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Abstract: We design, implement, and test a novel tactile elasticity imaging sensor to detect the elastic modulus 
of a contacted object. Emulating a human finger, a multi-layer polydimethylsiloxane waveguide has been 
fabricated as the sensing probe. The light is illuminated under the critical angle to totally reflect within the flexible 
and transparent waveguide. When a waveguide is compressed by an object, the contact area of the waveguide 
deforms and causes the light to scatter. The scattered light is captured by a high resolution camera. Multiple images 
are taken from slightly different loading values. The distributed forces have been estimated using the integrated 
pixel values of diffused lights. The displacements of the contacted object deformation have been estimated by 
matching the series of tactile images. For this purpose, a novel pattern matching algorithm is developed. The 
salient feature of this sensor is that it is capable of measuring the absolute elastic modulus value of soft materials 
without additional measurement units. The measurements were validated by comparing the measured elasticity of 
the commercial rubber samples with the known elasticity. The evaluation results showed that this type of sensor 
can measure elasticity within ±5.38 %. 
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1. Introduction 

 

Traditionally, physicians have used palpation to 
detect breast tumors or prostate tumors, which is based 
on the observation that the tissue abnormalities are 
usually associated with localized changes in 
mechanical properties such as low elasticity and stiffer 
tissues [1-2]. To help physicians detect tumors more 
efficiently, various imaging techniques utilizing 
different imaging modalities such as computer 
tomography, ultrasonic imaging, nuclear magnetic 
resonance imaging, and x-rays have been developed 
[3-5]. However, each of these techniques has 
limitations, including the radiation to the body, low 
specificity, complicated system, etc. Moreover, these 
techniques can only provide the spatial information of 

the tumor. They do not measure mechanical properties 
directly. The absolute material properties are very 
important to measure the severity of the tumor. 
Identifying a stiff region relative to the surrounding 
region does not lead to diagnosing tissue abnormalities 
completely. Therefore it is desirable to measure the 
absolute elastic modulus directly using tactile 
elasticity imaging technique. 

In fact, different tactile sensors using diverse 
approaches have already been investigated in robotic 
systems and medical tools for surgery. They are based 
on piezoelectric [6-8], piezoresistive [9-10], or 
capacitive sensing [11]. Some sensors provide good 
spatial resolution through the use of 
microelectromechanical systems (MEMS) 
technology. However, its small measurable force 
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range due to the brittle sensing elements such as 
silicone based diaphragms has not proven to be a 
reliable biomedical tool. In addition, most of them are 
in the form of an array of distributed pressure sensors 
on a flat plate and merely detect the applied force at 
that point. Without the ability to measure the 
displacement of the tissue deformation, the sensor 
cannot estimate the elasticity. Elasticity is used in 
cancer detection. Recently, some research groups use 
force sensing resistors and a super-resolution 
algorithm for a neck palpation device [12]. However, 
this approach can only detect the relative stiffness, not 
the absolute elastic modulus. Even though spatial 
resolution of the tactile sensor has been improved by 
the super-resolution algorithm, it has still fairly low 
resolution compared to human fingers, which were 
millions of mechanoreceptors per square inch of the 
skin. Some tactile sensors use piezoelectric cantilevers 
for the absolute elasticity measurement [13-14]. 
However, this method requires auxiliary instruments 
such as oscilloscope or voltage generators. This 
scheme also has relatively low spatial resolution due 
to its large size of the probe. Therefore in order for 
tactile sensors to be successfully developed as the 
palpation tool, high tactile spatial resolution is 
necessary for the precise elasticity measurement. 

In this paper, we present a newly designed tactile 
elasticity imaging sensor. The rigid waveguide 
transduction based optical tactile sensors are already 
investigated in [15-16]. Our system is inspired by this 
system with important differences. In the current 
design, a polydimethylsiloxane (PDMS) are used to 
make a multi-layer flexible transparent waveguide. 
The mechanical properties (i.e. elastic modulus) of 
each layer have been matched with the three human 
finger layers, dermis, epidermis, and subcutanea, to 
maximize the sensitivity of touch. In order to have 
high tactile spatial resolution, we utilize the total 
internal reflection principle in the waveguide. A force 
applied to a waveguide causes the light to change the 
critical angle of internally reflected lights, and results 
in light scattering which can be captured by a camera. 
The salient feature of this sensor compared to the other 
tactile sensors is the capability of measuring the 
elasticity of the contacted object without any external 
force sensor. In the current design, the force 
distribution has been measured through the integration 
of tactile image pixel values. In order to accurately 
estimate 3-D displacements of the contacted object 
deformation, a non-rigid pattern matching algorithm is 
developed. This technique relies on matching the 
random patterns recorded in tactile images to obtain 
the surface displacements and gradients from which 
the strain field can be determined. The obtained stress 
and strain information are finally used to identify the 
elasticity of the contacted object.  

In the following section, the background of human 
tactile perception is given. Next, the design and 
characteristic of the tactile elasticity imaging sensor is 
presented and its sensing principle is introduced. Then, 
the stress estimation and non-rigid pattern matching 
algorithm for the strain estimation are discussed. 

Finally, the experimental results and conclusions are 
presented. 

 
 

2. Background 
 
The tactile elasticity imaging sensor emulates a 

human finger. Here, we briefly review the human 
tactile perception and human finger biology. 
 
 
2.1. Human Tactile Perception 
 

Touch sensation is perceived via physical contact 
mainly through the skin. Human skin has about five 
million sensory cells, however, the cells are not evenly 
distributed. Areas such as fingertips and lips are more 
sensitive to touch because they have more nerve 
endings. Fingers can perceive a wide variety of tactile 
information such as roughness, softness, humidity, 
temperature, friction, pain, vibration and hardness. 
Human fingers also have the amazing ability to detect 
inclusion, such as tumors inside the tissues. In general, 
sensory receptors can be classified by their functions: 
chemoreceptors (chemical stimuli), nociceptors 
(pain), osmoreceptors (osmolarity of fluids), 
photoreceptors (light stimuli), and mechanoreceptors 
(mechanical stimuli) [17]. There are also two sensory 
systems that react via contact with a physical object: 
exteroceptive and proprioceptive sensory systems. 
Proprioceptive system is the sense of the relative 
position of neighboring parts of the body. 
Exteroceptive system is the response to external 
stimuli such as temperature, deformation of the skin 
and mechanical stimuli. The proposed sensor is mainly 
dealing with mechanoreceptors and exteroceptive 
sensor. 
 
 
2.2. Biology of the Human Finger 
 

A human finger has an oval shaped cross section, 
composed of tissue, and nail. The curved surface 
allows consistent and precise grasping and 
manipulation. Nails are effective in enlarging the 
stimuli on mechanoreceptors by sandwiching the 
tissue between the surface and the nail. Human tissues 
are made up of multiple layers: epidermis, dermis and 
subcutanea. Each layer has different physical 
properties. The outmost layer is the epidermis (elastic 

modulus: 21.4 10  Pa); beneath it is the dermis layer  

( 48.0 10  Pa) and the layer closest to the bone is the 

subcutanea ( 43.4 10  Pa) [16]. The epidermis is the 
hardest layer, with the smallest elasticity at 
approximately 1 mm thickness. The dermis is a softer 
layer with more elasticity, usually 1 to 3 mm thick. 
The subcutanea, which fills the space between the 
dermis and bone, is mainly composed of fat and 
functions as a cushion when shock load is applied to 
the finger. Due to the differences in elastic 
coefficients, there is greater deformation of the inner 
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layers, dermis and subcutanea, than the outmost layer, 
epidermis, when the finger presses into or moves along 
a surface. The multi-layer structure enhances the 
effective texture and hardness perception, which is 
why we have emulated this multi-layer structure for 
the proposed sensor. 

 
 

3. Sensor Design and Sensing Principle 
 

In this section, we present the concept, fabrication, 
and characterization of our sensor in detail. 

 
 

3.1. Design Requirement for Emulating 
Human Finger 

 

The tactile elasticity imaging sensor emulates the 
structure of a human finger. The design requirement is 
as follows.  

1) Human tissues: Polydimethylsiloxane (PDMS) 
is used for emulating human tissue. PDMS creates a 
soft contact surface, which has proven to be effective 
in detecting the texture of material.  

2) Three-layered structure: Emulating the 
structure of human tissue, three types of the PDMS 
with different elasticity are stacked together. This 
allows for more sensitive perception.  

3) Distribution of bone and nail elements: In order 
to effectively obtain tactile sensory data, parts that 
function as the bone and nail are situated at the base of 
the sensor. In the current design, a heat-resistant 
borosilicate glass plate is used as the substrate for the 
stacked PDMS.  

4) Distributed sensor elements: To emulate 
mechanoreceptors of a human finger, an optical based 
sensing method using a light reflection pattern and a 
digital imager is used. This is to obtain high spatial 
distribution of contact force. 

 
 

3.2. Sensor Design 
 

Fig. 1 (a) shows the schematic of the tactile  
sensor module and Fig. 1 (b) shows the integrated 
tactile sensor. The elasticity imaging sensor comprises 
of an optical waveguide, light sources, and a digital 
imager. 

The optical waveguide is the main sensing probe 
of the device.  

The optical waveguide is composed of PDMS 
(PDMS, Si(CH3)2), which is a high performance 
silicone elastomer [18-19]. The optical waveguide 
needs to be transparent and PDMS meets this 
requirement. In the current design, one of the 
Hydroxyl-terminated PDMS, RTV6186 has been used 
(R. S. Hughes, Baltimore, MD). The PDMS is 
produced through a process of pouring viscous fluid 
silicone and a catalyst into a mold cavity. Here, the 
viscous fluid silicone used is vinyl-stopped 
phenylmethypolyer and the catalyst is a mixture of 
components, including methylhydrogen polysiloxane, 
dimethyl, methyvinyl siloxane and dimethylvinyl 

terminated. The viscous fluid silicone is hardened by 
the catalyst. The hardness is dependent on the ratio of 
silicone and catalyst. The elastic moduli of three 
PDMS layers are set as the modulus values of 
epidermis, dermis, and subcutanea. The height of each 
layer is 2 mm for epidermis layer (PDMS layer 1), 
3 mm for dermis layer (PDMS layer 2) and 5 mm for 
subcutanea layer (PDMS layer 3), respectively. The 
fabricated PDMS optical waveguide is shown in  
Fig. 2. 

 
 

 
(a) 

 

 
(b) 

 
 

Fig. 1. (a) Schematic of the tactile elasticity imaging 
sensor. (b) The integrated version. 

 
 

 
 

Fig. 2. Fabricated PDMS optical waveguide.  
The waveguide is elastic and flexible. 
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The digital imager is a mono-cooled 
complementary camera with 4.65 µm (H) × 4.65 µm 
(V) individual pixel size (FLEA2, Point Grey 
Research, British Columbia). 

The maximum lens resolution is 1392 (H) ×  
1042 (V) with the angle of view is 60o. The camera is 
placed below an optical waveguide. A heat-resistant 
borosilicate glass plate is placed between the camera 
and the optical waveguide to sustain an optical 
waveguide without losing camera resolution. The 
glass also functions as the bone and nail in a human 
finger. The internal light source is a micro-LED 
(Unique-Leds, Newalla, OK) with a diameter of 1.8 
mm. There are four LEDs on the four sides of the 
waveguide to provide illumination. The direction and 
incident angle of the LED light has been calibrated 
with the cone of acceptance angle and is described in 
the next section. 
 
 

3.3. Sensing Principle 
 

Fig. 3 illustrates the conceptual diagram of the 
sensing principle. The tactile elasticity imaging sensor 
is developed based on the optical phenomenon known 
as total internal reflection (TIR) of light within an 
optical waveguide. 

If two mediums have different indices of 
refraction, and the light is shone through those two 
mediums, then a fraction of light is transmitted and the 

rest is reflected. The amount of reflection is dependent 
on the angle of incidence. There is a critical angle 
above which the ray is completely reflected. The basic 
principle of the sensor system lies in the monitoring of 
the reflected light caused by the changing of the 
critical angle by contact. The intensity of the reflected 
light is related to the applied force and the strain on the 
optical waveguide. Here we investigate TIR in the 
multi-layer optical waveguide using ray optics 
approximation. 

Consider light trapped inside the waveguide in the 
geometry shown in Fig. 4.  

The basic design of the optical waveguide plate 
consists of three different refractive indices of PDMS. 
Consider three PDMS layers that are non-absorbing 
mediums (refractive index: n1, n2, n3) on a heat 
resistant borosilicate glass plate (refractive index: n4). 
The magnitude of refractive index is set as the highest 
at medium 4 and decreases toward to medium 1, i.e., 

1 2 3 4n n n n   . Medium 0 and medium 5 are air 

which is the absorption-free medium, i.e., 0 5 1n n 
. Assume that LED light sources are placed around the 
middle of the PDMS layers. Light is incident from the 
outside of PDMS layers and strikes each layer of the 

PDMS stack. Due to Snell ’ s law the propagation 

angles i  in each layer i , i =1, 2, 3, 4 are bound by 

the following relations. 
 

 
 

 
 

Fig. 3. Schematic diagram of the sensing principle. The light strays outside the waveguide as the optical waveguide deforms 
according to the applied force. 

 

 
 

Fig. 4. Ray propagation inside the multi-layer optical waveguide under total internal reflection (TIR). 
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1 1 0 0sin sinn n   

2 2 1 1sin sinn n   

3 3 2 2sin sinn n   

4 4 3 3sin sinn n   

5 5 4 4sin sinn n  , 

(1) 

 
where n0 and n5 are the refractive indices of air 

0 5 1n n  , and the critical TIR condition has been 

achieved when 0 5 90o    at the boundaries with 

air. Light propagating in the waveguide with angles 

1 2 3 4,  ,  ,       or higher in their respective layers will 

remain trapped inside the waveguide. The critical 
angle indicates the minimum propagation angle for 
TIR. To make the propagation angle below the critical 
angle in a waveguide, the acceptance angle for light 
sources has been calculated. 

The acceptance angle is the maximum angle, under 
which light directed into the waveguide remains 
trapped inside. Angles 1 2 3 4,  ,  ,       are related to 

the acceptance angle i  in each layer i by the Snell’s 

Law: 
 

 0 5sin sin( ) sin( )

sin(90 ) cos .

i i i i i

o
i i i i

n n

n n

    

 

    

  
 (2) 

 

Further, transforming Eq. (2), we obtain 
 

 2 1/2

2 2 2 1/2

sin cos (1 sin )

( sin ) .

i i i i i

i i i

n n

n n

  



   

 
 (3) 

 

It follows from Eq. (1) that all sini in   are equal 

to 0 sin 90on , which is equal to 1 for air. Therefore, we 

finally have 
 

2 1/ 2 1sin[( 1) ]i in    (4) 
 

for each layer i . Light, incident on layer i  under 
angle i  will be trapped inside the waveguide. For 

instance, if 1 2 3 4,  ,  , n n n n  are measured approximately 

1.38, 1.39, 1.40, 1.41, the acceptance angles, i , are 

calculated as 71.98 ,  74.89 ,  78.46 ,  83.73o o o o , 
respectively. Thus, for the TIR in the waveguide, the 
spatial radiation pattern of LED should be smaller than 
71.98 2 143.96o o   . Fig. 5 shows the total internal 
reflection in a three layer PDMS optical waveguide 
using four LED light sources. 
 
 
3.4. Sensor Specification 
 

Spatial resolution between sensing points: The 
resolution of the tactile elasticity imaging sensor is 
going to be the pixel size of the camera. The spatial 
resolution between sensing points of the fingertip is at 
least 0.1 mm, which translates into an approximately 

200×300 elements grid on a fingertip-sized area 
(20 mm×30 mm) [18]. In the current design, the 
pattern discrimination ability of the elasticity-imaging 
sensor is 4.65 µm and translates into an approximately 
4301×6415 elements grid on a fingertip-sized area.  
 
 

 
 

Fig. 5. The total internal reflection in a three layer PDMS 
optical waveguide using four LED light sources. 

 
 

Temporal resolution: With regard to the human 
fingertip temporal resolution, the vibration bandwidth 
reported at the fingertips is a few Hz for separate 
touches and hundred Hz for continuous sensing. The 
camera that we chose had a 1392×1042 resolution at 
80 frames per second (80 Hz). However, this temporal 
resolution can be improved depending on the camera. 

Force sensitivity: Sensitivity is described in terms 
of the relationship between the physical signal (input) 
and the electrical signal (output) and is generally the 
ratio between a small change in the input to a small 
change in the output signal. The force sensitivity of the 
proposed tactile sensor force is approximately 

32.5 10  N compared to the fingertip force sensitivity 

of 22.0 10  N [21]. 
Linearity/hysteresis: The human skin response 

has hysteresis. It has been noted that, for example, the 
force required maintaining a given indentation on the 
skin decreases as the probe is held against the skin 
[16]. The skin relaxes with time, with an observed 
length of up to 8 seconds. The proposed sensor is 
stable, repeatable and continuous in its variable output 
signal. The response of the sensor is non-hysteric and 
verified in the experiments. Table 1 summarizes the 
sensory specification of the human fingertip and our 
tactile elasticity imaging sensor.  

 
 

Table 1. Sensory specification of the human fingertip 
and tactile elasticity imaging sensor. 

 

Design criteria 
Human fing

ertip 

Tactile elasti
city imaging 

sensor 
Spatial resolution betw
een sensing points 

0.1 mm 4.65 µm 

Temporal resolution 0~100 Hz 0~80 Hz 

Force sensitivity 2.5×10-3 N 2.0×10-2 N  

Hysteresis High Low 
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4. Elasticity Estimation 
 

The elasticity is obtained using stress and strain 
information from tactile images. Since the stress is 
measured as force per unit area, we estimate the 
applied force by contacting the object using the 
integrated pixel value of tactile image. For the strain 
information, the displacement of a material 
deformation under the applied force has been 
measured by tracking the control points extracted from 
two different tactile images. In this section, stress and 
strain estimation algorithms are been discussed in 
detail. 

 
 

4.1. Stress Emotion 
 

In this section, we present the stress estimation 
method using the obtained tactile image. If the optical 
waveguide of a sensor is compressed by the contacting 
object, it is deformed in both compressive and 
shearing directions. Because the light scatters at the 
contact area, the pixel value of the tactile image 
acquired by the camera distributes as a Gaussian 
function, in which the pixel intensity is the highest at 
the centroid and decreases with increased distance 
from the centroid [15]. Let ( , )I x y  be the pixel value 

of the image plane. Since ( , )I x y  is proportional to 

the contact stress, ( , )P x y , caused by the contact 

between optical waveguide and the object, it can be 
expressed as follows: 
 

( , ) ( ( , )),P x y f I x y  (5) 
 
where f  is the conversion function which is 

determined by an experiment. If S  is designated as 
the contact area between the optical waveguide and the 
contact object, then the vertical force zF  is obtained 

by integrating the stress over the contact area as 
follows 
 

( , ) .z

S

F P x y dS   (6) 

 
In order to determine horizontal force vectors xF  

and yF , the x - and y - coordinates of the centroid 

( , )c cX Y , are calculated by  

 

( , ) / ( , ) ,c S S
X I x y xdS I x y dS    (7) 

 

( , ) / ( , ) .c S S
Y I x y ydS I x y dS    (8) 

 
The movements of the x - and y - components of the 

centroid are denoted as xu  and yu  and expressed as 

 
( ) ( 1) ,t t

x c cu X X    (9) 

( ) ( 1) .t t
y c cu Y Y    (10) 

 
where t  and 1t   represent current and prior steps, 
respectively. If friction between the optical waveguide 
and contact object is ignored, then x - and y - 

directional forces xF  and yF  are calculated  

as follows 
 

,x x xF K u  (11) 
 

.y y yF K u , (12) 
 
where xK  and yK  are the x - and y - directional 

spring constants of the optical waveguide, 
respectively. 

Spring constants are determined experimentally. 
If we calculate the applied force, then the stress is 

calculated from the applied force per unit contact area. 
 
 

4.1. Strain Estimation using Non-rigid 
Pattern Matching Algorithm 

 

The strain measurement of a material under 
loading is achieved by tracking the displacement of 
control points extracted from series of tactile images. 
This concept is attractive, but manual measurement of 
control point positions is tedious and subject to error. 
This limits the number of control points that can be 
used and measured, and the spatial resolution of 
displacement fields. In this paper, to tracking the 
control points efficiently and automatically, non-rigid 
pattern matching algorithm is developed. The essence 
of this algorithm is to automatically measure 
displacements by tracking the change in position of 
control points. Fig. 6 represents the concept of 
tracking control points between tactile images. 
Considering a point of interest, p , in the image of the 

reference configuration. It is desired to determine q , 

the point to which it has moved in the image of the 
deformed configuration. Since the contacted object is 
a 3-D object and the tactile images are provided in 2-
D, the 3-D surface image has been reconstructed from 
2-D image using “Shape from Shading” method [22]. 
The control points are extracted from the reconstructed 
3-D image. 

 
 

 
 

Fig. 6. The estimation of displacements of the contacted 
object deformation by tracking control points  

on the surface of the tactile image. 
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The non-rigid pattern matching algorithm we 
propose, uses iterative algorithm to find appropriate 
correspondence and transformation function between 
control points. The displacement of the object 
deformation is obtained from the transformation 
function. This displacement function is used to 
estimate the strain information. The algorithm is 
described in more detail below. 

If we consider the first 3-D tactile image as a 
reference image and the second 3-D tactile image with 
different loading ratio, as the target image, then we can 
use the pattern matching method to obtain the strain 
information. From the surface of each 3-D tactile 
image, a random number of control points are 
extracted. Let 1 2{ , ,..., }IP p p p  be a set of points in 

the model and 1 2{ , ,..., }JQ q q q  be a set of points in 

the target. For a given point, ip P , one can select 

neighboring points Na(pi), a=1, 2, …, A, which reside 
in the circle centered at ip . We set the radius of a 

circle as the median value of all Euclidean distances 
between point pairs in P. Similarly, for a point, 

jq Q , adjacent points are Nb(qj), b=1, 2, …, B. In 

this paper, the pattern matching problem is formulated 
as a graph matching problem. Each point is a node of 
a graph, and a given point and its adjacent point 
constitute the edges of the graph. The problem then is 
to maximize the number of matched edges between 
two graphs. For this purpose, we determine the fuzzy 
correspondence matrix M . Each entry of M  has 
continuous value between [0,1] that indicates the 
weight of the correspondence between pi and qj. The 

optimal match M̂  is found by maximizing the energy 
function as follows: 

ˆ arg max ( , , ),
M

M C P Q M  (13) 

 
where 

 

( ) ( )
1 1 1 1

( , , ) .
i j a i b j

I B J A

p q p q
i b j a

C P Q M M M
   

   
(14

) 

 
The above equations are subject to the following 

constraints 
1

1

1
i j

J

p q
j

M




  for 1, 2,...,i I  and 

1

1

1
i j

I

p q
i

M




  for 1,2,...,j J . 

In the following section, we discuss how the 
optimal correspondence and transformation function 
between control points are obtained. For this purpose, 

the algorithm uses an iterated estimation  
framework to find appropriate correspondence  
and transformation. 
 
 
4.2.1. Point Correspondence 
 

Initially, each point ip P  is assigned with a set 

of matching probability based on the shape context 
distance [22]. After the initial probability assignment, 
the relaxation labeling process updates the matching 
probability. The relaxation labeling is an iterative 
procedure that reduces local ambiguities and achieves 
global consistency by exploiting contextual 
information. The process is to assign a matching 
probability that maximizes ( , , )C P Q M  under the 

relaxed condition of [0,1]
i js tM  . At the end of the 

relaxation labeling process, it is expected that each 
point will have one unambiguous matching 
probability. The determination of the compatibility 
coefficients is crucial because the performance of the 
relaxation labeling process depends on them. We 
propose new compatibility coefficient that quantifies 
the degree of agreement between the hypothesis that 

ip  matches to jq  and ( )a ip  matches to ( )b jq . 

In the non-rigid degradation of point sets, we note 
that a point set is usually distorted; however, the 
neighboring structure of a point is generally preserved 
due to physical constraints. The displacement of a 
point and its adjacent point between two point sets 
constrain one another. Thus, if the distance and angle 
of a point pair ( , ( ))i a ip p  in the reference image 

and its corresponding point pair ( , ( ))j b jq q  in the 

target image are similar, we say that they have high 
correlation. This is further strengthened if a point pair 
( , ( ))i a ip p

 
in the model shape is closer to each 

other. To quantify this knowledge, we introduce the 
similarity constraint  ,   as well as the spatial 

smoothness constraint  . 

The first constraint is the similarity that is related 
to the differences between the distances and angles of 
( , ( ))i a ip p  and ( , ( ))j b jq q . This first constraint 

imposes that if ( , ( ))i a ip p  has smaller distance and 

angle differences with ( , ( ))j b jq q , then they are 

more compatible. The disparities between 
( , ( ))i a ip p  and ( , ( ))j b jq q

 
are defined  

as follows.  

 
 

,

( , ( ); , ( ))

1 ( ( , ( )) ( , ( ))) / max{ ( , ( )), ( , ( ))} ,

i a i i b j

i i a i j i b j i i a i j j b j
i j

p p q q

d p p d q q d p p d q q

 

    
 

 

   
 (15) 

 
 

,

( , ( ); , ( ))

1 ( ( , ( )) ( , ( ))) / max{ ( , ( )), ( , ( ))} ,

i a i i b j

i i a i j i b j i i a i j j b j
i j

p p q q

l p p l q q l p p l q q

 

    
 

 

   
 (16) 
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The second constraint, spatial smoothness, is measured by the distance between ip  and ( )a ip . 
 

   ( , ( )) 1 ( , ( )) / max{ ( , ( ))} ,i a i i i a i i a i
i

p p d p p d p p       (17) 

 
where max{ ( , ( ))}i a i

i
d p p  is the longest edge of point-adjacent point pairs. We define a total compatibility 

coefficient by 
 

 ( ( ), ( )) ( , ( ); , ( )) ( , ( ); , ( )) ( , ( )).
i jp q a i b j i a i j b j i a i j b j i a ir p q p p q q p p q q p p            (18) 

 
The support function 

i j

k
p qS  in the k-th iteration is given by 

 
 

( ) ( )
1 1

( ) ( )
1 1

( ( ), ( ))

     ( , ( ); , ( )) ( , ( ); , ( )) ( , ( )) .

i j i j a i b j

a i b j

I J
k k
p q p q a i b j p q

i j

I J
k

i a i j b j i a i j b j i a i p q
i j

S r p q M

p p q q p p q q p p M  

 

 



   





 

 

 

    

 (19) 

 
Finally, the fuzzy correspondence matrix element 

i jp qM  in Eq. (14) is updated according to 

 
 

1

1

/ ,
i j i j i j i j i j

J
k k k k k
p q p q p q p q p q

j

M M S M S



   (20) 

 
 
Traditionally, the sum of the rows (or columns) of 

the matrix M  is used as a constraint in the relaxation 
labeling process. In this paper, we use the sum of the 
rows and columns as a two-way constraint. In order to 
meet these constraints, alternated row and column 
normalization of the matrix M  is performed after 
each relaxation labeling update. This procedure is 
known as Sinkhorn normalization, which shows that 
the procedure always converges to a doubly stochastic 
matrix [25].  

 
 

4.2.2. Transformation Function 
 

Since the strain is determined by the displacements 
of the contact object deformation, we estimate a 

transformation function 3 3:T    to find the 
displacements between tactile images obtained under 
different loading values. In this study, we use the thin-
plate spline (TPS) model, which is used in non-rigid 
pattern matching method for representing flexible 
coordinate transformations. 

Let iv  denote the target function values at 

corresponding locations ( , , )i i i ip x y z  in the plane, 

with 1,2,...,i n . In particular, we will set iv  equal to 

ix , iy , iz   in turn to obtain one continuous 

transformation for each coordinate. We assume that 
the locations ( , , )i i ix y z  are all different and are not 

collinear. In 3-D interpolation problem, the TPS 
interpolant ( , , )f x y z  minimizes the bending energy 

 
 

 

3

2 2 2 2 2 22 2 2 2 2 2

2 2 2
2( ) ,f

f f f f f f
I dxdydz

x y x z y zx y z

                 
                                     

  


 (21) 

 
 

and the interpolant form is 
 

 
where 1a , xa , ya , za  are the affine transformation 

coefficients and iw  is the non-affine deformation 

coefficients. The kernel function ( )U r  is defined by 

2 2( ) logU r r r  and (0) 0U   as usual. In order for 

( , , )f x y z  to have square integrable second derivative, 

we require the boundary condition as 
1

0
n

i
i

w


  and 

1 1 1

0
n n n

i i i i i i
i i i

w x w y w z
  

     . 

Together with the interpolation conditions, 
( , , )i i i if x y z v , this yields a linear system for the 

TPS coefficients: 

 
1

1

( , , )

( ( , , ) ( , , ) ),

x y z

n

i i i i
i

f x y z a a x a y a z

wU x y z x y z


    

 
 (22) 
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,

0 0T

K G W W V
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A AG
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  

 

where 

12 1
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1 2

0       ( )    ( )
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 
 
 
 
 
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


   


  

 

and 

1 1 1

2 2 2

4

1 x           

1 x           
.

         

1 x          n n n n

x y z

x y z
G

x y z


 
 
 
 
 
 

   
, (23) 

 
where, || ||ij i jr p p   is the Euclidean distance 

between points ip  and jp . W and A are column 

vectors formed from 1 2[ , ,..., ]nW w w w   and 

1[ , , , ]x y zA a a a a  , respectively. 1 2[ , ,..., ]nV v v v   

is an arbitrary n-vector. We denote the ( 4) ( 4)n n    

matrix 
  

 0

K G

G

 
 
 

 by L . Define the vector 

( | 0  0  0)Y V  , then we can find the coefficients of 

TPS by 1
1( |          )x y zW a a a a L Y 

 
[26]. 

In the point matching problem, it is necessary to 
relax the exact interpolation by means of 
regularization. This is accomplished by minimizing 
the bending energy as follows. 

 
2

1

[ ] ( ( , , ))
n

i i i i f
i

H f v f x y z I


    (24) 

The regularization parameter  , a positive scalar, 
controls the amount of smoothing; the limiting case of 

0   reduces to exact interpolation. As demonstrated 
in [27-28] we can solve for the TPS coefficients in the 
regularized case by replacing the matrix K  with 
K I . 

After several relaxation labeling updates, the 
parameters of TPS deformation model is estimated 
from the matched control points. The estimated 
parameters are then used to transform the reference 
image bringing it as close as possible to the target 
image. The relaxation labeling process then starts 
again between the transformed model set and the 
target set. The processes for identifying 
correspondence and transformation are alternatively 
iterated until the stopping criterion is met.  

The resulting function ( , , )f x y z   

[ ( , , ), ( , , ), ( , , )]x y zf x y z f x y z f x y z  is a vector-

valued, and this maps each point ( , , )i i ix y z  to 

( , , )i i ix y z    and is the least bent of all such functions. 

These vector-valued functions ( , , )f x y z  are the thin-

plate spline mappings. 
 
 
4.3. Elasticity Measurement from Stress 

and Strain 
 

Now we obtain the elasticity from the  
tactile images using previous stress and strain 
estimation method. The final TPS model 

( , , ) [ ( , , ), ( , , ), ( , , )]x y zf x y z f x y z f x y z f x y z

provides a continuous displacement field for 
performing strain analysis. The nonlinear Lagrangian 
strain tensor components are then determined from the 
equations as follows 

 
 33 3( , , )( , , ) ( , , ) ( , , )1

,
2

yx x z
xx

f x y zf x y z f x y z f x y z
e

x x x x

                        
 (25) 

 
 33 3

( , , ) ( , , )( , , ) ( , , )1
,

2
y yx z

yy

f x y z f x y zf x y z f x y z
e

y y y y

      
                 

 (26) 
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,
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yxz z
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f x y zf x y zf x y z f x y z
e

z z z z

                       
 (27) 
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 (30) 

 
To determine the elastic property of the contacted 

object from the uniaxial loading configuration, the 
strain components are averaged zze  along the x  and 

y  directions to yield the average strain, zze . Given the 

applied normal stress zzS  acting on the loading 

surface of the optical waveguide, the elastic modulus 
E  is then determined from 
 

/ .zz zzE S e  (31) 
 

The elasticity estimation using the non-rigid 
pattern matching algorithm is based on the NP-hard 
problem and has similar computational complexity of 

3( )O N  for matching in 3 . For a Young’s modulus 

calculation using a 105  105 point matching, the 
algorithm takes about 1.69 seconds on a desktop PC 
with Core 2 Duo CPU with 2.13 GHz and 2 GB RAM. 
 
 
5. Experiment Results 
 
5.1. Normal Force Estimation Experiment 

 
In this section, the relationship between the normal 

force and the integrated pixel value is established via 
experiments with a loading machine. The loading 
machine has a force/torque gauge (Mecmesin, West 
Sussex, UK) to detect the normal force. This machine 
is shown in Fig. 7. 

 
 

 
 

Fig. 7. Measurement setup for elasticity-imaging  
sensor characterization. 

The force gauge has a probe to measure the force 

from 0 to 50 N with a resolution of 31.0 10  N. Since 
the camera is an 8-bit digital imager, each pixel value 
is between of 0 and 255. A circular tip with 2 mm 
radius is attached to the force/torque gauge and this is 
used to contact the sensor. To validate the normal 
force detection, we start from the initial load of 0 N, 
then the normal force is increased in a stepwise 
manner. When the applied force reaches around 2.0 N, 
the applied normal force is decreased in a stepwise 
fashion until it returns to 0 N. The resulting diffused 
light is captured by the camera, and the corresponding 
contact force is measured by the force gauge. 

Fig. 8 shows the pixel value along the contact area

’s horizontal line passing through the centroid of tactile 
image. As we expected, the graph is the Gaussian like 
bell shaped graph and the maximum value is on the 
centroid of the tactile image. The plot of integrated 
pixel value change as the applied force changes is 
shown in Fig. 9 (a). The relationship between the 
integrated pixel value and the applied force is found to 
be approximately linear as shown in Fig. 9 (b). The 
approximated curve shows a monotone increasing 
relationship between the normal force and the 
integrated pixel value of the tactile image. The 
hysteresis loop is not observed in the graph, indicating 
that the proposed sensor functions as the precise load 
cell in the region from 0 to 2 N. Using this 
approximation, we can approximate the normal forces 
from the integrated pixel values. 

 
 

 
 

Fig. 8. Pixel value along the contact area’s horizontal line 
passing through the centroid of tactile image. 
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(a) 

 

 
(b) 

 
Fig. 9. The relationship between normal force and 

integrated gray scale value: (a) Loading and unloading 
experimental results; (b) the approximated fitting curve. 

 
 

5.2. Strain and Elasticity Measurement Using 
Soft Polymers 

 
To validate the elasticity measurement using the 

proposed sensor, Versaflex CL2000X and CL2003X 
(GLS, McHenry, Illinois) soft polymers with known 

Young’s moduli of 103 kPa and 62 kPa have been 
used. The objects was 3 mm in radius and spherical in 
shape. The tactile elasticity imaging sensor 
compressed the polymer samples. The compression 
ratio was gradually increased. At 0.7 N and 1.2 N 
applied forces, tactile image has been taken. Fig. 10(a) 
shows two 2-D tactile images under the 0.7 N and 1.2 
N normal forces. In the images, a color scale replaced 
the original grayscale for better visualization. A purple 
color indicates grayscale value 0 and a red color 
indicates grayscale value 255. The two obtained 2-D 
tactile images were rendered to 3-D images using 
"shape from shading" method [23]. The 3-D rendered 
tactile images are represented in Fig. 10(b). The  
200 control points were then sampled from the surface 
of 3-D tactile images. In this the equally spaced 
control points are extracted automatically. The point 
correspondence and transformation between control 
points are iteratively estimated. Fig. 11(a) represents 
control point distributions from 0.7 N and 1.2 N 3-D 
tactile images of Vesaflex CL2000X. The final 
matching result is represented in Fig. 11(b). 

 
(a) 

 

 
(b) 

 
Fig. 10. 2-D tactile images and 3-D rendered tactile images: 
a) 2-D tactile images under 0.7 N (left) and 1.2 N (right) 
loading value; (b) 3-D recovery image of 0.7 N (left) and  
1.2 N (right). 
 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 11. Non-rigid pattern matching under different tactile 
image of CL2000X: (a) Control points from 3-D tactile 
images under the loading values of 0.7 N and 1.2 N to 
polymer sample, CL2000X; (b) The non-rigid pattern 
matching results. 
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The TPS transformation functions from the final 
matching result are used for the elasticity 
determination. Fig. 12 represents the experimental 
verification. The solid line represents the gold 
standard of CL2000X and CL2003X moduli, and the 
square represents measurement values from a tactile 
elasticity imaging sensor. The errors of the estimated 
moduli were within 4.23 % for CL2000X and 5.38 % 
for CL2003X. 

 
 

 
 

Fig. 12. Polymer samples CL2000X and CL2003X moduli 
measurements using tactile elasticity imaging sensor. 

 
 

6. Conclusions 
 

In this paper, a tactile elasticity imaging sensor 
using the total internal reflection principle is designed 
and experimentally evaluated. To increase the sensing 
range, an optical waveguide consisting of three 
different densities of PDMS with different elastic 
modulus was fabricated. In order to obtain the 
elasticity of the sensed object, the strain is estimated 
by a non-rigid pattern matching technique. The 
performance of the proposed sensor is experimentally 
verified. The results show that the elastic moduli are 
estimated within 5.38 % of the true value. 
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