TRANSINAV

http://www.transnav.eu

the International Journal
on Marine Navigation
and Safety of Sea Transportation

Volume 8
Number 4
December 2014

DOI: 10.12716/1001.08.04.11

Learning Search Algorithms: An Educational View

A.Janota, V. Simak & J. Hrb&ek

Faculty of Electrical Engineering, University of Zilina, Slovakia

ABSTRACT: Artificial intelligence methods find their practical usage in many applications including maritime
industry. The paper concentrates on the methods of uninformed and informed search, potentially usable in
solving of complex problems based on the state space representation. The problem of introducing the search
algorithms to newcomers has its technical and psychological dimensions. The authors show how it is possible
to cope with both of them through design and use of specialized authoring systems. A typical example of
searching a path through the maze is used to demonstrate how to test, observe and compare properties of

various search strategies. Performance of search methods is evaluated based on the common criteria.

1 INTRODUCTION

The ability to create and use an internal machine
model of the world is an important feature of
"intelligent” systems profiting from artificial
intelligence (AI) components. If initial and goal
models of the world are available, the Al system is
expected to solve the problem, i.e. to find a proper
sequence of actions determining how to get from the
initial to the goal model. Since in many cases a certain
level of abstraction is necessary to simplify the
problem, one can take advantage of state space
representation. Thus the state space can be seen as a
set of states of the problem to which we can get by
applying operators to a particular state of the problem
to get a new state (or remain in the same state).
Transitions between models may be represented by
transitions between states. To represent a state space
one may use an oriented graph consisting of vertices
(nodes) and edges. Each vertex of the graph is a
complete description of the state. The state space can
be huge due to the combinatorial explosion. Problem
solution then may be formulated as a search of the

path through a directed graph under fulfilling certain
conditions. Those states in which more transitions
(rules) might potentially be applied bring conflicts.
The way of how the conflict could be solved is
defined by the used control mechanism (problem
solving method). Tasks solved in the real world may
cover searching paths, optimizing electrical circuits,
cryptography, planning, configuring routes, etc.
Generally, there are different kinds of tasks
(problems) to be generally addressed: mundane tasks
such as perception (e.g. vision, speech), natural
language processing (e.g. understanding, generation,
translation), common sense reasoning or robot
control; formal tasks such as games (e.g. chess,
checkers, Sudoku, etc.) or mathematics (e.g. geometry,
logic, integral calculus etc.); and expert tasks such as
engineering (e.g. design, fault finding, manufacturing
planning, etc.), scientific analysis, medical analysis,
financial analysis, and many others [1]. Considering
relevance of the presented topic to the main area
TransNav interests, we can mention a general survey
of Al applications to critical transportation issues [2]
or particular problems of maritime surveillance

565

modelling (e. g. testing of backtracking algorithms [3]
or, treating the problem as a variation of a Travelling
Salesman Problem [4]).

The AI courses at the universities are provided
based on standard sources such as e.g. [5], however
many different approaches to teaching Al can be
found around the world. Several introductory
programming courses use problems in Al as
motivating examples [6][7]; the AI is often being
taught through the games to attract more students
into computing [8][9]. Motivation is a key factor in the
learning process [10]. To make students properly
motivated, specialized education software tools can
be developed and used to demonstrate selected search
strategies through typical problems such as searching
path through the maze, shortest path in a graph,
Sudoku, etc. In this paper an authoring tool, called
“Labyrinth”, is used as a working example. The
Labyrinth application has been implemented in both
declarative and procedural ways (SWI Prolog and
Java) and helps to demonstrate problem solving and
to obtain statistic data needed for further evaluation.
The set of tested methods includes the most usual
search algorithms which may be tested, observed and
their properties compared not only theoretically, but
also practically. Performance of particular searching
methods in a state space is evaluated based on the
common criteria, i.e. completeness, time complexity,
space complexity and optimality.

2 DESIGN OF THE AUTHORING SOFTWARE
SYSTEM

2.1 General Formulation of the Task

Persons who want to know how to solve tasks from
above categories must master perceptual, linguistic
and common sense skills, followed by skills
characterizing the application domain. On the
ontological level a problem-solver consists of the five
major elements [11]:

A problem-solving goal.

Domain data describing the problem instance.
Problem-solving state.

Problem solving knowledge.

Domain factual knowledge.

Qs WN =

The emphasis is given to search as the primary
technique used in Computer Science and Operations
Research for solving computation-intensive
combinatorial optimization problems, typically those
in the NP-hard class [12]. State space searching has a
number of interesting properties, such as the ability to
guarantee optimal solutions and the possibility of
exploiting domain knowledge to guide the search
[13]. The core of the search problems is "How to
control the search?”. At the beginning there is given:

1 An Initial State that the problem starts in.

2 A set of operators that can be taken.

3 A Goal State (or a set of Goal States) that the
problem ends in.

4 Optionally, paths Cost function to solve the
problem.

The task is formulated as finding a sequence of
operators leading from the Initial State to the Goal
State. The search space is a tree (graph) defined by the

566

initial state and the operators. The search tree (graph)
is an explicit tree generated during the search by the
control strategy. Different search algorithms use
different search strategies. Generally, they may be
either uninformed (make no use of domain
knowledge - also known as blind search) or informed
(using some rule(s) of thumb). The task could be
expressed as a General Search algorithm, consisting of
the following steps:

Initialize the search tree with the initial state.
Report failure if search tree is empty.

Move to a leaf node according to a strategy.

Ready if a goal state.

Expand the current state by generating successors
to the current state. Add them to the search tree as
leaves.

6 Repeat from 2.

QW =

For the sake of simplicity the more formal
(mathematical) definitions of algorithms and state
spaces have been intentionally avoided here since
they are available in many AI textbooks. Generally,
the search strategies apply the following four criteria:
1 Completeness: is finding a solution guaranteed?

2 Time complexity: How long do they take in search
time? (What is a number of generated nodes?).

3 Space complexity: Storage required? (How many
nodes are to be stored in a memory?).

4 Optimality: When there are several solutions, does
it find the best one?

2.2 The Problem

Representing search algorithms through the state of a
vertex is difficult since it is constantly changing (e.g. a
vertex can be unexplored, open or closed) and the
audience easily loses the time-line sequence. Thus the
problem has two levels, one that is technical and
another that is psychological [14].

There are different approaches how to cope with
the technical side of the problem — to use colourful
figures; to visualize a changing tree through
multimedia means (animations, videos); or to apply
interactive programs solving particular problems.
Very often animated figures are used as a part of
presentations, where the algorithms and the graphs
can be seen developed step-by-step, differentiating
state changes by different colours, symbols, etc. What
is more, various specialized software tools are
available to visualize explained search algorithms..

The psychological level of the problem may result
from requirements to use programming knowledge
when creating a state-space representation along with
the attached data structures and selecting the
appropriate algorithm that is recursive in many cases.
Since the length of the solution is not determinable
beforehand, its storing requires a dynamic data
structure [14].

Potential solution of both sides of the learning
problem can be seen in the two-steps approach: the
first step consists in learning a theory together with
practical application of selected search algorithms to a
certain problem, using pre-designed software tools
for both managed and self-study evaluation of basic
properties. The seconds step covers step-by-step
solution (programming) of problems with gradually

growing complexity by already known search
algorithms. For that purpose a basic course in a
proper programming language (in our case SWI
Prolog) must be provided. Finally, obtained
knowledge may be utilised in own individual
projects.

Obviously, modifications and depth of provided
knowledge depends on what kind of future
profession is to be addressed (electrical engineering,
computer engineering, transport engineering, etc.).
Details on trajectories of electrical engineering and
computer engineering students by race and gender
can be found in [15].

2.3 System Concept

The attention here is paid to the application called
Labyrinth. The problem consists in finding a path
through the maze. Considering the facts mentioned
above, the application should make us possible to
generate a labyrinth structure of the required size
(different dimension/complexity of the problem).
Then, for the generated configuration, the Initial State
must be defined in such a way that all crossing and
terminal points are given letters representing nodes in
the state space (Fig. 1).

NOEEEGEE 0 EEEROEN
A B OEOEE OB DO
HEOEE EEEEEEDI EEE

5 H BEE ENOEE B
HEENEEE EEDENEENGD

Figure 1. Example of marking nodes in a generated
Labyrinth configuration

This makes possible to create a model of the state
space. The nodes (vertices) represent names of the
crossings and terminal points of paths and transition
values correspond to distances between the nodes
(Fig. 2).

Two versions of the authoring tool Labyrinth have
been developed so far: the simpler version which
provides only 3 types of algorithms - Breadth-First
Search (BFS), Depth-First Search (DFS) and Bi-
directional Search (BS), and the more complex version
that also involves Iterative-Deepening (ID),
Backtracking (BT), Uniform Cost Search (UCS),
Greedy Search (GS), A*, and Dijkstra algorithms.

As the first step it is necessary to make initial
settings of the Labyrinth application. The more
complex version includes:

1 Selection of the search algorithm types to be used.
2 Definition of the labyrinth dimensions (width *
height).

3 Definition of the step size (for statistics
calculations).

4 Enabling or disabling the option "Find more
solutions".

5 Accuracy of obtained data.

a-)

= i x‘--._::' ae) s (P,
— i S e
-

B
SV e e
e

ey
[=
= |

Figure 2. Example of marking nodes in a generated
Labyrinth configuration

) Initial state

® BFs ® vucs
® oFs GS
Bs A
® @ Dijkstra

Figure 3. Different solutions found by the Labyrinth
application

Based on the settings above it is possible to
generate the maze structure and write relevant data
into the log file. All solutions found for particularly
used search strategies can be visualized and seen in
their graphical representations (Fig. 3).

2.4 Implementation

The Labyrinth tool has been developed in several
versions (simpler and more complex), and also using
different programming approaches - procedural and
declarative ones.

The Java version (Fig. 3, 4) plays the motivation
role and makes possible to show and evaluate basic
parameters of mentioned search strategies applied to
the Labyrinth problem in the basic part of the course.
The application was created in the Eclipse
environment (Eclipse Standard/SDK, Version: Kepler
Service Release 1). To run it the Java package (min.
version 7, update 45) must be installed.

As indicated above, at the beginning the user may
define the required size of the Labyrinth through the
“height * width” setting available from the main
window (Fig. 4a) and after confirming his/her settings
automatically generate its random structure. Then
there is a chance to set other preferences that
determine the range of evaluated statistic data (Fig.
4b): single or multiple solutions, required types of the
search algorithms, accuracy, min. and max. size of the
Labyrinth and the step size. Then it is possible to run

567

the search and get visualized solution(s) and all
mentioned statistics in the form of tables (Fig. 4c)
where the parameters are observed for different
Labyrinth sizes (here from 11x11 to 19x19 with the
step 2). At the moment the application uses the Slovak
menu only (therefore some figures in this text were

modified and/or supplemented with English
descriptions).
b)
Statistics settings
¢ dtatstin nastavenla - “
| ¥ BFs FloFs EoeD R |
Sirka i (11 » irka MAX |20 -
v BS w87 v UCS
Vidka MM (11 - Vydka MAX 20 -

GS A DA
bl L Haight MIN - MAX

Accuracy
Pressost 0.1 (v %

Velkost kroku
Stop size -
Spush iatistike

Run statistics

Viac_riedeni v
Multiple solutions 1 2 3 45 67 8 910

c)
| .. Suatistika [ESSReE X
Logovanie | BFS [DFS | DFID [BS | BT fUCS [GS [A [DA
UCS prejdene Traversed
W 11.0 120 17.0
10 172 1248 16.43
(130 [1374 1587 1954
(150 1483 1732 [230
170 737 [19.25 2465
[19.0 [18.41 [20.18 2825
UCS obsadenie pamati Memory acquisition]
vis 120 150 17.0
110 27 2832 3590
(130 40.43 4312
15.0 4443 [50.08
(170 50.3 5184 5
19.0 5 51.79 55.65 61.75
UCS max uziov Max nodes : 5
's 11.0 130 15.0 170 19.0
[11.0 |6.09 651 652 [7.62 778
30 5.85 7.45 878 3.0 9.12
15.0 [7.42 791 8.75 [10.11 [10.84
17.0 825 8.77 968 [10.09 10.45
[19.0 851 8.66 982 [11.0 1128
UCS podiel optimalnych Optimal share
s 10 130 17.0 190
11.0 [100.0 100.0 100.0 [100.0
130 [100.0 100.0 100 [100.0
15.0 [100.0 100.0 1 [100.0
170 100.0 100.0 100.0 100.0
[19.0 [1000 [100.0 100.0 [1000

Figure 4. The samples of the Labyrinth user interface
display (for the size 20x30)

The second version of the Labyrinth application
has been designed using the SWI-Prolog 6.0.0. Since it
assumes knowledge of the predicate calculus logics
and principles of declarative programming, the
students must be first provided with the background
knowledge and the practical programming skills.
That is ensured in the following advanced courses.
Then it is possible to build the application gradually,
together with the students and for particular search
algorithms. A part of the source code for the simpler
version performing the BFS, DFS, and BS is shown in
Fig. 5.

2.5 Evaluation and Analysis

As seen above, for all selected algorithms the menu
items are created together with tables showing a
number of traversed (processed) nodes for the
defined sizes of the labyrinth, the total number of
nodes stored in the memory, the maximum number of
nodes to be processed at the moment and the share of
solutions with the minimum path. Data obtained in
this way may be used to show dependence of
traversed nodes on the labyrinth dimensions, share of
the shortest possible solutions and usage of memory
by the given algorithm.

568

Fia Et Eoowse Comphe Prolsg Pee Mg ale
ayrnih g

Comment Line:

Figure 5. A part of the SWI-Prolog source code for the
Labyrinth application (with BFS, DFS, BS)

¥
0
x
'%-
d
i
;¢

1

Poaight LT "l gt w1 width

Figure 6. Graphical representation of the search algorithm
characteristics (BFS example)

To explain the meaning of data obtained in the
table form (Fig. 4c), the characteristics of the
individual search algorithms could be presented in
the graphical form (Fig. 6).

For the sake of mutual comparison of time
complexity statistic data might be processed and
presented in the form of a graph, elaborated e.g. in
the Matlab environment (Fig. 7). Thus one could
deduce that the most time demanding methods seem
to be ID and BT algorithms. For the labyrinth size 100
x 100 they traverse more than 30 000 (ID), resp. 4 000
nodes (BT). Time complexity grows exponentially.
They are followed by the UCS algorithm which has a
little bit less steep increase of search time and for
maximal sizes of the labyrinth it traverses
approximately 2500 nodes. Time complexity of other
tested methods is almost the same, i.e. in the order of
hundreds nodes for the maximal labyrinth size (about
200 traversed nodes for the GS up to 800 nodes for the
Dijkstra algorithm).

width * height

Figure 7. The number of traversed nodes depending on the
Labyrinth size

To evaluate space complexity one must take into
account difference between the totally consumed
memory space (Fig. 8) and the actually allocated
space in the operation memory (Fig. 9).

n o
width * height

Figure 8. Total operational memory acquisition depending
on the Labyrinth size

For considerably big state spaces (unlike our
Labyrinth application) data could be stored to a
permanent memory (e.g. hardisk) and thus to save
operation memory. While methods of the best first
search (UCS, GS, A*) show considerable total memory
consumption (if compared with uninformed methods)
their consumption of operation memory is
comparable. The most space demanding method is
the Dijkstra algorithm which works with all nodes in
the state space during every cycle (for the
backtracking algorithm the space complexity has not
been evaluated since in the Labyrinth application it
was implemented with the min. space complexity, i.e.
working with 1 node in the memory only). Since the
uninformed methods cannot find the shortest path
through the maze from the viewpoint of its length but
only from the viewpoint of number of nodes, the only
acceptable methods in the application remain the
UCS, A*, and Dijkstra algorithms.

The given graph (Fig. 10) indicates that
uninformed methods with growing size of the state
space very quickly loose capability of finding an
optimal path. On the other side, if only 1 solution
exists, this property becomes irrelevant (i.e. if only 1
path is available in our Labyrinth application).
Globally, the small space complexity of uninformed
methods could be confirmed; however, their usability
is limited to those tasks where optimal solution is
needed or tasks in which they are able to provide
acceptable solution without any additional
information. Within the all acceptable methods the A*
algorithm seems to be the best if considering its time

complexity because its space complexity is also
acceptable.

wher of actually used nodes

" width ® height

Figure 9. Actual operational memory acquisition depending
on the Labyrinth size

T width * height

Figure 10. Share of the optimal solutions (optimality
criterion: the path length)

3 ACKNOWLEDGMENTS

This work was supported by the Slovak grant agency
KEGA under the project “KEGA 010U-4/2013
Modernization of didactic equipment and teaching
methods with a focus on the area of robotics". The
authors thank M.S. Ivan Sakal for his technical help
and software support.

4 CONCLUSION

The paper demonstrated an educational aspect of how
formal tasks solved through search algorithms could
be modelled, tested and evaluated. As a working
example the Labyrinth authoring software tool has
been discussed, implemented in both declarative and
procedural ways (SWI Prolog and Java). It helped to
obtain statistic data usable for evaluation of applied
methods. The set of tested methods included most
usual search algorithms.

REFERENCES

[1] R. A. Akerkar, and P. S. Sajja. Knowledge-Based
Systems. Jones & Bartlett Learning, 2010.

[2] Artificial Intelligence Applications to Critical
Transportation Issues. TRC E-C168. November 2012.
http://onlinepubs.trb.org/onlinepubs/circulars/ec168.pdf

[3] D. O. Marlow and J. E. Murphy. Testing various
backtracking algorithms in airborne maritime

569

surveillance modelling. In 20th International Congress
on Modelling and Simulation, Adelaide, Australia, 1-6
December 2013.
http://www.mssanz.org.au/modsim2013/D1/marlow.pdf

[4] Kilby, P., Tobin, P., Luscombe, R., Barry, S. and Hickson,
R. The maritime surveillance problem. In T.R. Marchant,
M. Edwards and G.N. Mercer (eds.), Proceedings of the
2007 Mathematics-in-Industry Study Group, 32-56, 2008

[5] S. Russell and P. Norvig. Solving problems by searching
in Artificial Intelligence. A Modern Approach, 3rd ed.
New Jersey: Prentice Hall, 2010, ch. 3, pp. 64-119.

[6] D. S. Touretzky. Preparing computer science students
for the robotics revolution. Communications of the
ACM. 53(8): 27-29, 2010.

[7] T. W. Neller, C. G. Presser, I. Russell, and Z. Markov.
Pedagogical possibilities for the dice game pig. J.
Comput. Small Coll. 21(6), 149-161, 2006.

[8] D. Wong, R. Zink, and S. Koenig. Teaching Artificial
Intelligence and Robotics via Games (Abstract). In AAAI
Symposium on EAAI 2010,
http://www.cs.huji.ac.il/~jeff/aaail0/02/A A AI10-342.pdf

[9] M. Zyda and S. Koenig. Teaching artificial intelligence
playfully. In Proc. AAAI-08 Education Colloquium,
pages 90-95, 2008.

570

[10] P. J. Munoz-Merino, M. F. Molina, M. Mufioz-Organero
and C. D. Kloos. Motivation and Emotions in
Competition Systems for Education: An Empirical
Study. IEEE Transactions on education. 57(3): 182-187,
2014.

[11] B. Chandrasekaran,]. R. Josephson, and V. R.
Benjamins. What are ontologies, and why do we need
them? IEEE Intelligent Systems. 1(4): 20-26, 1999.

[12] W. Zhang. State Space Search for Problem Solving.
State Space Search. Algorithms, Complexity, Extensions,
and Applications. 1st ed. New York: Springer-Verlag,
1999.

[13] R. Varela and E. Soto. Scheduling as heuristic search
with state space revolution. Lecture Notes in Computer
Science. 2527: 815-824, 2002.

[14] G. Kovasznai and G. Kusper. Artificial Intelligence
and its teaching. Ist ed., 1990
http://aries.ektf.hu/~gkusper/Artificiallntelligence_Lectu
reNotes.v.1.0.4.pdf

[15] S. M. Lord, R. A. Layton, and M. W. Ohland.
Trajectories of Electrical Engineering and Computer
Engineering Students by Race and Gender. IEEE
Transactions on education. 54(4): 610-618, 2011.

