetic panoramic image of Room B1 with extracted Vertical Line Features. B) Incoming panoramic image of Room 
B1 with extracted Vertical Line Features. C) Similarity transformation: 2D hash table populated using Vertical Line S2 as a 2-point 
basis from the synthetic panoramic image, and Vertical Line R1 from the incoming panoramic image. D) Affine transformation: 2D 
hash table populated using Vertical Line S2 (and the top corner from its duplicate Line S11) from the synthetic panoramic image as 
3-point basis, and Vertical Line R1 (and the top point from its duplicate Line R10) from the incoming panoramic image. E) 
Projective transformation: 2D hash table populated using Vertical Line S2 (and its duplicate Line S11) from the synthetic panoramic 
image as a 4-point basis, and Vertical Line R1 (and its duplicate Line R10) from the incoming panoramic image. F) Series generated 
from the number of Vertical Line Features of the model and G) from the number of Vertical Line Features of the incoming image. 
Each element of the series is the number of Vertical Lines features in Table E) projected into the 1D hash table’s bin size of 0.04. 
 

 Synthetic Panoramic Images of the 3D model 3.2
 
To generate the database of synthetic panoramic images, 3D 
indoor building models were loaded into the Gazebo Robot 
Platform Simulator (Open Source Robotics Foundation, 2014), 
which is a 3D simulator with a physics engine. Gazebo is 
capable of simulating robots and a variety of sensors in complex 
and realistic indoor and outdoor environments.  For each indoor 
model, such as the Bergeron Centre building shown in Figure 2, 
an equally spaced grid of simulated Kinect sensors was spread 
across the extent of the model.  At each grid location, the Kinect 
rotated 360 degrees at 60 degree intervals and captured a 
synthetic image at each interval.  The known poses of each 
image were used to automatically generate cylindrical 
panoramic images for each grid location.  Vertical Line Features 
were extracted from each synthetic panoramic image and stored 
in a hash table.  Figure 3A) shows a synthetic panoramic image 
captured in Room B1 of the Bergeron Centre.  The figure also 
shows the extracted Vertical Line Features using green lines. 

 
4 GEOMETRIC HASHING 

 
The geometric hashing algorithm is divided into two stages: The 
pre-processing phase that generates the database, and the 
recognition phase that processes incoming images.  The 
process’ flow chart is provided in Figure 4 and the algorithm is 
summarized in the subsequent sections (Wolfson and Rigoutsos, 
1997). 
 

 The Pre-Processing Phase 4.1
 
For each model, which is a synthetic panoramic image in this 
work, do the following: 
1) Extract point features. 
2) For each basis of 2 point features (assuming objects 

undergo similarity transformations), 3 point features (for 
affine transformation), or 4 point features (for projective 
transformation), do the following: 
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a. Compute the coordinates (x', y') of the remaining 
features in a canonical reference frame Oxy defined by 
the basis. 

b. After appropriate quantization, use the coordinates 
(xq',yq') as an index into a 2D hash table data structure 
and insert the information (M, basis), namely the 
model number and the basis used to determine 
(xq',yq'), into the corresponding hash table bin. 

 

Figure 4.  Flow chart for the geometric hashing algorithm. 
(modified from Lamdan et al., 1990). 
 

 The Recognition Phase 4.2
 
When presented with an input image, do the following: 
1) Extract point features from the image. 
2) Choose an arbitrary basis from the extracted features: 2 

points when assuming objects undergo similarity 
transformation, 3 points for affine transformation, or 4 
points for projective transformation. 

3) Compute the coordinates of the remaining feature points in 
a canonical reference system Oxy defined by the basis. 

4) Suitably quantize each such coordinate and access the 
appropriate hash table bin; for every entry found there, cast 
a vote for the (model, basis) combination.  Potential 
matches correspond to the (model, basis) combinations that 
receive more than a certain number of votes. 

5) For each potential match, recover the transformation (i.e., 
the camera pose) that results in the best least-squares 
match between all corresponding feature pairs. 

6) Transform the features of the model according to the 
recovered transformation and verify them against the input 
image features.  If the verification fails, return to step 2 
using a different image basis pair. If the verification 
passes, process the next image. 

 
 Selecting the Geometric Transformation 4.3

 
According to the geometric hashing algorithm, an input image 
will retrieve its corresponding model from the database if a 
matching function finds a canonical coordinate system, Oxy, 
where corresponding model features and image features have 
the same positions, i.e. they fall into the same bin when they are 
transformed to Oxy.  In order for the features to coincide, they 
must undergo a rotation, translation, and scaling, in two 

dimensions.  In the simplest case, a 4 degree of freedom (dof) 
similarity transformation may be used.   
 
To estimate the four similarity transformation parameters for the 
model, two points belonging to the model are chosen to define a 
canonical frame of reference. For instance, the top and bottom 
corners of Vertical Line Features can be used to form the basis.  
For example, Figure 3A) shows Model B1.  Figure 3C) shows 
the 2D hash table that is generated using Model B1’s Vertical 
Line Feature S2, consisting of points P1 (its top point) and P2 
(its bottom point), as the ordered basis. The Vertical Line 
Feature is scaled so that 1=P1P2'  in the Oxy system.  The 

midpoint between P1 and P2 is placed at the origin of Oxy in 
such a way that the vector P1'P2'  has the direction of the 
positive y axis.  That is, the (x, y) image coordinate of P1 and 
P2 in the Model B1 are transformed to P1'= (0, 0.5) and P2'= 
(0, -0.5) in the Oxy system, respectively.  These corresponding 
points are used to solve for the similarity transformation 
parameters.  The remaining Vertical Line Features of Model B1 
(green lines in Figure 3A), to be used as support, are 
transformed to Oxy via the transformation parameters.  In the 
quantized hash table, a record is kept in each of the bins where 
the remaining points land, noting that model B1 with Vertical 
Line Feature S2, expressed as (B1, S2), yields an entry in this 
bin.   
 
Due to occlusions, it is not guaranteed that both model points 
P1 and P2 will appear in an image where Model B1 is present 
during the recognition phase.  Consequently, the model’s 
features are encoded in all possible ordered basis pairs.  
Namely, the hash table contains entries of the form (B1, S1), 
(B1, S3), (B1, S4), and so on.  The same process is repeated for 
the remaining models in the database (i.e. B2, B3, B4, etc.).  
Each hash table bin has a list of entries of the form (model, 
basis).  Some hash table bins may receive more than one entry.  
As a result, each bin will contain a list of entries of the form 
(model, basis). 
 
Geometric hashing can be applied to many other 
transformations.  The main difference is the number of points 
used to define the basis for the reference frame. Specifically:  
• 2-dof translation uses a one-point basis, mapping model 

point P1(x, y) to P1' (0, 0). 
• 3-dof translation and rotation uses a two-point basis, 

mapping model point P1(x, y) to P1'(0, 0.5), and P2(x, y) 
to P2'(0, -0.5).   

• 4-dof similarity transformation uses a two-point basis, 
mapping model point P1(x, y) to P1'(0, 0.5), and P2(x, y) 
to P2'(0, -0.5).   

• 6-dof affine transformation uses a three-point basis, 
mapping model point P1(x, y) to P1'(-0.5, 0.5), P2(x, y) to 
P2'(-0.5, -0.5), and P3(x, y) to P3'(0.5, 0.5). 

• 8-dof projective transformation uses a four-point basis, 
mapping model point P1(x, y) to P1'(-0.5, 0.5), P2(x, y) to 
P2'(-0.5, -0.5), P3(x, y) to P3'(0.5, 0.5), and P4 to P4'(0.5, 
-0.5). 

Notably, increasing the number of points that form the basis 
increases the computational complexity of the algorithm and 
decreases the probability of finding a match.  Previous 
experiments in (Li-Chee-Ming and Armenakis, 2014) revealed 
that the matching accuracy increases if a projective 
transformation is assumed, as opposed to a similarity or affine 
transformation, as the image features coincided the closest with 
the model features.  This is expected as objects undergo a 
projective transformation when projected to a camera’s image 
plane.  Figure 3D) suggests that using an affine transformation 
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is also a viable choice in indoor environments as fewer points 
are needed to define the basis, which increases the probability 
that all of the basis points extracted from the image will be 
present in the model.  Further, the affine transformation 
parameters can be more accurate as less error is propagated 
from the image measurements of the basis points.  Many 
investigators suggest that the nonlinear perspective projection 
can be accurately substituted with a linear affine approximation 
when the relative depth of object features is small compared to 
the distance of the object from the camera (David et al., 2002).  
Figures 3 C) to E) provide an assessment of the performances of 
the similarity, affine, and projective transformations, 
respectively.   
 
Estimating the 8 projective transformation parameters requires 
four 2D points; this implies that image-to-model matching will 
succeed if the top and bottom points of two Vertical Line 
Features extracted from the image are present in the 3D model.  
Li-Chee-Ming and Armenakis (2014) suggested that improved 
performance is achieved if the two Vertical Line Features 
chosen from the image as a basis are spread across the image, 
with the supporting features located in between the two Vertical 
Line Features chosen as a basis.  Further, the two Vertical Line 
Features chosen as a basis should be relatively long compared to 
the other features.  This behaviour is expected, as transforming 
the supporting features in these conditions becomes analogous 
to an interpolation, as opposed to a less accurate extrapolation.  
As a result of this finding, it was decided to extract both model 
and image Vertical Line Features from 360 degree panoramic 
images.  A larger field of view allows for an increased number 
of features to be present in the image, and increased the 
maximum separation between the Vertical Line Features used as 
a basis.  
 

 Improvement using an Enhanced Geometric Hashing 4.4
 
This section describes a novel improvement of the geometric 
hashing algorithm. The probability of finding a correct match in 
the database is increased while decreasing the size of the 
database.  The incoming panoramic and the synthetic panoramic 
images were captured such that they began and ended at the 
same pose, i.e. the horizontal field of view is 360 degrees.  This 
allowed a panoramic image to be concatenated with itself.  
Consequently, each Vertical Line Feature appeared twice, 
separated by all of the other Vertical Line Features, in the 
panoramic image.  This presented the following benefit: instead 
of the four point basis consisting of two different Vertical Line 
Features, only one Vertical Line Feature was used to estimate 
the perspective transformation parameters.  That is, the top and 
bottom point of a Vertical Line Feature mapped to two points of 
the basis, the other two points were mapped to the duplicated 
Vertical Line Feature belonging to the concatenated panoramic 
image.  Only the lines in between these two Vertical Line 
Features were projected to the hash table and used as support.  
The probability of finding a match is increased in this case as 
only one Vertical Line Feature needs to be matched instead of 
two.  For example, Figure 3A) shows a synthetic panoramic 
image of room B1, Vertical Line Feature S2 and its duplicate 
S11 are used as a basis for the model data.  All of the model 
lines in between these two lines (i.e., Lines S3 to S10) are 
projected into the canonical coordinate system (green lines in 
Figure 3E)).  Similarly, Figure 3B) shows a panoramic captured 
of Room B1, Line R1 and its duplicate Line R10 are used as a 
basis for the input image data.  All of the lines in between the 
two basis lines (i.e., Lines R2 to R9) are projected into the 
canonical coordinate system (red lines in Figure 3E)).  It is 
evident that the image features and corresponding model 

features do not exactly coincide.  This is due to error from the 
model, the quantization error of the hash table, error in the 
image measurements, and occlusions.  The size of the bin is a 
critical parameter.  If the bins are too large, then there will be 
too many false positives.  If the bins are too small, then there is 
insufficient provision for noise in the input.  Results in Table 2 
are from using the conventional geometric hashing voting 
approach (Lamdan et al., 1990).  Using the corner points of 
Vertical Line Features produced many false candidates in the 
recognition phase because the required search area was large.  
However, the majority of this error was in the vertical axis 
because the model’s corner points were often not visible in the 
real image as they were occluded by clutter in the environment.  
In an effort to reduce the number of model candidates returned 
from the voting stage, a different voting strategy was developed 
that leveraged the use of vertical lines instead of individual 
points:  A smaller search area extended only in the horizontal 
direction. That is, a (model, basis) combination received a vote 
if the midpoint of an image line was within a certain horizontal 
distance from one of its supporting model lines’ midpoints. 
Experimentation revealed that the average horizontal error 
separating corresponding image and model lines in the 
canonical coordinate system was 0.04±0.02 units.  Thus the bin 
size was chosen to be 0.04 units.  Notably, this strategy reduced 
the 2 dimensional search space to 1 dimension (e.g. a 25 bin 
hash table as shown in Figure 3F) for the model data and 3G) 
for the image data.  This reduced the size of the database and 
the search time.   
 

 The Similarity Function 4.5
 
A score function was introduced to measure the similarity 
between the supporting model data and the supporting image 
data.  Geometric hashing’s similarity score is based simply on 
counting the number of votes, which is not sufficient because it 
depends only on the number of supporting lines.  In other 
words, the probability of an image matching a certain model 
increases as the number of (image and model) features increases 
because the probability of an image feature projecting into a 
model feature’s bin increases.  A standardized scoring method 
was required, one that did not depend on the number of features 
in the image or model.  The chosen similarity score was the 
normalized cross-correlation (NCC) (Lewis, 1995).  
Specifically, a series of numbers was generated from the hash 
table (e.g., 25 numbers long for a bin size of 0.04). Each 
element of the series contained the number of lines in the bin.  
For example, Figure 3F) shows the series generated from the 
model’s supporting data in green. Figure 3G) shows the series 
generated from the image’s supporting data in red. 
 
If corresponding image and model lines are chosen as a basis, 
the resulting NCC coefficient of the two series will be high in 
an absolute sense, e.g. an NCC coefficient higher than 0.8.  
Further, corresponding image and model lines produce high 
NCC coefficient in a relative sense.  For example, Table 1 
shows the NCC coefficient resulting from using the row’s 
model line and the column’s image line.  For instance, Model 
Line S2 from Figure 3A) and Image Line R1 from Figure 3B) 
are corresponding lines. The series they generate are provided in 
Figures 3F) and 3G) respectively.  The NCC coefficient of these 
two series is 0.86, this value is found in its corresponding row 
and column in Table 1.  Two conditions are met here:  1) This 
NCC coefficient is the highest in its row and 2) this NCC 
coefficient is the highest in its column.  Having the highest 
NCC coefficient in its row implies that for Model Line S2, the 
best matching image line in this particular panoramic image is 
Line R1. Similarly, having the highest NCC coefficient in its 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17,  6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-1-W1-199-2017

 
203



column implies that for Image Line R1, the best matching 
model line in this particular synthetic panoramic image is 
Model Line S2.  An image-model line pair could be considered 
candidate matches if one or, more stringently, both of these 
conditions are met.  To further increase the stringency, one 
could compare the highest NCC coefficient against the second 
highest NCC coefficient in a row/column.  There is more 
confidence in an image-model line match if its NCC coefficient 
is much higher than the NCC coefficient of any other match in 
its row and column, for example 20% higher. 
 

 
R9 R1 R2 R3 R4 R5 R6 R7 R8 

S1 0.91 0.85 0.54 0.68 0.58 0.62 0.48 0.57 0.52 
S2 0.83 0.86 0.58 0.72 0.62 0.64 0.52 0.59 0.56 
S3 0.61 0.75 0.87 0.86 0.61 0.70 0.60 0.42 0.67 
S4 0.54 0.65 0.66 0.90 0.66 0.71 0.80 0.51 0.66 
S5 0.74 0.53 0.55 0.69 0.91 0.92 0.68 0.35 0.70 
S6 0.67 0.58 0.49 0.69 0.81 0.92 0.81 0.45 0.60 
S7 0.61 0.46 0.54 0.70 0.60 0.58 0.89 0.63 0.48 
S8 0.55 0.61 0.54 0.61 0.55 0.41 0.77 0.79 0.49 
S9 0.49 0.55 0.75 0.66 0.52 0.65 0.48 0.47 0.89 
Table 1. Table of NCC coefficients used to identify 
corresponding Vertical Line Features from the input panoramic 
image and synthetic panoramic image captured in Room B1. 
 

5 EXPERIMENTS 
 
Images were collected using a Microsoft Kinect’s RGB camera 
(640x480 pixel resolution).  A panoramic image was captured in 
6 locations of the Bergeron Centre:  Rooms B1 to B6 as shown 
in Figure 5.  The objective of the experiment was to identify the 
location that each panoramic image was captured by retrieving 
the panoramic image’s corresponding synthetic panoramic 
image from a database.  Corresponding features are also 
identified between the incoming panoramic image and the 
synthetic panoramic image retrieved from the database.  These 
corresponding features are to be used to initialize the camera 
pose of a model-based tracker in a subsequent process. 
  
The 3D CAD design plan of the Bergeron Centre of 
Engineering Excellence was used as the known 3D map of the 
environment.  It is a TIN model consisting of the building’s 
architectural components (walls, windows, doors, etc.), and 
structural components (concrete slabs and pillars, etc.).  This 3D 
CAD model served two purposes in the proposed approach. 
Firstly, it provides the necessary level of detail of linear features 
(vertical lines) for feature matching. Secondly, it provided 
ground control points to photogrammetrically achieve sub-meter 
accuracies of the camera’s exterior orientation’s positional 
elements.  The geometric accuracy of the building models is in 
the order of 1-10 cm.   
 

 

# of 
true 

matches 
(ground 
truth) 

# of 
correctly 
identified 
matches 

# of  candidate matches 

B1 B2 B3 B4 B5 B6 

B1 9 1 11 0 1 0 1 0 
B2 17 2 0 105 0 121 7 7 
B3 8 0 2 0 2 0 0 0 
B4 16 6 0 112 0 173 1 2 

B5 16 0 2 3 0 5 35 12 
B6 10 0 2 1 1 0 12 10 
Table 2. Conventional geometric hashing: Truth table of the 
matching process. 

 

 
Figure 5. Area of interest in the Bergeron Centre for the 
experiments.  Panoramic images were captured in rooms B1, 
B2, B3, B4, B5, and B6.   
 
The RGB images were stitched together to generate a single 360 
degree panoramic image, this was accomplished in real-time 
using OpenCV’s implementation of (Brown and Lowe, 2007). 
Figure 6 shows the input panoramic images and corresponding 
synthetic panoramic images.  Vertical Line Features extracted 
from synthetic panoramic images and input panoramic image 
are shown with green lines and red lines, respectively. 

Results from using the approach of (Gavrilla and Groen, 1992) 
shown in Table 2, revealed that using the corner points of 
Vertical Line Features in geometric hashing’s conventional 
voting strategy produced many false candidates in the 
recognition phase because the required search area was large.  
Further correct matches could not be reliably identified.  Table 
3 reveals that matching panoramic and synthetic panoramic 
images using the proposed approach produced more true 
positives (i.e., accepted correct matches) than false positives 
(i.e., accepted incorrect matches), and more true negatives 
(rejected incorrect matches) than false negatives (i.e., rejected 
correct matches).  Candidate matches were selected if their 
NCC value was higher than 0.8, and their NCC was the highest 
in its row and column.  The results indicate that there are outlier 
matches in the list of candidate image-to-model line matches.  
However, when a panoramic image was considered to match the 
synthetic panoramic image that produced the largest number of 
candidate image-to-model line matches, the match was always 
correct in this dataset. 
 
 
 
 

 

# of true 
matches 
(ground 
truth) 

# of 
correctly 
identified 
matches 

# of  candidate matches 

B1 B2 B3 B4 B5 B6 

B1 9 9 9 0 2 0 1 2 
B2 17 12 2 15 3 10 7 4 
B3 8 6 0 0 9 2 5 1 
B4 16 10 8 3 7 13 2 3 
B5 16 13 2 13 5 5 17 4 
B6 10 7 2 6 1 3 7 9 

Table 3. Improved geometric hashing: Truth table of the 
matching process.   
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A) B2 

 

 
B) B3 

 

 
C) B4 

 

 
D) B5 

 

 
E) B6 

 

 
Figure 6. Input panoramic images and corresponding synthetic panoramic images captured in the Bergeron Centre in A) Room B2, 
B) Room B3, C) Room B4, D) Room B5, and E) B6.  Vertical Line Features extracted from synthetic panoramic images and input 
panoramic image are shown with green lines and red lines, respectively. 
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6 CONCLUSIONS 

This work proposed an enhanced variant of geometric hashing 
to determine correspondence of vertical lines between an 
incoming panoramic image of an indoor environment and a 
synthetic panoramic image captured from the 3D model of the 
same environment.  The improvement is based on the 
panoramic geometry of the scene and a voting strategy that uses 
the separation of vertical lines instead of individual points in the 
hashing table. An additional score function was introduced to 
improve the geometric hashing’s similarity based only on the 
counting of the number of bin votes. The approach identifies 
corresponding features without requiring an initial approximate 
camera pose. The resulting corresponding features are to be 
used in a photogrammetric space resection to initialize a model-
based camera pose tracking system.  Future work includes 
developing a similar process that uses the Kinect’s depth 
camera data in the pose initialization and recovery phases. 
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