
Atmos. Meas. Tech., 10, 1987–1997, 2017
www.atmos-meas-tech.net/10/1987/2017/
doi:10.5194/amt-10-1987-2017
© Author(s) 2017. CC Attribution 3.0 License.

Monitoring aerosol–cloud interactions at the CESAR Observatory
in the Netherlands
Karolina Sarna and Herman W. J. Russchenberg
TU Delft Climate Institute, Faculty of Civil Engineering and Geotechnology, Delft University of Technology, Stevinweg 1,
2628 CN, Delft, the Netherlands

Correspondence to: Karolina Sarna (k.sarna@tudelft.nl)

Received: 2 August 2016 – Discussion started: 2 September 2016
Revised: 7 April 2017 – Accepted: 18 April 2017 – Published: 1 June 2017

Abstract. The representation of aerosol–cloud interaction
(ACI) processes in climate models, although long stud-
ied, still remains the source of high uncertainty. Very of-
ten there is a mismatch between the scale of observations
used for ACI quantification and the ACI process itself. This
can be mitigated by using the observations from ground-
based remote sensing instruments. In this paper we pre-
sented a direct application of the aerosol–cloud interaction
monitoring technique (ACI monitoring). ACI monitoring is
based on the standardised Cloudnet data stream, which pro-
vides measurements from ground-based remote sensing in-
struments working in synergy. For the data set collected
at the CESAR Observatory in the Netherlands we calcu-
late ACI metrics. We specifically use attenuated backscat-
ter coefficient (ATB) for the characterisation of the aerosol
properties and cloud droplet effective radius (re) and num-
ber concentration (Nd) for the characterisation of the cloud
properties. We calculate two metrics: ACIr = ln(re)/ln(ATB)
and ACIN = ln(Nd)/ln(ATB). The calculated values of ACIr
range from 0.001 to 0.085, which correspond to the values
reported in previous studies. We also evaluated the impact of
the vertical Doppler velocity and liquid water path (LWP) on
ACI metrics. The values of ACIr were highest for LWP val-
ues between 60 and 105 g m−2. For higher LWP other pro-
cesses, such as collision and coalescence, seem to be dom-
inant and obscure the ACI processes. We also saw that the
values of ACIr are higher when only data points located in
the updraught regime are considered. The method presented
in this study allow for monitoring ACI daily and further ag-
gregating daily data into bigger data sets.

1 Introduction

Clouds are one of the most important systems for regulating
the Earth’s radiation. Through changes in their macro- and
microphysical properties clouds can significantly affect cli-
mate (Ramanathan et al., 1989). Aerosols and their ability
to act as cloud condensation nuclei can alter cloud micro-
physical properties. Twomey (1977) was the first to postulate
that increasing pollution, represented by aerosol concentra-
tion, leads to an increasing cloud droplet concentration and a
decreasing cloud droplet size. The effect of those microphys-
ical changes is increased albedo of the clouds. Despite a good
understanding of the physical principles of the aerosol–cloud
interaction (ACI) processes, their representation in the cli-
mate models remains a source of highest uncertainty (IPCC,
2014).

The conceptual process in which aerosols become acti-
vated into cloud droplets is well understood (Lamb and Ver-
linde, 2011). Also, the influence of the aerosol concentration
on the cloud microphysical properties, i.e. cloud droplet size
and number concentration, has been studied extensively over
the past decades (Feingold et al., 2003; Twohy et al., 2005;
Kim et al., 2008; McComiskey et al., 2009) and its existence
is not in question. The biggest uncertainty still lies with the
scale of the process and it’s importance over different lo-
cations and in different meteorological conditions. Another
source of uncertainty is connected to disentangling the ef-
fects of ACI on cloud properties from the effect of cloud ther-
modynamics and entrainment (Feingold and McComiskey,
2016). McComiskey and Feingold (2012) identified the mis-
match in the scale of the ACI process and in the scale of
the observations as one of the largest drivers of uncertainty
in quantifying ACI. One possible way of overcoming this
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problem is by using the observations from ground-based re-
mote sensing instruments. Ground-based remote sensing in-
struments are uniquely predisposed to provide high temporal
resolution of measurements continuously. At the same time,
they can examine the effect of change in aerosol concentra-
tion on cloud in a single air column and at the scale of the
cloud droplet formation. Ground-based remote sensing in-
struments are operating at a high temporal and spatial res-
olution. Hence, it is possible to measure aerosol properties
with a ground-based lidar with a high accuracy (Welton et al.,
2000) and the same is true for cloud droplet observation with
the use of cloud radar and radiometer (Knist, 2014).

In the past years several studies used measurements from
ground-based remote sensing instruments to quantify ACI
(e.g. Feingold et al., 2003; Garrett et al., 2004; Pandithu-
rai et al., 2009; Schmidt et al., 2015). The scope of instru-
ments and measured parameters still differs among them.
Further, a great majority of ACI studies are focused on the
marine or coastal environment. Although harder to observe,
detecting ACI over continents is important in order to make a
link between anthropogenic aerosol and the radiative forcing
through the ACI process.

A new approach to monitor ACI based on a standard-
ised data format was proposed by Sarna and Russchenberg
(2016). Their method (hereafter refereed to as ACI monitor-
ing) is based on the Cloudnet data (Illingworth et al., 2007),
a unified data format that is available across the Cloudnet
network observatories. ACI monitoring also supplied open-
source software (Sarna, 2015) to process data from any
Cloudnet station. In this paper we applied this method di-
rectly to the data set from the CESAR (Cabauw Experimen-
tal Site for Atmospheric Research) Observatory.

The structure of this paper is following: first we briefly
present the theoretical framework for calculations, secondly
we provide a description of the CESAR Observatory and the
used data set. Then we characterise ACI over the CESAR
Observatory and describe different drivers of the ACI process
at this station. We finish with a summary and conclusions.

2 Theoretical basis of aerosol–cloud interactions

The relation between aerosol concentrations and the cloud
droplet size was first postulated by Twomey (1977). Using
airborne measurements he showed that increasing pollution,
and hence an increasing concentration of CCN, will result
in clouds with a higher optical thickness. That is measurable
only if all other parameters, mainly the amount of available
water represented by the liquid water path (LWP), are kept
the same. Cloud optical thickness can be related to both the
cloud albedo and cloud microphysical properties. Cloud opti-
cal thickness (τd) is proportional to the cloud droplet number
concentration (Nd) (Twomey, 1974)

τd ∝N
1/3
d . (1)

Proxies used to define the aerosol background vary be-
tween studies and include parameters such as aerosol number
concentration (Na), aerosol optical thickness (τa) and aerosol
index. The relation between Nd and Na was first postulated
based on the experimental studies by Twomey and Warner
(1967) as

Nd ∝N
γ
a , (2)

where γ is the factor with which aerosol number concentra-
tion and cloud droplet number concentration depend on each
other. The theoretical values of γ vary between 0 and 1. To
account for γ , Feingold et al. (2003) introduced the indirect
effect index, which hereafter will be referred to as an ACI
metric. It was defined as a relative change in the cloud prop-
erties due to changes in the aerosol properties. Based on the
relation in Eq. (2) we can say the following:

ACIN =
dlnNd

dlnα
, 0< ACIN < 1, (3)

where α is any of the above-mentioned proxies of the aerosol
properties. The value of ACIN can be related to the value of
γ . To relate aerosol properties to cloud droplet size Feingold
et al. (2003) used

ACIr =−
dlnre
dlnα

∣∣∣∣
LWP

, 0< ACIr < 0.33, (4)

where re is the cloud droplet effective radius in the cloud
base area. Cloud base area is defined as the range between
the cloud base and 30 m above the cloud base. The bounds
of ACIr between 0 and 0.33 stem from the assumption of a
constant LWP when using re. ACIN is traditionally not bound
by the values of the LWP as it is associated with the activa-
tion process which has no direct microphysical relation to the
LWP (McComiskey et al., 2009). The relation between ACIr
and ACIN is described as

ACIr =
1
3

ACIN . (5)

Mathematically, both ACIr and ACIN are defined as a slope
of the regression line between the logarithm of the aerosol
property (α) and the logarithm of the cloud property (re or
Nd). For this explanation we use re as a cloud property. We
can define a linear regression between ln(α) and ln(re) as

ln(re)= a+m× ln(α), (6)

where m is the slope defined as

m= rα,re
sre

sα
, (7)

and where rα,re is the Pearson product–moment correlation
coefficient between ln(α) and ln(re), sre is the standard devi-
ation of ln(re) and sα is the standard deviation of ln(α). The
correlations coefficient rα,re is defined as

rα,re =
cov(α,re)
sαsre

. (8)
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cov(α, re) is the covariance between ln(α) and ln(re). In this
study we use ACI monitoring scheme which relies both on
the calculation of the correlation coefficient and ACI metrics
(ACIN and ACIr ).

3 Methodology of an ACI monitoring scheme

As we mentioned in previous sections, in this paper we use
the aerosol–cloud interaction (ACI) monitoring scheme as
described in Sarna and Russchenberg (2016). The core of this
method is the Cloudnet data set. It provides a standardised
data stream from ground-based remote sensing instruments
working in synergy. To be precise, it includes measurements
from cloud radar, lidar and microwave radiometer. Although
this is a set of instruments present at all observatories within
the Cloudnet network, their specifications may vary from sta-
tion to station.

The Cloudnet data set was designed to facilitate the re-
trieval of microphysical cloud properties. Therefore, re-
trieved values of cloud droplet effective radius (re) and cloud
droplet number concentration (Nd) are available from the
data set. The microphysical retrieval method used in the
Cloudnet data set is based on the method designed by Frisch
et al. (2002). In this paper we use the Frisch et al. (2002)
retrieval with the assumptions of homogeneous mixing as
described in Knist (2014). The aerosol background is repre-
sented in the ACI monitoring scheme by an integrated value
of the attenuated backscatter coefficient (ATB). The value is
integrated from the height of a complete overlap (Kovalev,
2015), which is 120 m in the set-up of this study, to 300 m
below the cloud base. Measurements of ATB in the area
closer to the cloud base than 300 m are not always reliable
and should not be used as an approximation of the aerosol
number concentration.

3.1 Data selection criteria

Due to the use of cloud microphysical properties the ACI
monitoring scheme is applicable only under specific con-
ditions. In particular, only low-level liquid water clouds in
well-mixed conditions can be considered. We define the well-
mixed condition as a cloud at the top of the boundary layer,
where the vertical mixing of the layer is strong. The cloud
base should be located below 2000 m above ground level
(AGL). This constraint was chosen as the cloud base of stra-
tocumulus clouds is usually situated below 2000 m AGL.
Due to the integrations of ATB, only clouds with cloud base
located above 500 m AGL are considered. This is because
the complete overlap is at 120 m and data are only consid-
ered up to 300 m below the cloud. ATB should be integrated
through at least 2 range gates of the used lidar, which for
most Cloudnet observatories are 40 m wide. Further filtering
criteria include the presence of precipitation or drizzle. The
Cloudnet data set contains target classification in which liq-

uid cloud droplets are categorised specifically (Hogan and
O’Connor, 2004). The ACI monitoring scheme selects only
data points for which liquid cloud droplets and aerosol are
identified. All other data points are disregarded, i.e. all points
where any form of precipitation or insects were identified by
the Cloudnet classification scheme.

For the data set used in this study, we aggregated daily
data into one data set. Data aggregation is only possible if
data were collected in similar meteorological conditions. We
define the meteorological conditions on the basis of tempera-
ture and pressure at the cloud base level. We considered con-
ditions to be similar if the relative standard deviation (rsd) of
the measurements is less than 0.1. The relative standard de-
viation is defined as a ratio of the standard deviation of the
data set to the mean of the data set. As an additional me-
teorological parameter we use specific humidity. However,
the changes in the specific humidity can be larger than those
in temperature or pressure. The condition of the constant
amount of available water is controlled by the LWP, which
represents the total amount of liquid water in the column.
It should be noted that meteorological conditions available
in the Cloudnet data set come from the KNMI (Koninklijk
Nederlands Meteorologisch Instituut) regional atmospheric
climate model RACMO (Van Meijgaard et al., 2008) and not
from the observations.

4 Observations from the CESAR Observatory

The CESAR (Cabauw Experimental Site for Atmospheric
Research) Observatory is located in the Netherlands
(51.971◦ N, 4.927◦ E) in an area located 0.7 m below the
mean sea level. The site is equipped with a large set of
instruments providing constant measurements to study at-
mospheric processes. The data set used in this study was
collected in October–November 2014 during the ACCEPT
(Analysis of the Composition of Clouds with Extended Po-
larization Techniques) campaign. Although the ACCEPT
campaign was focused on mixed-phase clouds, multiple mea-
surements of low-level liquid water clouds were also col-
lected. During the 6-week period of the campaign 7 days
were represented by a persisting layer of stratocumulus
clouds. Due to the requirements of the ACI monitoring
scheme, after applying data selection criteria (see Sect. 3.1)
only 4 days of data were processed. The total number of mea-
surements profiles used in this study is 1659. We used one ad-
ditional requirement: we only processed profiles in which the
stratocumulus layer was persisting for at least 30 min. This
meant that we only chose data for which at least 60 profiles
of 30 s integrated measurements were consecutive. We chose
to add this selection criteria to eliminate days from the aggre-
gated data set for which only a couple of profiles responding
to all selection criteria were available. This restriction was
applied to avoid profiles that were only temporally fulfilling
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all the selection criteria of this method and in itself might
have been part of more turbid conditions.

4.1 Instrumentation

One of the main objectives of the ACI monitoring scheme
was to develop a method that can be easily applied at var-
ious observatories. To achieve that it was necessary to base
this method on a widespread set of instruments. Those instru-
ments include cloud radar, lidar and microwave radiometer.
In this study we specifically used data from (1) a Ka-band
35.5 GHz cloud radar MIRA, (2) a CHM15X ceilometer op-
erating at 1064 nm and (3) HATPRO (Humidity and Tem-
perature Profiler) microwave radiometer (MWR) operating at
14 frequencies – 7 frequencies between 22 and 31 GHz (K-
band) and 7 frequencies between 51 and 58 GHz (V-Band).
Data from the cloud radar MIRA and the HATPRO MWR
are used for the retrieval of cloud microphysical proper-
ties, specifically cloud droplet effective radius re and cloud
droplet number concentration Nd. Both microphysical pa-
rameters are retrieved in accordance with Knist (2014). Data
is resampled to an uniform time–height resolution. Time res-
olution is 30 s and height resolution (range gate) is 31.2 m.

Moreover, cloud radar MIRA measures the Doppler ve-
locity, which is used to measure updraught within the cloud.
Data from HATPRO MWR are also used to measure LWP,
which is used to divide data into bins. This division is made
in order to consider data in conditions approaching a con-
stant amount of available water. In principle the size of LWP
bins should be as small as possible. In order to have a rep-
resentable data sample we make each bin 15 g m−2 wide. Fi-
nally, data from the CHM15X ceilometer is used to measure
the aerosol concentration. We use the integrated value of the
ATB as a proxy of the aerosol concentration (Sarna and Russ-
chenberg, 2016). Table 1 summarises all relevant parameters
and the instruments that were used to measure and/or retrieve
them. Figure 1 presents the distribution of all measured quan-
tities used in this study.

We use an additional measurement from cloud radar, the
Doppler velocity, to measure updraught and downdraught.
The ACI metrics are expected to be stronger in the updraught
areas, because that is where aerosol is activated into cloud
droplets. Figure 2 presents the histogram of Doppler velocity
in the aggregated data set. Note that we use the average of
Doppler velocity from the cloud base to 2 range gates within
the cloud.

4.2 Aerosol background at CESAR

A limited number of studies of ACI processes have been
focused up to now on the continental low-level liquid wa-
ter clouds (e.g. Feingold et al., 2003; Ahmad et al., 2013).
Most studies were focused on marine or coastal liquid water
clouds (e.g. Twohy et al., 2005; McComiskey et al., 2009;
Pandithurai et al., 2009). The CESAR Observatory is lo-

cated in the western part of the Netherlands. The liquid water
clouds observed over CESAR have characteristics of conti-
nental clouds. Further, the aerosol background is typically
continental. Aerosols over CESAR are mainly represented
by an organic aerosol as well as high concentration of am-
monium nitrate (Mensah et al., 2012). This type of aerosol
background is important to study as it can be directly related
to the anthropogenic emissions (Putaud et al., 2004).

4.3 Selected data set

As we mentioned in the previous sections, due to the mi-
crophysical scale of the ACI processes, data only need to be
aggregated under similar meteorological conditions (as de-
fined in Sect. 3.1). This is to make sure that ACI processes
are not obscured by other meteorological processes. Figure 3
presents histograms of the meteorological conditions of the
aggregated data set. The values of pressure and temperature
show a small variation, represented by a small value of the
relative standard deviation (rsd), 0.03 for pressure and 0.01
for temperature. The variation of specific humidity is larger,
with an rsd of 0.22. To ensure that the amount of available
water is constant, we divide data into bins of LWP. It is im-
portant to note that for the Cloudnet data set meteorological
conditions are provided by the KNMI Regional Atmospheric
Climate Model (RACMO; Van Meijgaard et al., 2008).

5 Results and discussion

5.1 ACI metrics

ACI metrics represent the response of cloud microphysical
properties (re and Nd) to aerosol properties (aerosol con-
centration is represented by ATB). To accurately quantify
ACI the amount of available water should be kept constant.
To meet this requirement we divide data into bins of LWP.
Each LWP bin is 15 g m−2 wide. Calculations are made for
the bins between 30 and 150 g m−2. The lower limit of the
LWP analysis range was chosen to be twice the typical un-
certainty of the HATPRO MWR measurements (15 g m−2).
The upper limit is the approximate precipitation threshold
(McComiskey et al., 2009). For every LWP bin we also cal-
culate the Pearson product–moment correlation coefficient, r
(Eq. 8).

5.1.1 ACIr

To calculate ACIr we used Eq. (4). Table 2 compares the
calculated values of ACIr and the correlation coefficient, r ,
for the whole data set and for the updraught regime only.
The range of values within the physical limits (between 0
and 0.33, see Sect. 2) for the whole data set is from 0.001
to 0.085. These values are in agreement with other studies
concerned with quantifying ACIr in continental clouds. Kim
et al. (2008) reported values of ACIr between 0.04 and 0.17
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Table 1. Cloud and aerosol properties measured or derived from the observations at the CESAR Observatory in the Netherlands.

Measured quantity Definition Instrument(s)

Cloud liquid water path LWP (g m−2) HATPRO MWR
Radar reflectivity factor Z (dBZ or m6 m−3) MIRA
Doppler Velocity w (m s−1) MIRA
Cloud droplet effective radius re (µm) (Knist, 2014) MIRA/HATPRO MWR
Cloud droplet number concentration Nd (cm−3) (Knist, 2014) MIRA/HATPRO MWR
Attenuated backscatter coefficient ATB [m−1 sr−1] CHM15X ceilometer

Figure 1. Histograms of the measurements and retrievals for the aggregated data set.

in a study over the ground-based remote sensing site at the
Southern Plains in Oklahoma, USA. For the same site, Fein-
gold et al. (2003) reported values of ACIr between 0.02 and
0.16. The maximum value of ACIr calculated in this study is
lower than in the above-mentioned studies.

In the data set from the CESAR Observatory we can see
that the values of ACIr are generally within the physical lim-
its for the LWP values from 60 to 135 g m−2. This may in-

dicate that ACIr is a process that is significant only for cer-
tain values of LWP. When the values of LWP are high, above
135 g m−2, other processes within the cloud, such as collision
and coalescence, are dominant and obscure the ACI process.

To further investigate the impact of LWP on ACIr we se-
lected only the profiles which corresponded to the updraught
regime. This was done based on the Doppler velocity. Firstly,
it’s important to note that the data set is significantly lim-
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Table 2. ACIr (Eq. 4) together with Pearson product–moment correlation coefficient, r , calculated between ln(re) and ln(ATB) calculated
for the aggregated data set. Data are divided in to bins of LWP. ACIr is calculated for the whole data set and only for the updraught areas.
The number of measurements in each bin (n) and the percentage of data available for the updraught only areas are also presented.

Whole data set Only updraught

LWP bin ACIr r n ACIr r n % of whole sample

30<LWP< 45 0.016 −0.038 468 −0.078 0.204 161 34.40
45<LWP< 60 −0.011 0.023 418 −0.029 0.069 133 31.82
60<LWP< 75 0.065 −0.140 269 0.205 −0.373 69 25.65
75<LWP< 90 0.011 −0.023 183 0.075 −0.161 48 26.23
90<LWP< 105 0.085 −0.180 140 0.128 −0.375 37 26.43
105<LWP< 120 0.001 −0.001 76 0.271 −0.730 15 19.74
120<LWP< 135 0.046 −0.068 57 0.034 −0.066 16 28.07
135<LWP< 150 −0.104 0.175 48 −0.111 0.203 13 27.08

Figure 2. Histograms of the Doppler velocity for the aggregated
data set.

ited when considering only the updraught regime: only 30 %
of the profiles in the aggregated data set are located in the
updraught regime. However, we observe a considerable in-
crease in the value of both ACIr and the correlation coeffi-
cient, r . Again, we can see that the values of ACIr increase
with the increasing value of LWP. ACIr seems to be higher
for the values of LWP between 60 and 135 g m−2, with an ex-
ception of LWP between 75 and 90 g m−2. Note that for LWP
above 135 g m−2 values of ACIr are exceeding the physical
boundaries and indicate that the process is no longer observ-
able. The increase of ACIr in the updraught regime should
be further investigated in a data set with more profiles, as the
reduction of the sample size is significant.

5.1.2 ACIN

The response of the cloud droplet concentration to the
aerosol background is an approximation of the activation
process. ACIN can be directly linked to Eq. (2). We cal-
culate the relative change of Nd with the change of ATB
from Eq. (3). For the aggregated data set from CESAR Ob-
servatory the value of ACIN is 0.21. The value of 0.19 is
very small – values reported in the literature often vary be-
tween 0.48 and 0.99 (McComiskey et al., 2009, and refer-
ences within). However, it has been noted before that the size
of aerosol may influence the value of ACIN . Smaller aerosol
sizes tend to yield smaller ACIN (McComiskey et al., 2009).
Based on the aerosol background at the CESAR Observatory
(see Sect. 4.2) we expect the size of the aerosol particles to
be smaller. Another possible explanation is that values of Nd
used in this study are calculated for the whole cloud and the
ACI process is expected mostly in the cloud base and cloud
top area. It is also important to note that the retrieval of Nd
has very high estimated uncertainties, ranging between 40
and 60 % (Knist, 2014). Those uncertainties are mainly due
to the instruments and algorithms errors and were discussed
extensively in Knist (2014). In comparison, the uncertainty
of the re ranges between 10 and 15 %. We expect that this
high uncertainty is responsible for the low value of ACIN
calculated for the whole data set.

As we mentioned above, based on the theoretical relation-
ships between aerosol and cloud droplets, ACIN is not de-
pendent on the LWP. However, in this study we decided to
test whether there is a dependence of ACIN on the LWP by
dividing data into the same bins of LWP as with the calcula-
tion of ACIr . Table 3 presents the comparison of the ACIN
calculated for each LWP bin for the whole data set and only
for the updraught regime. What is striking is that, similarly
to the case of ACIr , the highest values of ACIN are present
in the range between 60 and 105 g m−2. We further selected
only the points within the updraught regime. Again, consis-
tently with ACIr , the highest values of ACIN are noted for the
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Figure 3. Histograms of the meteorological data for the aggregated data set.

Table 3. ACIN (Eq. 3) together with Pearson product–moment correlation coefficient, r , calculated between ln(Nd) and ln(ATB) calculated
for the aggregated data set. Data are divided in to bins of LWP. ACIN is calculated for the whole data set and only for the updraught areas.
The number of measurements in each bin (n) and the percentage of data available for the updraught only areas are also presented.

Whole data set Only updraught

LWP bin ACIN r n ACIN r n % of whole sample

30<LWP< 45 0.141 0.100 468 −0.068 −0.049 161 34.40
45<LWP< 60 0.170 0.118 418 −0.009 −0.008 133 31.82
60<LWP< 75 0.490 0.308 269 0.479 0.280 69 25.65
75<LWP< 90 0.235 0.181 183 0.137 0.101 48 26.23
90<LWP< 105 0.222 0.142 140 0.326 0.268 37 26.43
105<LWP< 120 −0.034 −0.021 76 −0.084 −0.065 15 19.74
120<LWP< 135 −0.269 −0.169 57 −0.149 −0.113 16 28.07
135 <LWP< 150 0.180 0.123 48 0.041 0.038 13 27.08

LWP between 60 and 75 g m−2. For the values LWP above
105 g m−2 the increase in the value of ATB no longer corre-
sponds to the increase in the value of Nd

ACIN and ACIr are theoretically related as in Eq. (5). In
the data set analysed in this study this relation is not always
present. We expect that the main reason for that is the dis-
crepancy between how ACIN and ACIr are calculated. In
particular, for the calculation of ACIr we only use the val-
ues of re in the cloud base area (defined as the range between
the cloud base and 30 m into the cloud) and for the calcula-
tion of ACIN the value of Nd is derived for the whole cloud.
Another important reason might be the high uncertainty of
the Nd retrieval. Also, ACIN is harder to derive. Based on
this study, we can say that ACIr seems to give more realis-
tic results as they are broadly in agreement with the previous
studies (see Sect. 5.1.1).

5.2 Impact of the updraught

Activation of the aerosol particles into cloud droplets is in-
vigorated in the updraught zones (Altaratz et al., 2014). In

this study we identified updraught areas with the use of the
Doppler velocity (w). Tables 2 and 3 compare the results of
ACIr and ACIN calculated for all LWP bins. Both parameters
seem to indicate stronger relation between cloud properties
(re and Nd) and aerosol properties (ATB) in the updraught
areas. This is implicated by the increase of both the ACI met-
rics as well as the correlation coefficients. The invigoration of
ACI processes in the updraught regime was also reported in
previous studies (Schmidt et al., 2015). It is important to note
that the number of available profiles is greatly diminished by
the selection of updraught areas only. Specifically, the num-
ber of profiles in the updraught regime are reduced by 70 %
compared to all the selected profiles. The number of samples
in LWP bins over 105 g m−2 is too small to make significant
conclusions. However, we can clearly observe that both ACIr
and ACIN have the highest values in the LWP bins between
60 and 105 g m−2.
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Figure 4. Scatter plot between ACIr and LWP for all data points
and the data points located in the updraught areas in the aggregated
data set.

5.3 Relation with LWP

One of the conditions for observing changes in microphysi-
cal properties of clouds due to an aerosol number concentra-
tion initially postulated by Twomey (1977) was the constant
amount of water available. Over the past decades different
studies used that conditions with liberty. In the satellite re-
mote sensing quantification of ACI the constraint of LWP
is often omitted (e.g. Kaufman et al., 2005). In the ground-
based remote sensing methods the constraint on LWP is kept,
but the size of LWP bins varies greatly. The division into
LWP bins is important as it is still not clear if ACI is a sig-
nificant process in different LWP regimes.

In this study we divided data into LWP bins 15 g m−2

wide. This was the lowest width of the bin that was allowed
by the instrument restrictions (see Sect. 4.1). We saw signifi-
cant changes in the calculated values of both ACIr and ACIN
in different LWP bins. When the considered LWP bins are
wider, those differences are not visible and it is difficult to
define the conditions that invigorate the ACI processes. The
drawback of applying small bins is the sample size. How-
ever, what we wanted to present with this method is the vari-
ety of values in different bins. Figure 4 presents the values of
ACIr plotted against LWP for both the whole data set and
the selected profiles in the updraught regime. We can ob-
serve an increase of ACIr with LWP in the range between
60 and 105 g m−2 for both the updraught and the whole data
set. ACIr reaches values outside of the physical boundaries
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Figure 5. Scatter plot between ACIN and LWP for the data points
located in the updraught areas of the aggregated data set.

for LWP that are either very low (30 to 60 g m−2) or very
high (135 to 150 g m−2). This may indicate that the ACI pro-
cesses are only observable in certain LWP conditions. Impor-
tantly, this is even more pronounced in the updraught regime.
It should be noted that the negative values of ACIr can also be
caused by the small sample size and the errors in the retrieval
of re. Figure 5 presents the values of ACIN plotted against
LWP for both the whole data set and the selected profiles in
the updraught regime. The most striking observation here is
that the value of ACIN in the updraught regime is lower in the
majority of the LWP bins than in the whole data set, unlike in
the case of ACIr where the updraught regime is related with
the higher values of ACIr in comparison to the whole data
set. A possible explanation for this phenomenon is, like we
mentioned before, the difference in the calculation method:
ACIr is calculated for the cloud base region only, whereas
ACIN is calculated for the whole cloud.

5.4 Relation between correlation coefficient (r) and
ACIr

Most of the studies concerned with aerosol–cloud interac-
tions calculate either ACIr (Eq. 4), ACIN (Eq. 3) or both to
quantify the relationship between aerosol and cloud proper-
ties. As we explained before, in mathematical terms ACIr
and ACIN are a slope of the regression line calculated be-
tween the natural logarithm of the aerosol properties and a
natural logarithm of the cloud properties. The aerosol prop-
erty is treated as the independent variable and the cloud prop-
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Figure 6. Scatter plot between ACIr and the Pearson product–
moment correlation coefficient, r .

erty is the dependent variable. As we shown in Sect. 2, corre-
lation coefficient and slope of the regression line are related
as in Eq. (6).

For the data set from the CESAR Observatory we com-
pared the values of ACIr with the values of the correlation
coefficient. We did this comparison for every LWP bin for the
whole data set and then separately only for the profiles corre-
sponding to the updraught area and to the downdraught area.
Figure 6 presents the scatter plot between ACIr and the cor-
relation coefficient. We can observe that most of the values of
ACIr that fall outside of the physical bounds are observed for
the downdraught areas of the whole data set or for the very
small or very high bins of the LWP. This further underlines
the impact of the updraught and LWP on the aerosol–cloud
interactions.

The relation between the correlation coefficient and ACIr
is mathematically sound. However, it is not often presented
in the literature. Based on the analysed data set we can say
that the lower the value of the correlation coefficient between
aerosol and cloud properties, the higher the calculated value
of the ACIr . However, this relation between the two param-
eters is only significant when data is sampled at a high tem-
poral and spatial resolution and divided into bins of LWP

to simulate the condition of a constant amount of available
water. In the case of no constraint on LWP or data with
a low spatial resolution (i.e. satellite remote sensing aggre-
gated data sets) the calculation of the correlation coefficient
will become irrelevant as the variance of the data set will be
minimised by the aggregation (McComiskey and Feingold,
2012). In the case of the ACI monitoring scheme calculat-
ing both ACIr and the correlation coefficient is relevant, as
data is collected with a temporal and spatial resolution that
corresponds to the scale of the aerosol–cloud interaction pro-
cesses.

6 Summary and conclusions

In this paper we presented a direct application of the aerosol–
cloud interaction monitoring scheme as presented in Sarna
and Russchenberg (2016). We used a Cloudnet data set
from the CESAR Observatory in the Netherlands. Data were
collected during the ACCEPT measurement campaign in
October–November 2014. We aggregated daily measure-
ments into one data set based on the similar meteorologi-
cal conditions. We only considered non-precipitating, low-
level liquid water clouds. All forms of precipitation were
disregarded based on the Cloudnet target categorisation. In-
vestigated clouds had the cloud base located between 500
and 2000 m above ground level. Lastly, we only used peri-
ods when conditions corresponding to the above-mentioned
criteria were persisting for at least 30 min.

For the aggregated data set we calculated ACI metrics us-
ing cloud droplet effective radius (re) following Eq. (4) and
cloud droplet number concentration (Nd) following Eq. (3).
The aerosol properties were represented by the integrated
ATB. For both ACI metrics we also calculate Pearson’s mo-
ment correlation coefficient, r . For all the above-mentioned
calculations data were divided into bins of LWP, where ev-
ery bin was 15 g m−2 wide. The calculated values of ACIr
ranged from 0.001 to 0.085, which correspond with the val-
ues reported in the previous studies. For the low (between
30 and 60 g m−2) and high (above 135 g m−2) values of LWP
we observed negative, values of ACIr , which were therefore
outside of the physical bounds,. This is an indication that the
ACI processes are not easily observable in those LWP condi-
tions and are possibly obscured by other cloud processes. The
values of ACIN were significantly lower than those reported
in the literature. We attribute that to two reasons. Firstly, the
retrieval of Nd is susceptible to high error, varying between
40 and 60 % due to instrument errors and retrieval assump-
tions. Secondly, the aerosol background over the CESAR
Observatory is characteristic of the continental aerosol back-
ground whereas most studies calculating ACIN are located
in the marine or coastal areas. The size of continental aerosol
is significantly smaller which can lead to smaller values of
ACIN . Further, the ACIN is calculated considering the infor-
mation from the whole cloud profile, whereas ACIr is calcu-
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lated only in the cloud base area, where the ACI processes
are the strongest. Considering the high uncertainty of the Nd
retrieval, we recommend calculating ACIr to account for the
impact of aerosol on the cloud microphysical properties.

We also evaluated the impact of the vertical wind speed
at the cloud base and LWP on ACI metrics. In the analysed
data set both of those parameters showed a clear impact on
the values of ACIr . The values of ACIr were highest for
the LWP between 60 and 105 g m−2. For the higher values
of LWP other processes, such as collision and coalescence,
seem to be dominant and obscure the ACI processes. This
may indicate that the approximated precipitation threshold
(150 g m−2) should be lowered and the Cloudnet target cate-
gorisation re-evaluated. The values of ACIr are higher when
only data points located in the updraught regime were con-
sidered. As indicated in previous studies, the updraught is an
important factor in invigorating aerosol–cloud interactions.
The values of ACIr in the downdraught regime were often
outside of the physical bounds. It is desirable to only con-
sider data points located within the updraught regime. How-
ever, it should be noted that selecting the updraught regime
only significantly decreases the data sample size.

The ACI metrics are used to account for the proportional-
ity factor between aerosol number concentration and cloud
droplet number concentration (Eq. 2). In this study we ex-
plained that the correlation coefficient and ACI metrics can
be related to the high-resolution data set, as ACI metrics are
the slope of the regression line between cloud and aerosol
properties. Therefore, a lower value of the correlation coeffi-
cient will indicate the increase of the ACIr .

The method presented in this study allows for monitor-
ing aerosol–cloud interactions daily and further aggregating
daily data into bigger data sets. We showed that it can be
easily implemented at any observatory using Cloudnet data
format. However, one should keep in mind that the specific
conditions between the stations may vary and combining data
points from various stations should be made only after as-
sessing each of them separately. The method described in
this paper could be implemented at each station separately
and then the results from observatories could be combined
and compared with similar conditions. Such a comparison
would be very valuable, leading to a better understanding of
the aerosol–cloud interactions, but it was beyond the scope of
this research project. A widespread network of ACI monitor-
ing could lead to estimating the drivers of this process more
accurately in various conditions. This methodology was de-
veloped with a purpose of integration into the Cloudnet net-
work products. Further, as the methodology presented here
is based on the remote sensing instruments only, it could
be adapted to the satellite remote sensing and observation
of ACI processes in the cloud top area. Such an adaptation
would have to be done with care and account for all the re-
quirements of the data selection necessary for this method.
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