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On quasistability radius of a vector trajectorial

problem with a principle of optimality

generalizing Pareto and lexicographic principles∗

Sergey E. Bukhtoyarov, Vladimir A. Emelichev

Abstract

A multicriterion linear combinatorial problem with a para-
metric principle of optimality is considered. This principle is de-
fined by a partitioning of partial criteria onto Pareto preference
relation groups within each group and the lexicographic prefer-
ence relation between them. Quasistability of the problem is
investigated. This type of stability is a discrete analog of Haus-
dorff lower semi-continuity of the multiple-valued mapping that
defines the choice function. A formula of quasistability radius is
derived for the case of the metric l∞. Some known results are
stated as corollaries.
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1 Introduction

Traditionally stability of an optimization problem is understood as con-
tinuous dependence of solutions on parameters of the problem. The
most general approaches to stability analysis of optimization problems
are based on properties of multiple-valued mappings that define opti-
mality principles [1–4].
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Mathematical analysis does not present methods sufficient to inves-
tigate stability of a discrete optimization problem. It is greatly due to
complexity of discrete models, which can behave unpredictably under
small variations of initial data [4, 5]. At the same time, if terminol-
ogy of general topology is not used, then the formulation of a stability
problem can be significantly simplified in the case of a space of ac-
nodes. There are different types of stability of discrete optimization
problems (e. g. [4–9]). Stability of a discrete problem in the broad
sense means that there exists a neighborhood of the initial data in the
space of problem parameters such that any problem with parameters
from this neighborhood possesses some invariance with respect to the
initial problem. In particular, upper (lower) semicontinuity of an op-
timal mapping is equivalent to nonappearance of new (preserving of
initial) optimal solutions under ”small” perturbations of the mapping
parameters. So concepts of stability [4–8] and quasistability [6–8, 10,
11] of discrete optimization problems arise.

In this article we consider an n-criterion trajectorial linear prob-
lem with partitioning of criteria into groups according to given Pareto
preference relation within each group and the lexicographic preference
relation between them. Two special cases of such partitioning corre-
spond to Pareto and lexicographic optimality principles. A formula for
quasistability radius of this problem is derived for the case of indepen-
dent perturbations of initial data in the metric l∞. Some known results
are stated as corollaries.

Note that similar formulas were derived earlier in [12–16] for sta-
bility and quasistability radii of vector trajectorial and game-theoretic
problems with other parametric principles of optimality (”from Con-
dorset to Pareto”, ”from Pareto to Slater”, ”from Pareto to Nash”).

2 Basic definitions and notations

Let a vector criterion

f(t, A) = (f1(t, A1), f2(t, A2), . . . , fn(t, An)) → min
t∈T
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with partial criterion

fi(t, Ai) =
∑

j∈N(t)

aij , i ∈ Nn = {1, 2, ..., n}, n ≥ 1,

be defined on a system of subsets (trajectories) T ⊆ 2E , |T | ≥ 2,
E = {e1, e2, . . . , em}, m ≥ 2. Here N(t) = {j ∈ Nm : ej ∈ t}, Ai is the
i-th row of a matrix A = [aij ] ∈ Rn×m. Put fi(∅, Ai) = 0.

Let s ∈ Nn, I = {I1, I2, . . . , Is} be a partitioning of the set Nn into
s nonintersecting nonempty sets, i. e.

Nn =
⋃

r∈Ns

Ir,

where Ir 6= ∅, r ∈ Ns; p 6= q ⇒ Ip ∩ Iq = ∅. To any such partitioning
we put in correspondence the binary relation Ωn

I of strict preference in
the space Rn between different vectors y = (y1, y2, . . . , yn) and y′ =
(y′1, y

′
2, . . . , y

′
n) as follows

y Ωn
I y′ ⇔ yIk

Â y′Ik
,

where k = min{i ∈ Ns : yIi 6= y′Ii
}; yIk

and y′Ik
are the projections

of the vectors y and y′ correspondingly onto the coordinate axes of
the space Rn with numbers from the group Ik; Â is a relation, which
induces Pareto optimality principle in the space R|Ik| :

yIk
Â y′Ik

⇔ yIk
6= y′Ik

& yIk
≥ y′Ik

.

The introduced binary relation Ωn
I determines ordering of the

formed groups of criteria such that any previous group is significantly
more important that any consequent group. This relation generates
the set of I-optimal trajectories

Tn(A, I) = {t ∈ T : ∀t′ ∈ T (f(t, A) Ωn
I f(t′, A))},

where Ωn
I is the negation of the relation Ωn

I .
It is evident that Tn(A, IP ), IP = {Nn} (s = 1), is Pareto set, i. e.

the set of efficient trajectories

Pn(A) = {t ∈ T : ∀t′ ∈ T (f(t, A) Â f(t′, A))},
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and Tn(A, IL), IL = {{1}, {2}, . . . , {n}} (s = n), is the set of lexico-
graphically optimal trajectories

Ln(A) = {t ∈ T : ∀t′ ∈ T (f(t, A) ` f(t′, A))},

where ` is the lexicographic order in the space Rn. This order is defined
as follows

y ` y′ ⇔ yk > y′k,

k = min{i ∈ Nn : yi 6= y′i}.
So under the parametrization of optimality principle we understand

assigning the characteristic of binary relation that in special cases in-
duces well-known Pareto and lexicographic optimality principles.

It is easy to show that the binary relation Ωn
I is antireflexive, asym-

metric, transitive, and hence it is acyclic. And since the set T is finite,
the set Tn(A, I) is non-empty for any matrix A and any partitioning
I of the set Nn.

Hereinafter by Zn(A, I) we denote the problem of finding the set
Tn(A, I).

Clearly, T 1(A, {1}) is the set of optimal trajectories of the scalar
linear trajectorial problem Z1(A, {1}), where A ∈ Rm. Many extreme
combinatoric problems on graphs, boolean programming and schedul-
ing problems and others are reduced to Z1(A, {1}) [7, 9, 10, 17]).

The following properties follow directly from the above definitions.

Property 1. Tn(A, I) ⊆ P1(A) ⊆ T, where

P1(A) = {t ∈ T : ∀t′ ∈ T (fI1(t, A) Â fI1(t
′, A))}.

Property 2. If fI1(t, A) Â fI1(t
′, A), then f(t, A) Ωn

I f(t′, A).

Property 3. If f(t, A) Ωn
I f(t′, A), then fI1(t, Ai) ≥ fI1(t

′, Ai).

Property 4. A trajectory t 6∈ Tn(A, I) if and only if there exists
a trajectory t′ such that f(t, A) Ωn

I f(t′, A).

Property 5. A trajectory t ∈ Tn(A, I) if and only if for any tra-
jectory t′ the relation f(t, A) Ωn

I f(t′, A) holds.
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Denote

S1(A) = {t ∈ P1(A) : ∀t′ ∈ T \ {t} (
fI1(t, A) 6= fI1(t

′, A)
)}.

Property 6. S1(A) ⊆ Tn(A, I).

Proof. Assume the converse, i. e. t ∈ S1(A) and t 6∈ Tn(A, I).
Then according to property 4 there exists a trajectory t′ 6= t such that

f(t, A) Ωn
I f(t′, A).

Hence due to property 3 we have

fI1(t, A) ≥ fI1(t
′, A).

Taking into account the inclusion t ∈ P1(A) we obtain

fI1(t, A) = fI1(t
′, A),

i. e. t 6∈ S1(A), which contradicts the assumption.

Property 7. ∀ t ∈ S1(A) ∀ t′ ∈ T \ {t} ∃ i ∈ I1

(
fi(t′, Ai) >

fi(t, Ai)
)
.

For any number ε > 0, define the set of perturbation matrixes

B(ε) = {B ∈ Rn×m : ||B|| < ε},

where ||B|| = max{|bij | : (i, j) ∈ Nn ×Nm}, B = [bij ].
As in [8, 10, 14, 17], under the quasistability radius of the problem

Zn(A, I) we understand the number

ρn(A, I) =
{

supKn(A, I) if Kn(A, I) 6= ∅,
0 if Kn(A, I) = ∅,

where

Kn(A, I) = {ε > 0 : ∀ B ∈ B(ε) (Tn(A, I) ⊆ Tn(A + B, I))}.
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3 Lemmas

For any trajectories t and t′ we define the numbers

∆(t, t′) = |(t ∪ t′) \ (t ∩ t′)|,

dn(t, t′, A) = max
i∈I1

fi(t′, Ai)− fi(t, Ai)
∆(t, t′)

.

Lemma 1. If dn(t, t′, A) ≥ ϕ > 0, then the following relation holds
for any perturbation matrix B ∈ B(ϕ) :

f(t, A + B) Ωn
I f(t′, A + B).

Proof. Directly from the definition of the number dn(t, t′, A) we
have

∃k ∈ I1

(
fk(t′, Ak)− fk(t, Ak) ≥ ϕ∆(t, t′)

)
. (1)

Further suppose that the assertion of the lemma is false, i. e. there
exists matrix B∗ = [b∗ij ] ∈ B(ϕ) such that f(t, A+B∗) Ωn

I f(t′, A+B∗).
Then by virtue of property 3 and linearity of the functions fi(t, A), i ∈
Nn, we derive

0 ≥ fi(t′, Ai + B∗
i )− fi(t, Ai + B∗

i ) =

= fi(t′, Ai)− fi(t, Ai) + fi(t′, B∗
i )− fi(t, B∗

i ) ≥
≥ fi(t′, Ai)− fi(t, Ai)− ||Bi||∆(t, t′) >

> fi(t′, Ai)− fi(t, Ai)− ϕ∆(t, t′), i ∈ I1,

i. e.
∀i ∈ I1 (fi(t′, Ai)− fi(t, Ai) < ϕ∆(t, t′)),

which contradicts (1).

Lemma 2. Let t ∈ Tn(A, I), t′ ∈ T \ {t}. For any number α >
dn(t, t′, A) there exists a matrix B∗ ∈ Rn×m with norm ||B∗|| = α such
that

f(t, A + B∗) Ωn
I f(t′, A + B∗). (2)
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Proof. We construct the perturbation matrix B∗ = [b∗ij ] ∈ Rn×m

by the formula

b∗ij =




−α if i ∈ I1, ej ∈ t′ \ t,
α if i ∈ I1, ej ∈ t \ t′,
0 otherwise.

Then ||B∗|| = α and

fi(t′, B∗
i )− fi(t, B∗

i ) = −α∆(t, t′), i ∈ I1.

From here we get

1
∆(t, t′)

(fi(t′, Ai + B∗
i )− fi(t, Ai + B∗

i )) =
fi(t′, Ai)− fi(t, Ai)

∆(t, t′)
− α ≤

≤ dn(t, t′, A)− α < 0, i ∈ I1,

i. e. fI1(t, A + B∗) Â fI1(t
′, A + B∗). This implies (2) by virtue of

property 2.

4 Theorem

Theorem. For any partitioning I of the set Nn, n ≥ 1, into s
groups, s ∈ Nn, the quasistability radius ρn(A, I) of a problem Zn(A, I)
is expressed by the formula

ρn(A, I) = min
t∈T n(A,I)

min
t′∈T\{t}

dn(t, t′, A). (3)

Proof. Denote the right hand side of (3) by ϕ for short. Before
proving the theorem we note that since the sets Tn(A, I) and T \ {t}
are non-empty, the number ϕ is correctly defined and nonnegative.

First we prove the inequality

ρn(A, I) ≥ ϕ. (4)

Without loss of generality assume that ϕ > 0 (otherwise inequality (4)
is obvious). From the definition of the number ϕ, it follows that for
any trajectories t ∈ Tn(A, I) and t′ 6= t the inequalities

dn(t, t′, A) ≥ ϕ > 0
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hold. Applying lemma 1 we get

∀ B ∈ B(ϕ) ∀ t ∈ Tn(A, I) ∀ t′ ∈ T (f(t, A + B) Ωn
I f(t′, A + B)).

Therefore t ∈ Tn(A + B, I) by virtue of property 5. Thus we conclude

∀ B ∈ B(ϕ) (Tn(A, I) ⊆ Tn(A + B, I)).

This formula proves (4).
It remains to show that

ρn(A, I) ≤ ϕ. (5)

Let ε > α > ϕ and trajectories t ∈ Tn(A, I), t′ 6= t be such that
dn(t, t′, A) = ϕ. Then according to lemma 2 there exists a matrix B∗

with norm ||B∗|| = α such that (2) holds, i. e. t 6∈ Tn(A + B∗, I).
Hence we have

∀ε > ϕ ∃B∗ ∈ B(ε) (Tn(A, I) 6⊆ Tn(A + B∗, I)) .

This proves inequality (5). Summarizing (4) and (5) we obtain (3).

5 Corollaries

Corollary 1 [10]. The quasistability radius of the problem
Zn(A, IP ), n ≥ 1, of finding Pareto set Pn(A) is expressed by the
formula

ρn(A, IP ) = min
t∈P n(A)

min
t′∈T\{t}

max
i∈Nn

fi(t′, Ai)− fi(t, Ai)
∆(t, t′)

.

Corollary 2 [18]. The quasistability radius of the problem
Zn(A, IL), n ≥ 1, of finding the set of lexicographically optimal trajec-
tories Ln(A) is expressd by the formula

ρn(A, IL) = min
t∈Ln(A)

min
t′∈T\{t}

f1(t′, A1)− f1(t, A1)
∆(t, t′)

.
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A problem Zn(A, I) is called quasistable if ρn(A, I) > 0. Thus
quasistability of a problem Zn(A, I) is the property of preserving opti-
mality by all I-efficient trajectories under small variation of matrix A.
In other words, quasistability is a discrete analog of Hausdorff lower
semi-continuity of the multiple-valued mapping that assigns the set of
I-efficient trajectories to each set of the problem parameters.

Corollary 3. For any partitioning I of the set Nn, n ≥ 1, into s
groups, s ∈ Nn, the following statements are equivalent for a problem
Zn(A, I), n ≥ 1:

(i) the problem Zn(A, I) is quasistable,

(ii) ∀ t ∈ Tn(A, I) ∀ t′ ∈ T \ {t} ∃ i ∈ I1

(
fi(t′, Ai) > fi(t, Ai)

)
,

(iii) Tn(A, I) = S1(A).

Proof. Equivalence of statements (i) and (ii) follows directly from
the theorem.

The implication (ii) ⇒ (iii) is proved by contradiction. Suppose
that (ii) holds but (iii) does not.

From properties 1 and 6 we get

S1(A) ⊆ Tn(A, I) ⊆ P1(A).

Then (since Tn(A, I) 6= S1(A) is assumed) there exists a trajectory
t ∈ Tn(A, I) ⊆ P1(A) such that t 6∈ S1(A). It follows that there exists
trajectory t′ ∈ P1(A) such that

t′ 6= t, fI1(t, A) = fI1(t
′, A).

This contradicts statement (ii).
The implication (iii) ⇒ (i) is obvious by virtue of property 7.
From corollary 3, we easily get the following known result (e. g.

see [10]).
Corollary 4. The problem Zn(A, IP ), n ≥ 1, of finding Pareto set

Pn(A) is quasistable if and only if Pn(A) = Sn(A).
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Here Sn(A) is Smale set [19], i. e. the set of strictly efficient
trajectories:

Sn(A) = {t ∈ Pn(A) : ∀t′ ∈ T \ {t} (
f(t, A) 6= f(t′, A)

)}.

Corollary 3 also implies
Corollary 5 [18]. The problem Zn(A, IL), n ≥ 1, of finding the

set Ln(A) of lexicographically optimal trajectories is quasistable if and
only if

|Ln(A)| =
∣∣∣∣Arg min

t∈T
f1(t, A1)

∣∣∣∣ = 1.
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